二数形结合在函数中的应用
数形结合在函数与方程中的应用

2024年3月上半月㊀学习指导㊀㊀㊀㊀数形结合在函数与方程中的应用◉江苏省常熟市浒浦高级中学㊀李宝香㊀㊀函数与方程是高中数学的重要组成部分,也是高考的核心考点,二者既相互联系又相互区别.它们与其他知识点也有着密切的联系,学好这部分知识点对学生提高数学水平㊁提升数学能力都有着非常重要的意义.方程与函数相结合的题目比较灵活,学生解题时常常因为找不到合适的切入点而望而却步.数形结合作为一种重要的思想方法,其在解决函数与方程问题中有着重要的应用.日常教学中,教师应让学生充分体会函数与方程的转化关系,重视启发学生借助图象的直观来解决一些抽象的方程㊁不等式㊁函数单调性等问题,以此提高解题效率.下面笔者结合实例谈谈自己在这部分知识教学时的一些心得体会,若有不足,请指正.1利用数形结合思想研究一元二次方程的根的分布问题㊀㊀方程的根与函数的零点既是高中数学的重点,也是难点.在这部分知识教学中,教师应重视基础知识的讲解,让学生理解并掌握二者之间的等价关系,并学会用数形结合思想方法解决问题,感悟数形结合思想方法在解决此类问题中的价值,发展数学素养.1.1探寻基础,沟通联系在函数与方程的教学中,教师应重视引导学生将方程中的相关结论用函数图象来表达,以此将方程的根与函数的零点建立联系,通过数形结合,让学生深刻理解二者的等价关系,从而为后期的应用奠基.设一元二次方程a x 2+b x +c =0(a ʂ0)的两个实数根分别为x 1,x 2,且x 1ɤx 2,有以下重要结论.结论1:x 1>0,x 2>0{⇔Δȡ0,a >0,f (0)>0,b <0ìîíïïïï或Δȡ0,a <0,f (0)>0,b >0.ìîíïïïï根据结论1,结合二次函数图象得到函数零点的分布情况,如图1.图1结论2:x 1<0,x 2<0{⇔Δȡ0,a >0,f (0)>0,b >0ìîíïïïï或Δȡ0,a <0,f (0)>0,b <0.ìîíïïïï同理,结合结论1的研究经验,根据结论2可以得到对应的二次函数图象,如图2.图2结论3:x 1<0<x 2⇔ca <0.结论4:x 1=0,x 2>0⇔c =0且ba<0;x 1<0,x 2=0⇔c =0且ba>0.(对应图象如图3㊁图4)图3图4数 与 形 建立联系,为研究方程的根的分布情况带来了便利,促进了学生高阶思维能力的发展.1.2灵活应用,深化认知例1㊀假设x 2-2(m -1)x +2m +6=0.(1)如果方程有两个根均大于0,求实数m 的取值范围;(2)如果方程的两个根一个比1大,一个比1小,34学习指导2024年3月上半月㊀㊀㊀求实数m 的取值范围;(3)如果方程的两个根均大于1,求实数m 的取值范围.问题给出后,教师让学生独立完成.教师巡视,发现大多学生选择运用初中所学的方程知识来求解.有的因为运算复杂而望而却步,有的因为漏解最终导致结果错误,解题效果一般.在解决此类问题时,教师要引导学生运用数形结合思想,借助图形的直观去研究已知,探寻未知,有效避免错误的发生.教学中,教师选择了一些典型性解答过程进行展示,以下是学生给出的解问题(3)的解答过程.生1:根据Δ=4(m 2-4m -5)ȡ0,(x 1-1)(x 2-1)>0,{可得m ȡ5或m ɤ-1.生2:由Δ=4(m 2-4m -5)ȡ0,x 1+x 2>2,x 1x 2>1,ìîíïïïï得m ȡ5.生1按照解决问题(1)的思路求解,解得m ȡ5或m ɤ-1;而生2按照解决问题(2)的思路求解,解得m ȡ5.可以看出,大多学生习惯性地利用根的判别式和韦达定理来求解此类问题.对于简单的问题,此种方法确实一个好的解题策略,该方法虽然运算上略显复杂,但是学生易于理解和接受.不过,对于复杂的问题,若依然采用该方法求解可能会陷入误区.教学中,教师让学生思考: 上述问题(3)的两种解法正确吗?你能否举例验证呢 在问题的引导下,学生积极思考,很快就发现了问题.对于生1给出的(x 1-1)(x 2-1)>0这一条件,学生给出这样一个反例:若x 1=-3,x 2=-1,虽满足(x 1-1)(x 2-1)>0,但却不满足 方程两根均大于1 这一条件.对于生2给的条件,同样也给出了反例:若x 1=4,x 1=12,同样满足x 1+x 2>2,x 1x 2>1,{但却不满足 方程两根均大于1 这一条件.显然利用解决问题(1)和问题(2)的策略来研究问题(3)是行不通的.此时,教师不妨引导学生分析函数的零点,借助函数图象寻找解决问题的突破口.由y =x 2-2(m -1)x +2m +6的图象(此处略),可得Δ=4(m 2-4m -5)ȡ0,2(m -1)2>1,f (1)>0,ìîíïïïï所以m ȡ5.在此基础上,教师可以引导学生运用函数零点分布的知识重新思考问题(1)和问题(2),以此通过对比分析发现不同解法的优缺点.以上问题求解后,教师还应引导学生向一般转化,思考这样几个问题:已知方程a x 2+b x +c =0(a >0)有两个根.若方程有两个正根,此时应满足什么条件?若方程两根都比m 大,又应满足什么条件呢?若方程一个根比m 大,另一个根比m 小呢?由此通过由特殊到一般的转化,帮助学生总结二次函数零点分布的解法,提高学生解题技能.在数学教学中,不应仅将目光聚焦于问题解决上,还应思考问题解决过程中涉及的数学思想方法,让学生学会从整体㊁全局的角度去思考问题,通过深入探究提高学生分析和解决问题的能力.2利用数形结合思想解方程和不等式函数是方程与不等式的扩展,三者相互沟通㊁相互转化.谈起解方程,大家脑海中大多浮现的是解一元一次方程㊁一元二次方程(组),其实方程的类型远不止于此,有些方程直接求解可能很难找到合理的切入点,需要将其转化为函数,利用函数思想求解往往可以事半功倍.其实,在研究幂函数㊁指数函数㊁对数函数㊁三角函数等一些特殊形式的函数时,都会要求学生画出这些函数的图象,然后运用一些特殊方程与函数的交点问题来研究方程的根.3利用数形结合思想研究函数的单调性函数单调性是高中数学教学的一个难点内容.之所以难是因为函数单调性的概念比较抽象,部分学生直接应用定义法研究函数单调性时容易遇到障碍,从而影响解题效果.其实我们在学习新函数时,都会研究其图象,然后根据函数图象研究函数的相关性质.因此,在研究初等函数或者由初等函数复合而来的函数的单调性问题时,可以结合函数图象来分析,以此借助 形 的直观让问题更加形象,消除学生的畏难情绪,提高解题信心.例2㊀求函数y =x |x |-2|x |的单调区间.分析:在解决此类含绝对值的函数问题时,首先要引导学生去掉绝对值符号,然后结合函数图象研究其性质.根据绝对值的定义去掉绝对值,可得y =x 2-2x ,x ȡ0-x 2+2x ,x <0,{然分别画出y =x 2-2x (x ȡ0)和y =-x 2+2x (x <0)的函数图象,问题即可迎刃而解.数形结合在研究函数与方程问题中有着重要的应用,若在教学中合理加以利用可以淡化数学的抽象性,帮助学生更好地理解知识㊁解决问题,提高解题信心.因此,在课堂教学中,教师不仅要讲授知识,还要渗透思想与方法,以此提高教学质量和学生数学素养.Z44。
例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用【摘要】二次函数教学中,数形结合思想的应用是非常重要的。
通过将数学与几何相结合,可以帮助学生更深入地理解二次函数的概念和特性。
通过实例分析和图形展示,学生能够直观地看到二次函数的图像与方程之间的关系,从而加深对这一知识点的理解。
通过实践操作,学生可以更好地掌握数学知识,提升他们的实际运用能力。
数形结合思想不仅可以提升学生的学习兴趣和效果,还可以帮助他们从多角度理解数学知识,提高数学素养。
在二次函数教学中,充分利用数形结合思想是非常有益的,可以有效提升学生的学习水平和综合素质。
【关键词】二次函数、数形结合、教学、图形、特性、实例分析、数学、几何、理解、实践操作、学习兴趣、学习效果、多角度、数学素养。
1. 引言1.1 二次函数教学的重要性二次函数作为高中数学中的重要内容之一,在学生数学学习中具有重要的地位。
学会了二次函数的相关知识,可以帮助学生理解和掌握高中数学中的很多概念和方法,为以后的学习打下坚实的基础。
二次函数的教学内容丰富多样,不仅可以帮助学生提高数学的解题能力,还可以培养学生的数学思维和创新能力。
二次函数具有许多独特的特性和规律,通过学习二次函数,可以让学生在数学上有更深入的认识和了解。
二次函数也广泛应用于生活和科学领域,学会了二次函数相关知识可以帮助学生更好地理解和解决实际问题。
二次函数教学的重要性不言而喻。
只有深入理解和掌握二次函数的相关知识,才能在数学学习中取得更好的成绩,为将来的发展打下坚实的基础。
二次函数的教学不仅具有重要的理论意义,更具有重要的实践意义。
通过深入的学习和实践,可以帮助学生更好地理解和应用二次函数相关知识,提高数学素养和解决实际问题的能力。
1.2 数形结合思想的意义数形结合思想在二次函数教学中扮演着至关重要的角色。
通过将数学与几何相结合,可以帮助学生更直观地理解抽象的数学概念,提高他们的学习兴趣与学习效果。
在二次函数这一抽象概念中,数形结合思想可以将函数的数学性质与图形的几何特征相联系,使学生更全面地理解二次函数的本质。
数形结合在二次函数中的应用

课题:数形结合在二次函数中的应用公主岭四中 曹立华教学目标:1. 知识目标:理解二次函数解析式与二次函数图像间的关系。
通过解析式本身蕴含的信息以及函数图像的直观表示,解决有关的问题。
2. 能力目标:通过本节课的学习,进一步掌握数形结合的数学思想以及数形互检的方法。
3. 情感目标:通过小组讨论活动,培养学生的团队协作精神。
教学过程:数形结合思想就是将几何与代数有机地结合,用数的观念来解决形的问题;或者用形的方法解决数的问题,是中考数学中的一个重要的思想方法。
今天我们着重研究数形结合在二次函数中的应用。
一、数促形,让感性的形多一分理性思考:从图中获取信息:学生可能从以下几方面考虑:(1)a 、b 、c 的符号(2)24b ac -的符号(3)顶点位置例1 已知二次函数c bx ax y ++=2的图象如图所示,下列结论 ①0<++c b a ②0>+-c b a ③0>abc ④3c a >-中正确的个数是( )(A) 4 (B) 3 (C) 2 (D) 1分析:仔细观察抛物线的位置走向,关键点的位置坐标,以及解析式中各系数与图形性质的对应关系,再做出判断。
归纳:我们解题时会发现图形的特征常常体现着数的关系,运用“数”的规律,数值的计算,我们就可以寻找出处理“形”的方法,来达到“数促形”的目的。
图形问题可以转化为数量问题。
同样有时数量问题也可以转化为图形问题。
二、形帮数,让理性的数多一些感性。
x… -3 -2 -1 0 1 2 … y … 12 5 0 -3 -4 -3 …(1)该抛物线对称轴的直线方程是 。
(2)若抛物线与x 轴交于点A 、B ,与y 轴交于点C ,求S △ABC分析:此题若先求解析式,后求对称轴,计算较繁,通过“形”利用对称性简单明了。
练习1:抛物线开口向上,顶点在坐标原点,将该抛物线向下平移15个单位后,与x 轴相交的两交点间的距离是15,则平移后的抛物线解析式为 。
例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用数形结合思想在二次函数教学中的应用是非常重要的。
二次函数是高中数学中的重要内容,它在解决实际问题时,往往需要将数学知识与几何图形相结合,才能更好地进行分析和解决。
在讲解二次函数的基本概念时,可以借助几何图形进行解释。
通过绘制抛物线的图像,让学生直观地感受到二次函数的特点和性质。
可以引导学生观察图像的特点,如顶点、对称轴、开口方向等。
通过观察图像,学生可以更深入地理解二次函数的定义和性质。
数形结合思想在解决二次函数的最值问题时也能起到很大的帮助。
当需要求一个二次函数在一定区间内的最大值或最小值时,可以通过分析几何图像的形状来确定最值的位置。
如果是一个开口向上的抛物线,最小值即为顶点的纵坐标;如果是一个开口向下的抛物线,则最大值为顶点的纵坐标。
通过这种数形结合的思想,学生不仅可以快速找到最值的位置,还能够对最值的意义有更深入的理解。
数形结合思想在解决二次函数方程的根的个数和位置问题时也很有用。
通过绘制抛物线的图像,可以让学生观察到抛物线与x轴交点的个数和位置与方程的根的个数和位置是一致的。
如果抛物线与x轴只有一个交点,那么方程也只有一个实根;如果抛物线与x轴有两个交点,那么方程有两个实根;如果抛物线与x轴没有交点,那么方程没有实根。
通过这种数形结合的思想,学生可以更好地理解二次函数方程根的个数与位置的关系。
数形结合思想在解决二次函数的图像变换问题时也能起到很大的帮助。
在讲解平移变换时,可以通过移动抛物线的顶点,让学生理解平移变换对函数图像的影响;在讲解伸缩变换时,可以通过改变抛物线的开口程度,让学生理解伸缩变换对函数图像的影响。
通过这种数形结合的思想,学生可以更直观地理解各种函数变换的效果和特点。
浅析数形结合在初中数学二次函数教学中的应用

浅析数形结合在初中数学二次函数教学中的应用对于九年级的孩子来说,数学学习的难度加大,二次函数作为一个需要动用学生综合思考能力的难题,一直是数学教学的重点。
实际上,进行函数学习,不仅是日后更深层次的数学学习基础,也对于学生数学思维的培养,具有程度的影响。
数与形是数学中的两个基本概念,不同的图形蕴含着不同的数值,而不同的数量关系,又能够通过数学图形展现出来,通过数形结合图像与竖直进行对照,能够更加简单的进行数学问题的解决,这也是二次函数教学过程当中的主要思想。
本文也是基于数形结合的思想,对初中数学二次函数教学的具体应用进行举例说明,希望能够提高函数教学的质量和学生学习的效率。
关键词:数形结合二次函数初中数学在数学学习的过程当中,数形结合的思想是教师教学的重点,它直接影响着学生思维能力的养成,也影响着学生的数学实际能力。
数形结合的题目大多是以二次函数相关知识来呈现的。
因此,在进行二次函数教学的过程当中,我们应该以数形结合思想为核心,将图像与数据有机结合起来,化抽象为具象,化繁为简,提高学生的解题能力。
数形结合的具体体现就是,在教学过程当中,由数据绘制图形,完成对数据的解题,由图形推断,数据完成对数据的具体计算,而在中考时,我们也要通过数形结合的思想,用数形相互对照完成高难度的函数题目解答。
1.由数定形,确定坐标由数定形的教学思想是通过数据的明确来对二次函数图像进行推断性落实,用代数的方法来解决关于二次函数图形的问题。
它是通过对未知二次函数的推断性数据代入,来完成对二次函数图像性质的描述。
在进行教学时,我们需要让学生意识到由数定形的思想可以运用在哪些方面。
在解决二次函数相关习题时,碰到系数未定的二次函数,我们首先需要抓住题目中给出的数据,将其对应图像在坐标系中进行展示,之后完成对整个函数图像的大致推断。
对于这类问题,我们首先需要确定的是题目中所给出的具体条件,并与坐标系上展示出来,观察分析他是否与已经学过的一些二次函数图像相似,作出二次函数系数正负值的推断,再去完成题目的解答。
运用数形结合思想探讨二次函数在初中数学中的相关应用

运用数形结合思想探讨二次函数在初中数学中的相关应用发布时间:2022-08-11T18:15:02.792Z 来源:《中小学教育》2022年7月4期作者:鲍炜[导读]鲍炜安徽省芜湖市第二十九中学中图分类号:G652.2 文献标识码:A 文章编号:ISSN1001-2982 (2022)7-179-021引言数学是一种既古老又年轻的文化,也是自然科学的基础学科。
人类从远古时代的结绳计数,到如今可以宇宙航行,无时无刻不受到数学思想的影响。
最近几年,我国数学课程中关于数学学习的理念发生了深刻地变化,数学教学的主要目的和任务早已不是简单的知识和方法的传授,而是通过数学学习培养学生的数学能力。
二次函数是初高中教材中一个重要的内容。
二次函数是中考命题的重点,同时也是省示范高中自主招生考试的重要考点。
如何让学生对二次函数了解更加的深刻透彻,本论文运用数形结合思想对初中二次函数做了更深一步的研究。
我们通过以下几个方面的阐述让学生更加深入理解二次函数的知识,更加体会到数形结合思想的运用:利用二次函数图象讨论一元二不等式的解(自主招生考试考点)、利用二次函数图象讨论二次方程根的分布问题(中考难点)、巧用二次函数图象讨论含绝对值的二次函数问题自主招生考试考点)、巧用二次函数图象讨论二次函数与一次函数的交汇问题(中考重点)。
2 国内外研究现状查阅相关文献,众多数学教育者从不同角度和侧面探讨了数形结合在教学、解题及函数中的应用,也给出了自己独特的见解。
在所查阅到的国内外参考文献中,教育者们对数形结合在二次函数中只针对二次函数中的某一问题作了相应的介绍,并未给出较为深入系统的研究。
数形结合思想在初高中二次函数中的应用非常广泛,对数形结合在初高中二次函数中的综合应用进行深入研究,使之形成完整的体系,对今后利用数形结合思想在二次函数教学、解题及其在中考以及自主招生考试中的应用具有重要的意义。
3 提出问题数形结合不仅是一种重要的解题方法,而且是一种基本的数学思想,同时二次函数也是初高中比较重要的一个内容,为了促进学生对这种思想方法的掌握,我们初中老师在依据教材对标课程标准的前提下,要适当提高二次函数的教学难度,这样学生到了高中才能较好的掌握二次函数内容,能起到承上启下的作用。
数形结合思想在二次函数中的应用

数形结合思想在二次函数中的应用数与形是数学中的两个最古老,中学数学研究的对象可分为数和形两大部分,数与形是有联系的,这个联系称之为数形结合,或形数结合。
二次函数是初中数学教学的重要内容,集中体现了数形结合思想,本文结合二次函数的数学,探寻渗透数形结合思想的有效策略。
标签:数学结合;二次函数;应用著名数学家华罗庚先生在谈到数形结合的好处时曾作诗赞美:“数与形,本是相倚依,焉能分作两边飞。
数无形时少直觉,形少数时难入微。
数形结合百般好,隔离分家万事休。
切莫忘,几何代数流一体,永远联系莫分离。
”数形结合思想是指导学生数学学习的重要数学思想之一,掌握数形结合的方法,可以极大地提高学生的数学学习效果,训练学生的数学思维,让学生终身受益。
二次函数作为初中数学教学的重要内容,集中体现了数形结合思想,是训练数形结合方法的良好载体。
“数(代数)”与“形(几何)”是数学的两个基本研究对象,这两个内容既互相独立又互相联系,体现在数学解题过程中包括“以数解读形”和“以形分析数”两个方面。
数形结合思想就是把数和形有机组合,使数学问题得到转化,“形”让“数”更具体明了,“数”使“形”更形象灵活。
因此,数形结合思想在数学解题中有广泛的应用。
数形结合思想在二次函数中的应用比较广泛,借助数形结合思想可以方便快捷地解决二次函数问题,怎样利用数形结合思想解决二次函数问题呢?要在解题中有效实现“数形结合”,最好能够明确“数”与“形”常见的结合点,从“以数助形”角度来看,主要有以下两个结合点:第一,以数轴、坐标系为桥梁把函数图象几何化;第二,利用面积、距离、角度等几何量来解决二次函数问题。
一、二次函数中的形转数二次函数图象的顶点在原点0,经过点A(1,1);点F(0,1)在y轴上,直线y=1与y轴交于点H。
(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线=y-1交于点M,求证:FM平分∠OFP。
解析:二次函数的解析式可以顺利解决,对于(2)点P是(l)中图象上的点,过点P作X轴的垂线与直线=y-1交于点M,求证:FM平分∠OFP;我们要挖掘图象蕴含的信息,PM平行于y轴,可得∠OFM=∠PMF,接下来探究乙PMF是否等于∠PFM,因为P在二次函数的图象上,可以设出P点的坐标,那么由P向y 轴作垂线段PB,构造直角三角形,利用勾股定理表达出PF的长度,依据P的坐标可以表示PM的长度,那么可以证明PF=PM,于是可以得到∠PM=F乙PFM,所以∠OFM=∠PFM,结论得到证明。
例谈二次函数教学中“数形结合”思想的应用

例谈二次函数教学中“数形结合”思想的应用二次函数教学中的“数形结合”思想的应用二次函数作为高中数学中的重要内容之一,其教学一直备受学生和教师的关注。
在二次函数教学中,要求学生不仅要能够掌握相关的概念和定理,还要能够应用所学的知识解决实际问题。
“数形结合”思想在二次函数教学中的应用显得尤为重要。
本文将针对二次函数教学中的“数形结合”思想进行分析和探讨,以期能够更好地引导学生理解和掌握二次函数的相关知识。
一、探究二次函数图像的特点在二次函数教学中,学生首先需要了解二次函数的图像特点。
一般来说,二次函数的图像是一个抛物线,其开口方向由二次项系数的正负性决定,开口向上的抛物线代表二次项系数大于0,开口向下的抛物线代表二次项系数小于0。
二次函数的顶点坐标、对称轴方程、零点坐标等也是学生需要掌握的内容。
通过学习这些内容,学生可以初步认识二次函数图像的特点,从而为后续的学习打下基础。
在教学中,可以通过让学生观察二次函数图像的变化,来引导他们探究二次函数图像的特点。
可以让学生改变二次函数的系数,观察对图像的影响,从而深入理解二次函数的图像特点。
老师还可以通过实例演示的方式,引导学生进一步理解二次函数图像的特点,激发学生的学习兴趣,提高他们对二次函数图像特点的理解能力。
二、数形结合的实际应用在学生掌握了二次函数的图像特点后,就可以引入“数形结合”思想,让学生将数学知识与实际问题相结合,进行实际应用。
可以通过实际问题来引导学生分析和解决问题,从而培养学生的数学建模能力和解决问题的能力。
通过实际问题的应用,还可以让学生更加直观地理解二次函数的意义和应用价值,提高他们对数学知识的兴趣和学习积极性。
在教学中,老师可以鼓励学生提出问题、进行实验和观察,从而引导他们进行自主探究。
通过这样的方式,学生可以更加深入地理解二次函数的相关知识,同时也可以培养其独立思考和问题解决的能力。
在探究性学习的过程中,老师要给予适当的指导和帮助,促进学生的学习成果,从而提高他们的学习效果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(二) 数形结合在函数中的应用1. 利用数形结合解决与方程的根有关的问题方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.【例5】已知方程︱x2-4x+3︱=m有4个根,则实数m的取值范围.【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.解:方程x2-4x+3=m根的个数问题就是函数y=︱x2-4x+3︱与函数y=m图象的交点的个数.作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0<m<1时,两函数图象有4交点,故m的取值范围是(0,1).数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象是解决这类问题的前提.2. 利用数形结合解决函数的单调性问题函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解决有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.【例6】确定函数y=的单调区间.画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].3. 利用数形结合解决比较数值大小的问题【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1<x2≤2,都有f(x1)<f(x2);③y=f(x+2)的图象关于y轴对称.则f(4.5),f(6.5),f(7)的大小关系是.解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.显然,f(4.5)<f(7)<f(6.5).4. 利用数形结合解决抽象函数问题抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a<b<0)上,f′(x)g(x)+f(x)g′(x)>0,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x)在区间[-b,-a]上().A. 是增函数且有最小值-5B. 是减函数且有最小值-5C. 是增函数且有最大值5D. 是减函数且有最大值5【解析】f′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.∴y=f(x)·g(x)在区间[a,b](a<b<0)上是增函数,又∵f(x),g(x)分别是定义在R上的奇函数和偶函数.∴y=f(x)·g(x)是奇函数.因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.(三)运用数形结合思想解不等式1. 求参数的取值范围【例9】若不等式>ax的解集是{x|0<x≤4},则实数a的取值范围是().A. [0,+∞)B. (-∞,4]C. (-∞,0)D. (-∞,0]解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知>ax的解集是{x|0<x≤4},即要求半圆在直线的上方,由图可知a<0,所以选C.【点评】本题很好的体现了数形结合思想在解题中的妙用.【例10】若x∈(1,2)时,不等式(x-1)2<logax恒成立,则a的取值范围是().A. (0,1)B. (1,2)C. (1,2]D. [1,2]解:设y1=(x-1)2(1<x<2),y2=logax.由图可知若y1<y2(1<x<2),则a>1.y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1<y2(1<x<2)∴1<a≤2时(x-1)2<logax在x∈(1,2)上成立,故选C.【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.2. 解不等式【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().A. {x|0<x<a}B. {x|-a<x<0或x>a}C. {x|-a<x<a}D. {x|x<-a或0<x<a}解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.【例12】设函数f(x)=2,求使f(x)≥2的取值范围.【解法1】由f(x)≥2得2≥2=2.易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞).【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则,可知M的轨迹是以F1、F2为焦点的双曲线的右支,其中右顶点为(,0),由双曲线的图象和x+1-x-1≥知x≥.【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境.(四)运用数形结合思想解三角函数题纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.解:函数f(x)=由图象可知:1<k<3.【例14】当0<x<时,函数f(x)=的最小值为().A. 2B. 2C. 4D. 4解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线的斜率,又点B的轨迹方程(0<α<),即x2+=1(x<0),如图,当过点A的直线l∶y=kx+5与椭圆x2+=1(x<0)相切时,k有最小值4,故选C.【例15】若sinα+cosα=tanα(0<α<),则α∈().解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan =≈1.732>1.367,由图象知xP应小于.故选C.【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0<x<3时f(x)图象如下图所示,那么不等式f(x)cosx<0的解集是().解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f (x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-,-1)∪(0,1)∪(,3),故选B.【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.【例17】△ABC中,A=,BC=3,则△ABC的周长为().解:本题是我们常用三角恒等变形和正弦定理通过一定量的计算来完成的,但是应用数形结合,可以很快解决问题.为此,延长CA到D,使AD=AB,则CD=AB+AC,∠CBD=∠B+,∠D=,由正弦定理即AB+AC=6sin(B+),故选C.四、运用数形结合思想分析和解决问题时,要注意如下几点在解题时,有时把数转化为形,以形直观地表达数来解决,往往使复杂问题简单化、抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.1、注意图象延伸趋势【例19】判断命题:“当a>1时,关于x的方程ax=logax无实解.”正确与否.错解:在同一坐标系中分别作出函数y=ax及y=logax的图象(a>1)(如图1),可见它们没有公共点,所以方程无实解,命题正确.【评析】实际上对不同的实数a,y=ax和y=logax的图象的延伸趋势不同.例如当a=2时,方程无实数解;而当a=时,x=2是方程的解.说明两图象向上延伸时,一定相交,交点在直线y=x上.2、注意图象伸展“速度”【例20】比较2n与n2的大小,其中n≥2,且n∈N+.错解:在同一坐标系中分别作出函数y=2x及y=x2的图象(如图2).由图可知,两图象有一个公共点.当x=2时,2x=x2;当x>2时,2x<x2.∴当n=2时,2n=n2;当n>2,且n∈N+时,2n<n2.【评析】事实上,当n=4时,2n与n2也相等;当n=5时,2n>n2.错因是没有充分注意到两个图象在x≥2时的递增“速度”!要比较两个图象的递增速度,确实很难由图象直观而得.本题可以先猜想,后用数学归纳法证明.本题的正确答案是当n=2、4时,2n=n2;当n=3时,2n<n2;当n≥5时,n∈N+时,2n>n2.证明略.3、注意数形等价转化【例21】已知方程x2+2kx-3k=0有两个实数在-1与3之间,求k的取值范围.错解:令f(x)=x2+2kx-3k,结合题意画出图象3中的(1),再由图象列出不等解略.【评析】事实上,不等式组(*)并不与题意等价,图象3中的(2)也满足不等式组(*),但两实根均大于3,还可以举出两实根均小于-1的反例.若不等式组(*)与图3中的(1)等价,需加上条件-3<k<1.因此,数形转化要注意等价性.4、注意仔细观察图象【例22】已知关于x、y的方程组(a>b>0)有四组实数解,求a、b、m应满足的关系.错解:已知方程组中的两个方程分别是椭圆和抛物线的方程,原方程组有四组实数解等价于椭圆与抛物线有四个不同的公共点.由图4知,m<-b,且<a,即-a2<m<-b.【评析】观察图象过于草率!事实上,图5也是一种可能的情形,即当=a时,仍有可能为四组解.例如当a=2,b=1,m=-4时,可得解集为:{(2,0),(-2,0),(,),(-)}.现用数形结合求解:考虑一元二次方程a2y2+b2y-(m+a2)b2=0,令Δ=0(即相切情形),解得m=-,结合图象,注意到m<-b,则a、b、m应满足的关系是-<m<-b.从以上看出,有些问题可以用图象解决,但要认真分析,有些问题很难由图象直观而得,值得注意.。