二数形结合在函数中的应用

二数形结合在函数中的应用
二数形结合在函数中的应用

(二) 数形结合在函数中的应用

1. 利用数形结合解决与方程的根有关的问题

方程的解的问题可以转化为曲线的交点问题,从而把代数与几何有机地结合起来,使问题的解决得到简化.

【例5】已知方程︱x2-4x+3︱=m有4个根,则实数m的取值范围.

【分析】此题并不涉及方程根的具体值,只求根的个数,而求方程的根的个数问题可以转化为求两条曲线的交点的个数问题来解决.

解:方程x2-4x+3=m根的个数问题就是函数y=︱x2-4x+3︱与函数y=m图象的交点的个数.

作出抛物线y=x2-4x+3=(x-2)2-1的图象,将x轴下方的图象沿x轴翻折上去,得到y=x2-4x+3的图象,再作直线y=m,如图所示:由图象可以看出,当0

数形结合可用于解决方程的解的问题,准确合理地作出满足题意的图象

是解决这类问题的前提.

2. 利用数形结合解决函数的单调性问题

函数的单调性是函数的一条重要性质,也是高考中的热点问题之一.在解决

有关问题时,我们常需要先确定函数的单调性及单调区间,数形结合是确定函数单调性常用的数学思想,函数的单调区间形象直观地反映在函数的图象中.

【例6】确定函数y=的单调区间.

画出函数的草图,由图象可知,函数的单调递增区间为(-∞,0],[1,+∞),函数的单调递减区间为[0,1].

3. 利用数形结合解决比较数值大小的问题

【例7】已知定义在R上的函数y=f(x)满足下列三个条件:①对任意的x∈R都有f(x+4)=f(x);②对任意的0≤x1

解:由①:T=4;由②:f(x)在[0,2]上是增函数;由③:f(-x-2)=f(x+2),所以f(x)的图象关于直线x=2对称.由此,画出示意图便可比较大小.

显然,f(4.5)

4. 利用数形结合解决抽象函数问题

抽象函数问题是近几年高考中经常出现的问题,是高考中的难点.利用数形结合常能使我们找到解决此类问题的捷径.

【例8】设f(x),g(x)分别是定义在R上的奇函数和偶函数,在区间[a,b](a0,且f(x)·g(x)有最小值-5.则函数y=f(x)·g(x)在区间[-b,-a]上().

A. 是增函数且有最小值-5

B. 是减函数且有最小值-5

C. 是增函数且有最大值5

D. 是减函数且有最大值5

【解析】f′(x)g(x)+f(x)g′(x)=[f(x)·g(x)]′>0.

∴y=f(x)·g(x)在区间[a,b](a

又∵f(x),g(x)分别是定义在R上的奇函数和偶函数.

∴y=f(x)·g(x)是奇函数.

因此它的图象关于原点对称,作出示意图,易知函数y=f(x)·g(x)在区间[-b,-a]上是增函数且有最大值5,因此选C.

(三)运用数形结合思想解不等式

1. 求参数的取值范围

【例9】若不等式>ax的解集是{x|0

A. [0,+∞)B. (-∞,4]

C. (-∞,0)D. (-∞,0]

解:令f(x)=,g(x)=ax,则f(x)=的图象是以(2,0)为圆心,以2为半径的圆的上半部分,包括点(4,0),不包括点(0,0);g(x)=ax的图象是通过原点、斜率为a的直线,由已知>ax的解集是{x|0

【点评】本题很好的体现了数形结合思想在解题中的妙用.

【例10】若x∈(1,2)时,不等式(x-1)2

A. (0,1)B. (1,2)

C. (1,2]D. [1,2]

解:设y1=(x-1)2(1

由图可知若y11.

y1=(x-1)2过(2,1)点,当y2=logax也过(2,1)点,即a=2时,恰有y1

∴1

【点评】例1、例2两题的求解实际上综合运用了函数与方程以及数形结合的思想方法.

2. 解不等式

【例11】已知f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),那么不等式xf(x)<0的解集是().

A. {x|0a}

C. {x|-a

解:依题意得f(x)是R上的偶函数,且在[0,+∞)上是减函数,f(a)=0(a>0),可得到f(x)图象,又由已知xf(x)<0,可知x与f(x)异号,从图象可知,当x∈(-a,0)∪(a,+∞)时满足题意,故选B.

【例12】设函数f(x)=2,求使f(x)≥2的取值范围.

【解法1】由f(x)≥2得2≥2=2.

易求出g(x)和h(x)的图象的交点立时,x的取值范围为[,+∞).

【解法3】由的几何意义可设F1(-1,0),F2(1,0),M(x,y),则,可知M的轨迹是以F1、F2为焦点的双曲

线的右支,其中右顶点为(,0),由双曲线的图象和x+1-x-1≥知x≥.

【点评】本题的三种解法都是从不同角度构造函数或不等式的几何意义,让不等式的解集直观地表现出来,体现出数形结合的思想,给我们以“柳暗花明”的解题情境.

(四)运用数形结合思想解三角函数题

纵观近三年的高考试题,巧妙地运用数形结合的思想方法来解决一些问题,可以简化计算,节省时间,提高考试效率,起到事半功倍的效果.

【例13】函数f(x)=sinx+2sinx,x∈[0,2π]的图象与直线y=k有且仅有2个不同的交点,则k的取值范围是.

【分析】本题根据函数解析式,画出图象,可以直观而简明地得出答案,在有时间限制的高考中就能大大地节约时间,提高考试的效率.

解:函数f(x)=由图象可知:1

【例14】当0

A. 2B. 2C. 4D. 4

解:y=则y为点A(0,5)与点B(-sin2x,3cos2x)两点连线

的斜率,又点B的轨迹方程(0<α<),即x2+=1(x<0),如图,

当过点A的直线l∶y=kx+5与椭圆x2+=1(x<0)相切时,k有最小值4,故选C.

【例15】若sinα+cosα=tanα(0<α<),则α∈().

解:令f(x)=sinx+cosx=sin(x+ )(0<α<),g(x)=tanx,画出图象,从图象上看出交点P的横从标xP>.再令α=,则sin+cos=≈1.366,tan =≈1.732>1.367,由图象知xP应小于.故选C.

【点评】本题首先构造函数f(x),g(x),再利用两个函数的图象的交点位置确定α>,淘汰了A、B两选项,然后又用特殊值估算,结合图象确定选项C,起到了出奇制胜的效果.

【例16】已知函数f(x)是定义在(-3,3)上的奇函数,当0

解:函数f(x)定义在(-3,3)上,且是奇函数,根据奇函数图象性质可知,f (x)在(-3,0)上的图象如图所示,若使f(x)cosx<0,只需f(x)与cosx异号,即图象须分别分布在x轴上下侧,由图可知,有三部分区间符合条件要求,即(-

,-1)∪(0,1)∪(,3),故选B.

【点评】已知函数的一部分图象,根据函数的性质可得到函数的另一部分图象,利用数形结合的思想,可以先画出完整的函数图象,再研究有关问题.

【例17】△ABC中,A=,BC=3,则△ABC的周长为().

解:本题是我们常用三角恒等变形和正弦定理通过一定量的计算来完成的,但是应用数形结合,可以很快解决问题.为此,延长CA到D,使AD=AB,则CD=AB+

AC,∠CBD=∠B+,∠D=,由正弦定理

即AB+AC=6sin(B+),故选C.

四、运用数形结合思想分析和解决问题时,要注意如下几点

在解题时,有时把数转化为形,以形直观地表达数来解决,往往使复杂问题简单化、抽象问题具体化.但是,依赖图象直观解题,也要注意如下几个问题.

1、注意图象延伸趋势

【例19】判断命题:“当a>1时,关于x的方程ax=logax无实解.”正确与否.

错解:在同一坐标系中分别作出函数y=ax及y=logax的图象(a>1)(如图1),可见它们没有公共点,所以方程无实解,命题正确.

【评析】实际上对不同的实数a,y=ax和y=logax的图象的延伸趋势不同.例如当a=2时,方程无实数解;而当a=时,x=2是方程的解.说明两图象向上延伸时,一定相交,交点在直线y=x上.

2、注意图象伸展“速度”

【例20】比较2n与n2的大小,其中n≥2,且n∈N+.

错解:在同一坐标系中分别作出函数y=2x及y=x2的图象(如图2).

由图可知,两图象有一个公共点.

当x=2时,2x=x2;

当x>2时,2x

∴当n=2时,2n=n2;

当n>2,且n∈N+时,2n

【评析】事实上,当n=4时,2n与n2也相等;当n=5时,2n>n2.错因是没有充分注意到两个图象在x≥2时的递增“速度”!要比较两个图象的递增速度,确实很难由图象直观而得.本题可以先猜想,后用数学归纳法证明.

本题的正确答案是

当n=2、4时,2n=n2;

当n=3时,2n

当n≥5时,n∈N+时,2n>n2.

证明略.

3、注意数形等价转化

【例21】已知方程x2+2kx-3k=0有两个实数在-1与3之间,求k的取值范

围.

错解:令f(x)=x2+2kx-3k,结合题意画出图象3中的(1),再由图象列出不等

解略.

【评析】事实上,不等式组(*)并不与题意等价,图象3中的(2)也满足不等式组(*),但两实根均大于3,还可以举出两实根均小于-1的反例.若不等式组(*)与

图3中的(1)等价,需加上条件-3

4、注意仔细观察图象

【例22】已知关于x、y的方程组

(a>b>0)有四组实数解,求a、b、m应满足的关系.

错解:已知方程组中的两个方程分别是椭圆和抛物线的方程,原

方程组有四组实数解等价于椭圆与抛物线有四个不同的公共点.由图4知,m<-b,且

【评析】观察图象过于草率!事实上,图5也是一种可能的情形,即当=a时,仍有可能为四组解.例如当a=2,b=1,m=-4时,可得解集为:{(2,0),(-2,0),(,),(-)}.

现用数形结合求解:

考虑一元二次方程

a2y2+b2y-(m+a2)b2=0,

令Δ=0(即相切情形),

解得m=-,

结合图象,

注意到m<-b,则a、b、m应满足的关系是-

从以上看出,有些问题可以用图象解决,但要认真分析,有些问题很难由图象直观而得,值得注意.

数形结合的思想

数形结合的思想 中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意

义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。数学中的知识,有的本身就可以看作是数形的结合。如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。

初三锐角三角函数与圆综合专题训练解析

中考数学锐角三角函数与圆综合训练题 1、如图,D为⊙O上一点,点C在直径BA的延长线上,∠CDA=∠CBD. (1)求证:CD2=CA?CB; (2)求证:CD是⊙O的切线; (3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长. 2、如图,AD是△ABC的角平分线,以点C为圆心,CD为半径作圆交BC的延长线于点E,交AD于点F,交AE 于点M,且∠B=∠CAE,EF:FD=4:3. (1)求证:点F是AD的中点; (2)求cos∠AED的值; (3)如果BD=10,求半径CD的长.

3、如图11,PB 为⊙O 的切线,B 为切点,直线PO 交⊙O 于点E ,F ,过点B 作PO 的垂线BA ,垂足为点D ,交⊙O 于点A ,延长AO 与⊙O 交于点C ,连接BC ,AF . (1)求证:直线PA 为⊙O 的切线; (2)试探究线段EF ,OD ,OP 之间的等量关系,并加以证明; (3)若BC =6,tan ∠F = 1 2 ,求cos ∠ACB 的值和线段PE 的长. 4、如图,AB 是⊙O 的直径,弦CD ⊥AB 于H ,过CD 延长线上一点E 作⊙O 的切线交AB 的延长线于F .切点为G ,连接AG 交CD 于K . (1)求证:KE=GE ; (2)若2 KG =KD ·GE ,试判断AC 与EF 的位置关系,并说明理由; (3) 在(2)的条件下,若sinE=3 5 ,AK=23,求FG 的长. 5、如图11,AB 是⊙O 的弦,D 是半径OA 的中点,过D 作CD ⊥OA 交弦AB 于点E ,交⊙O 于F ,且CE=CB 。 (1)求证:BC ⊙O 是的切线; (2)连接AF 、BF ,求∠ABF 的度数; (3)如果CD=15,BE=10,sinA=13 5 ,求⊙O 的半径。 图11 A C B D E F O P

数形结合在函数中的应用汇总

数形结合在函数中的应用 四川省乐至中学唐贤国 教学目标:1、知识目标 1)理解数形结合的本质:几何图形的性质反映了数量关系,数量关系决定了几何图象的性质. 2)了解数形结合在解决函数问题中的作用,化抽象为直观,化直观为精确,从而使问题得到简捷解决. 2、能力目标 1)掌握用初等函数的图象来处理函数问题,培养用函数图象解决问题的意识.掌握运用图象将代数问题转化为几何问题的 技巧. 2)通过运用数形结合解题,培养学生的观察力、分析归纳能力,领会数形结合转化问题的思想方法. 3、情感目标 通过基础训练题组和能力训练题组的练习,提高学生分析问题和解决问题的能力.培养学生主动探索、勇于发现的科学精神, 培养学生的创新意识和创新精神.渗透理论联系实际、从特殊到 一般、把未知转化为已知的辨证唯物主义思想. 教学重点:利用基本初等函数的图象将函数问题转化为几何问题.(以形助数) 教学难点:利用图象转化函数问题,在代数与几何的结合上去找出解题思路.教学方法:启发式教学. 教学过程 一、新课引入

1)提问:上述四个函数图象分别对应于四个函数y = x 2 , y = 2x , y=0.5x , y= log 2 x 中的哪一个? 2)说明上述四种函数及图象代表了几类基本函数的基本图象. 3)强调:作出简图时要注意到函数的性质在其图象上的体现,比如特殊的点、 线(对称轴、渐进线)。 2.几种常见的图象变换(提问) 平移变换、伸缩变换、对称变换. 3.说明函数图象的作用:它直观地体现了函数的变化状况和函数的各种性 质(奇偶性、单调性和周期性等).许多函数问题大多可以从函数的图象中得到直观地解释或形象地提示解决问题的方法. 二、 基础训练题组 1.函数 31)1(+=x y 的反函数的图象不经过第______象限. A .一 B .二 C .三 D .四 分析:正确作出函数的图象是本题的关键所在.由于它是复合函数, 其图象需要由基本函数的图象作适当的变换得到.(提问学生:如何作出图象?本题有2种变换方法,可启发学生思考.) 方法二:先求出反函数,再作其图象.31)1(+=x y 的反函数为13-=x y 。

中考数学复习专题三角函数与圆.docx

2011 中考数学复习专题—三角函数和圆 考点 1三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用。 1. 如图所示, Rt △ ABC~ Rt △ DEF,则 cosE 的值等于() A .1 B.2C.3D. 3 2223 2. 如图,已知直角三角形ABC中,斜边 AB的长为 m,∠ B=40,则直角边 BC的长是() A. msin 40B. mcos 40 C . mtan40D. m tan 40 3. 王师傅在楼顶上的点 A 处测得楼前一棵树CD 的顶端 C 的俯角为 60,又知水平距离BD=10m,楼高 AB=24m,则树高 CD为() A . 24 10 3 m B.2410 3 m C . 24 5 3 m D.9m 3 4. 如图是掌上电脑设计用电来测量某古城墙高度的示意图。点P 处放一水平的平面镜, 光线从点 A出发经平面镜反射后刚好射到古城墙CD的顶端 C 处,已知 AB⊥ BD, CD⊥BD,且测得 AB=1.2 米, BP=1.8 米, PD=12 米,那么该古城墙的高度是() A . 6 米B. 8 米C. 18 米D. 24 米 5.如图所示,某河堤的横断面是梯形 ABCD,BC∥ AD,迎水坡 AB长 13 米,且 tan ∠ BAE=12 , 5 则河堤的高 BE为米。 6.如果,小明同学在东西方向的环海路 A 处,测得海中灯塔P 在北偏东 60 方向上,在A 处东 500 米的 B 处,测得海中灯塔P 在北偏东 30 方向上,则灯塔 P到环海路的距离PC=米(用根号表示)。

7.某大草原上有一条笔直的公路,在紧靠公路相距40 千米的 A、 B 两地,分别有甲、乙两个医疗站,如图,在 A 地北偏东 45 、B 地北偏西 60方向上有一牧民区C。一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案 I :从 A 地开车沿公路到离牧民区 C 最近的 D 处,再开车穿越草地沿DC方向到牧民区 C。方案Ⅱ:从 A 地开车穿越草沿 AC方向到牧民区 C。已知汽车在公路上行驶的速度是在草地上行驶速度的 3 倍。( 1)求牧民区到公路的最短距离CD。 ( 2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理并说明理由。(结果精确到,参考数据: 3 取,2取) 年初,我国南方部分省区发生了雪灾,造成通讯受阴。如图,现有某处山坡上一座发射 塔被冰雪从 C 处压折,塔尖恰好落在坡面上的点 B 处,在 B 处测得点C的仰角为 38 8,塔基 A 的俯角为 21 ,又测得斜坡上点 A 到点 B 的坡面距离AB 为 15 米,求折断前发射塔的高。(精确到 0.1 米)。 9.如图,山脚下有一棵树 AB,小华从点 B 沿山坡向上走 50 米到达点 D,用高为 1.5 米的测角仪CD测得树顶的仰角为 10 ,已知山坡的坡角为 15 ,求树 AB的高。(精确到 0.1 米)

数形结合思想的含义 数与形是数学中两个最古老

数形结合思想的含义数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法。 正恩格斯曾经说过:"数学是研究现实世界的空间形式和数量关系的一门科学。"在数学领域中包含着两大研究对象,即"数"与"形",这两大研究对象既是对立的又是统一的,它们是数学发展的内在因素。纵观数学知识的发展长河中,数形结合始终是发展的一条主线,并且数与形相结合能够让学生在实际应用中对知识的运用更加广泛和深入。在初中数学教学中教师要特别重视将数形结合的思想渗透到教学环节中,以此来让学生感受到数形结合的伟大力量,促进学生生成数形结合的思想,让学生在以后的数学学习中受益 1.数形结合思想的涵义 “数”早期是古代的计数,现在表示数量的概念;“形”早期是古代的形状,现在表示空 间的概念。家欧几里得用自己毕生精力完成《几何原本》这一千古流芳的巨著,这是体现数形转化的文字资料。柏拉图说过,只有数学存在的实体才具备永恒的可理解性,任何科学都只有建立在几何学带来的概念和模式上,才可以解释现象表面背后的结构和关系。教育家波利亚也曾说:“画一个图,并用符号表示”。 数形结合是把数或数量关系与图形对应起来,借助图形来研究数量关系或者利用数量关系来研究图形的性质,是一种重要的数学思想方法。它可以使抽象的问题具体化,复杂的问题简单化。数形结合包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:一是借助形的生动性和直观性来阐明数之间的联系,即以形作为手段,数作为目的,比如应用函数的图象来直观地说明函数的性质;二是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质等等。 2.数形结合思想的发展

三角函数与圆的专题训练题

※三角函数与圆的专题训练题 A 基础训练 1.如图,已知⊙O 的半径为1,AB 与⊙O 相切于点A ,OB 与⊙O 交于点C ,CD ⊥OA ,垂 足为D ,则tan ∠COD 的值等于线段( )的长. A .OD B .OA C .C D D .AB 2.如图,已知△ABC 的外接圆⊙O 的半径为1,D 、E 、F 分别为AC 、AB 、BC 的中点,则 sin ∠ABC 的值等于线段( )的长. A .AC B .EF C .DF D .AB 3.如图,矩形ABCD 内接于⊙O ,点P 在弧AD 上,若AB :AD =1:2,则sin ∠BPC =( ) A .21 B .2 C .45 D .5 52 4.如图,AB 为⊙O 的直径,弦AC 、BD 相交于P 点,∠BPC =α,则CD :AB 等于( ) A .sin α B .cos α C .tan α D .其他答案 5.如图,⊙O 的直径AB = 2 1,AB 平分弦CD 交CD 于E ,DF ⊥CD 交CA 的延长线于F ,则sin ∠C ·sin ∠ADC 的值为线段( )的长. A .DF B .AE C .CE D .AC 6.如图,⊙O 的直径AB =1,C 为弧AB 的中点,E 为OB 上一点,CE 的延长线交⊙O 于D , 则sin ∠AEC 的值为( )的长. A .A B B .AE C .C D D .CE 7.如图,P A 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,P A =4,OA =3,则sin ∠AOP 的 值为( ) A . 43 B .53 C .54 D .3 4 8.P A 、PB 分别切⊙O 于A 、B ,∠APB =60°,P A =10,则⊙O 半径长为( ) A .33 10 B .5 C .310 D .35 B 综合运用 9.如图,P A 、PB 切⊙O 于A 、B 两点,CD 切⊙O 于点E ,交P A 、PB 于C 、D ,若⊙O 的 半径为r ,△PCD 的周长等于3r ,则tan ∠APB 的值是( )

09三角函数在单位圆的表示方法

09三角函数在单位圆的表示方法 1 在理解任意角三角函数定义的基础上,理解三角函数在单位圆上的表示方法,理解正弦线、余弦线,并能由图象讲出三角函数的值域和已知三角函数值作出对应的角。 三角函数(正弦、余弦)在单位圆的表示 已知三角函数值作出对应的角。 讲授与讨论相结合

三角函数在单位圆的表示方法 课本P14 图4-12 MP y y r y ====1sin α -1≤sin α≤1 -1≤cos α≤1 例 题 OM x x r x ====1cos α 例 题 P20 第2 题

一、三角函数的定义,指出:“定义”从代数的角度揭示了三角函数是一个“比值”,三角函数的定义已经明确告诉角的终边上取点具有任意性,如果我们在角的终边上取适当的点,使比值中的分母为1,那末三角函数就可以用相应的一个坐标表示,这样讨论三角函数就比较方便。 二、单位圆的定义 在直角坐标系中,以原点为圆心,以1为半径的圆。 三、角α的正弦、余弦在单位上的表示 1.作图:(课本P14 图4-12 ) 此处略 …… …… ……… …… …… 设任意角α的顶点在原点,始边与x 轴的非负半轴重合,角α的终边与单位圆交于P 过P(x,y)作PM ⊥x 轴于M , 简单介绍“向量”(带有“方向”的量—用正负号表示),“有向线段”(带有方向的线段),方向可取与坐标轴方向相同,长度用绝对值表示。 例:有向线段OM ,OP 长度分别为y x , 当OM=x 时 若0>x OM 看作与x 轴同向 OM 具有正值x 若0

圆与三角函数专题

第21题专练 课前练习: 南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价x 万元,每辆汽车的销售利润为y 万元.(销售利润=销售价﹣进货价) (1)求y 与x 的函数关系式;在保证商家不亏本的前提下,写出x 的取值范围; (2)假设这种汽车平均每周的销售利润为z 万元,试写出z 与x 之间的函数关系式; (3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大,最大利润是多少? 1.如图,在Rt △ABC 中,∠ACB =90°,BO 平分∠ABC 交AC 于点O ,以点O 为圆心,OC 长为半径作⊙O ,交AC 于点D . (1)判断直线AB 与⊙O 的位置关系,并说明理由; (2)若AD =2,tan ∠BOC =2,求⊙O 的半径. 2.在⊙O 中,AB ⌒=AC ⌒,点F 是AC 上一点,连接AO 并延长交BF 于E. (1)如图1,若BF 是△ABC 高,求证:∠CBF=∠CAE ; (2)如图2,若BF 是△ABC 内的角平分线,BC=10,COS ∠BCA=13,求AE 的长. 图2 图1

3.如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E (1) 若∠AOD =45°,求证:CE =2ED (2) 若AE =EO ,求tan ∠AOD 的值 4.如图,P A 是⊙O 的切线,A 为切点,点B 、C 均在⊙O 上,且P A =PB (1) 求证:PB 为⊙O 的切线 (2) 连AB ,若AB =6,tanC =2 3,求P A 的长 5.如图,点C 在以AB 为直径的⊙O 上,AD 与过点C 的切线垂直,垂足为点D ,AD 交⊙O 于点E . (1) 求证:AC 平分∠DAB ; (2) 连接BE 交AC 于点F ,若cos ∠CAD = 4 5 ,求AF FC 的值. A

数学中数形结合思想、分类讨论的思想、函数与方程的思想

初中数学中蕴含的数学思想方法很多,最基本最主要的有:数形结合的思想方法,分类讨论的思想方法,函数与方程的思想方法等。 1. 数形结合的思想和方法 数形结合的思想方法是数学教学内容的主线之一,应用数形结合的思想,可以解决以下问题: (1)、解决集合问题:在集合运算中常常借助于数轴、Venn图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 (2)、解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 (3)、解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路。 (4)、解决三角函数问题:有关三角函数单调区间的确定或比较三角函数值的大小等问题,一般借助于单位圆或三角函数图象来处理,数形结合思想是处理三角函数问题的重要方法。 (5)、解决线性规划问题:线性规划问题是在约束条件下求目标函数的最值的问题。从图形上找思路恰好就体现了数形结合思想的应用。 (6)、解决数列问题:数列是一种特殊的函数,数列的通项公式以及前n项和公式可以看作关于正整数n的函数。用数形结合的思想研究数列问题是借助函数的图象进行直观分析,从而把数列的有关问题转化为函数的有关问题来解决。(7)、解决解析几何问题:解析几何的基本思想就是数形结合,在解题中善于将数形结合的数学思想运用于对点、线、曲线的性质及其相互关系的研究中。(8)、解决立体几何问题:立体几何中用坐标的方法将几何中的点、线、面的性质及其相互关系进行研究,可将抽象的几何问题转化纯粹的代数运算。 数形结合思想是指将数(量)与(图)形结合起来进行分析、研究、解决问题的一种思维策略。著名数学家华罗庚先生说:“数与形本是相倚依,怎能分作两边飞,数缺形时少直觉,形少数时难入微,数形结合百般好,隔离分家万事休。”这充分说明了数形结合思想在数学研究和数学应用中的重要性。 ①由数思形,数形结合,用形解决数的问题。 例如在《有理数及其运算》这一章教学中利用“数轴”这一图形,巩固“具有相反意义的量”的概念,了解相反数,绝对值的概念,掌握有理数大小的道理,理解有理数加法、乘法的意义,掌握运算法则等。实际上,对学生来说,也只有通过数形结合,才能较好地完成本章的学习任务。另外,《一元一次方程》中列方程解应用题中画示意图,常常会给解决问题带来思路。第九章《生活中的数据》“统计图的选择”及“复习形统计图”,利用图形来展示数据,很直观明了。 ②由形思数,数形结合,用形解决数的问题。例如第四章的《平面图形及其位置关系》中,用数量表示线段的长度,用数量表示角的度数,利用数量的比较来进行线段的比较、角的比较等。 数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何

为什么用单位圆上点坐标定义任意角三角函数

为什么用单位圆上点的坐标定义任意角的三角函数 人民教育出版社中学数学室章建跃 在人教版《普通高中实验教科书·数学4·必修(A版)》(简称“人教A版”)中,三角函数采用了如下定义(简称“单位圆定义法”): “如图1,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么: (1)y叫做α的正弦,记作sinα,即sinα=y; (2)x叫做α的余弦,记作cosα,即cosα=x; (3)叫做α的正切,记作tanα,即tanα=(x≠0). 可以看出,当α=(k∈Z)时,α的终边在y轴上,这时点P的横坐标x等于0, 所以无意义.除此之外,对于确定的角α,上述三个值都是唯一确定的.所以,正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数, 我们将它们统称为三角函数.” 1.部分教师的疑惑和意见

由于种种原因,实验区有的教师对上述定义不理解,认为该定义不如以往教材采用的 定义,即在角α的终边上任取一点P(x,y),P到原点的距离为r,比值,,分别定义为角α的正弦函数、余弦函数和正切函数(简称“终边定义法”).其理由主要有以下几 点: 第一,“单位圆定义法”中,“交点是特殊的,缺乏一般性,不符合数学定义的要求”;“终边定义法”中,“所取得点是任意的,具有一般性,符合数学定义的要求”.有的老师说,“单位圆上的点毕竟是特殊点,用它定义三角函数有失一般性”. 第二,“单位圆定义法”不利于将锐角三角函数推广到任意角三角函数;“终边定义法”有利于这种推广.有的老师说,“用单位圆上点的坐标定义正弦、余弦函数带来了不少便利,其根本原因是它化简了三角函数的比值.而用单位圆上点的坐标定义正切函数,由于它未能化简三角函数的比值,所以它就没有什么特别的意义.” 第三,“单位圆定义法”不利于解题.有的老师说,在解“已知角α终边上一点的坐标是(3a,4a),求角α的三角函数值”时,用“终边定义法”非常方便,而用“单位圆定义 法”很不方便. 为了解答老师们的疑问,我们首先从回顾三角函数的发展历史开始. 2.对三角函数发展历史的简单回顾 回顾三角学发展史,可以发现它的起源、发展与天文学密不可分,它是一种对天文观察结果进行推算的方法.1450年以前,三角学主要是球面三角,这是航海、立法推算以及天文观测等人类实践活动的需要,同时也是宇宙的奥秘对人类的巨大吸引力所至,这种“量天的学问”确实太诱人了.后来,由于间接测量、测绘工作的需要而出现了平面三角. 三角学从天文学中独立出来的标志是德国数学家雷格蒙塔努斯(J. Regiomontanus,1436—1476)于1464年出版《论各种三角形》,这部著作首次对三角学做出了完整、独立的阐述.其中采用印度人的正弦,即圆弧的半弦,明确使用了正弦函数,讨论了一般三角形的正弦定理,提出了求三角形边长的代数解法,给出了球面三角的正弦定理和关于边的余弦定理.这部著作为三角学在平面与球面几何中的应用奠定了牢固基础.后来,哥白尼的学生雷提库斯(G. J. Rhaeticus,1514—1576)将传统的圆中的弧与弦的关系改进为角的三角函数关系,把三角函数定义为直角三角形的边长之比,从而使平面三角学从球面三角学中独立出来,并采用了六个函数(正弦、余弦、正切、余切、正割、余割).法国数学家韦达(F. Vieta,1540—1603)总结了前人的三角学研究成果,将解平面直角三角形和斜三角形的公式汇集在一起,还补充了自己发现的新公式,如正切公式、和差化积公式等,并将解斜三角形的问题转化为解直角三角形的问题等,这是对三角学的进一步系统化.总之,16世纪,

中考数学复习专题三角函数与圆

2011中考数学复习专题—三角函数和圆 考点1 三角形的边角关系 主要考查:三种锐角三角函数的概念,特殊值计算,锐角函数之间的关系,解直角三角形及应用。 1.如图所示 ,Rt △ABC ~Rt △DEF ,则cosE 的值等于( ) A .2 1 B .2 2 C .2 3 D .33 2.如图,已知直角三角形ABC 中,斜边AB 的长为m ,∠B=ο40,则直角边BC 的长是( ) A .ο40sin m B .ο40cos m C .ο40tan m D .ο40tan m 3.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为ο60,又知水平距离BD=10m ,楼高AB=24m ,则树高CD 为( ) A .()m 31024- B .m ???? ??-331024 C .()m 3524- D .9m 4.如图是掌上电脑设计用电来测量某古城墙高度的示意图。点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( ) A .6米 B .8米 C .18米 D .24米 5.如图所示,某河堤的横断面是梯形ABCD ,BC ∥AD ,迎水坡AB 长13米,且tan ∠BAE= 512,则河堤的高BE 为 米。 6.如果,小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东ο60方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东ο30方向上,则灯塔P 到环海路的距离 PC= 米(用根号表示)。

数形结合思想在求参数范围中的应用

数形结合思想在求参数范围中的应用 [典例] 已知函数y =|x 2 -1|x -1 的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________. [解析] 因为函数y =|x 2-1|x -1=????? x +1,x ≤-1或x >1,-x -1,-1

数形结合思想在二次函数中应用 小专题

专题二二次函数中的数形结合 一、选择题 1.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1 C.顶点坐标是(1,2)D.与x轴有两个交点 2.已知二次函数y=ax2+bx+c(a,b,c是常数,且a≠0)的图象如图所示,则一次函数y=cx+与反比例函数y=在同一坐标系内的大致图象是() A.B.C.D. 3.已知二次函数y=ax2+bx+c(a≠0)的图象如图,且关于x的一元二次方程ax2+bx+c﹣m=0 没有实数根,有下列结论:①b2﹣4ac>0;②abc<0;③m>2. 其中,正确结论的个数是() A. 0 B.1 C. 2 D.3 4.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②4a+c <2b;③3b+2c<0;④m(am+b)+b<a(m≠﹣1), 其中正确结论的个数是() A.4个B. 3个 C. 2个D. 1个 5.已知开口向下的抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论: ①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根. 其中正确结论的个数为() A.1个B.2个C.3个D.4个 6.已知a、h、k为三数,且二次函数y=a(x﹣h)2+k在坐标平面上的图形通过(0,5)、(10, 8)两点.若a<0,0<h<10,则h可能为 ( )

A.1 B.3 C.5 D.7 7.已知点A(a﹣2b,2﹣4ab)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为() 8.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为() .或C或或﹣或9.“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且a<b,则a、b、m、n的大小关系是() A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b 10.二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如下表: 下列结论: (1)ac<0;(2)当x>1时,y的值随x值的增大而减小.(3)3是方程ax2+(b﹣1)x+c=0的一个根;(4)当﹣1<x<3时,ax2+(b﹣1)x+c>0.其中正确的个数为() A.4个B.3个C.2个D.1个 二.填空题 11.抛物线y=x2﹣2x+3的顶点坐标是. 12.如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为. 13.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表: 则当y<5时,x的取值范围是. 14.如果函数y=(a﹣1)x2+3x+的图象经过平面直角坐标系的四个象限,那么a的取值范围是.

圆中的三角函数

锐角三角函数和圆 复习目标 ● 巩固三角函数的概念、熟记30°,45°, 60°角的三角函数值; ● 熟练运用三角函数的定义,结合圆的特点,解决问题。 考察重点 ● 求三角函数值; ● 运用三角函数的知识,解决数学中的其他问题。 课前热身 1. 如图,PM 是⊙O 的切线,M 为切点,OM=5,PM=12,则sin ∠OPM 的 值为( ) A . B . C . D . 2. 如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形 顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内,则tan ∠APB 等于( ) A .1 B . C . D . 3. 如图,⊙O 中,OA ⊥BC ,∠AOB=60°,则sin ∠ADC= . 夯实基础 4. 根据三角函数的定义填空: 如图,△ABC 中,sinA= ,cosA= ,tanA= 。 例1 如图,已知⊙O 的半径为5cm ,弦AB 的长为8cm ,P 是AB 延长线上一点,BP=2cm ,则tan ∠OPA 等于( ) A . B . C .2 D . 6. (2016?衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作 ⊙ O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( ) A . B . C . D . c b a B A C C A P E A D C A B

解答精练 例3 如图所示,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 在⊙O 上,过点C 的切线交AD 的延长线于点E ,且AE ⊥CE ,连接CD . (1)求证:DC=BC ; (2)若AB=5,AC=4,求tan ∠DCE 的值. 8. 已知:如图,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,PA=4, OA=3,则cos ∠APO 的值为( ) A . B . C . D . 9. 如图,点D (0,3),O (0,0),C (4,0)在⊙A 上,BD 弦,则sin ∠OBD=( ) A . B . C . D . 10. 如图,∠1的正切值等于 . A 备用图 A

高一数学专题1-数形结合思想含答案

数形结合思想 一.作图、识图、用图技巧 (1)作图:常用描点法和图象变换法.图象变换法常用的有平移变换、伸缩变换和对称变换. 描绘函数图象时,要从函数性质入手,抓住关键点(图象最高点、最低点、与坐标轴的交点等)和对称性进行. (2)识图:从图象与轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系. (3)用图:图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象结合研究. (4)利用基本函数图象的变换作图 ①平移变换: y =f (x )――→h >0,右移|h |个单位 h <0,左移|h |个单位 y =f (x -h ), y =f (x )――→k >0,上移|k |个单位k <0,下移|k |个单位 y =f (x )+k . ②伸缩变换: y =f (x )错误!y =f (ωx ), y =f (x )――→01,纵坐标伸长到原来的A 倍y =Af (x ). ③对称变换: y =f (x )――→关于x 轴对称y =-f (x ), y =f (x )――→关于y 轴对称y =f (-x ), y =f (x )――→关于直线x =a 对称y =f (2a -x ), y =f (x )――→关于原点对称 y =-f (-x ). f (x )――→关于原点对称y =-f (-x ). 二、通法归纳与感悟 1.应用数形结合的思想应注意以下数与形的转化

(1)集合的运算及韦恩图; (2)函数及其图像; (3)方程(多指二元方程)及方程的曲线; (4)对于研究距离、角或面积的问题,直接从几何图形入手进行求解即可; (5)对于研究函数、方程或不等式(最值)的问题,可通过函数的图像求解(函数的零点、顶点是关键点),做好知识的迁移与综合运用. 2.运用数形结合的思想分析解决问题时,应把握以下三个原则 (1)等价性原则 在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题将会出现漏洞,有时,由于图形的局限性,不能完整地表现数的一般性,这时图形的性质只能是一种直观而浅显的说明,但它同时也是抽象而严格证明的诱导. (2)双向性原则 在数形结合时,既要进行几何直观的分析,又要进行代数抽象的探索,两方面相辅相成,仅对代数问题进行几何分析(或仅对几何问题进行代数分析)在许多时候是很难行得通的. 例如,在解析几何中,我们主要是运用代数的方法来研究几何问题,但是在许多时候,若能充分地挖掘利用图形的几何特征,将会使得复杂的问题简单化. (3)简单性原则 就是找到解题思路之后,至于用几何方法还是用代数方法或者兼用两种方法来叙述解题过程,则取决于哪种方法更为简单,而不是去刻意追求代数问题运用几何方法,几何问题运用代数方法. 三、利用数形结合讨论函数零点、方程的解或图像的交点 利用数形结合求方程解应注意两点 (1)讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解. (2)正确作出两个函数的图像是解决此类问题的关键,数形结合应以快和准为原则而采用,不要刻意去数形结合. 1. (2013·长沙模拟)若f (x )+1=1f x +1 ,当x ∈[0,1]时,f (x )=x ,若在区间(-1,1]内g (x )=f (x )-mx -m 有两个零点,则实数m 的取值范围是( ) A. ???? ??0,12 B. ??????12,+∞ C. ??????0,13 D. ? ?? ??0,12 2. 若定义在R 上的函数f (x )满足f (x +2)=f (x ),且x ∈[-1,1]

函数不等式中的数形结合

函数不等式中的数形结合 【知识要点】 数形结合,主要指的是数与形之间的一一对应关系.数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的. 解决集合问题:在集合运算中常常借助于数轴、Venn 图来处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了. 解决函数问题:借助于图象研究函数的性质是一种常用的方法.函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法. 解决方程与不等式的问题:处理方程问题时,把方程的根的问题看作两个函数图象的交点问题;处理不等式时,从题目的条件与结论出发,联系相关函数,着重分析其几何意义,从图形上找出解题的思路. 【问题研究】 1. 已知函数d cx bx ax x f +++=23)(的图象如图所示, 则b 的取值范围是( )A (A ))0,(-∞∈b (B ))1,0(∈b (C ))2,1(∈b (D )),2(+∞∈b 2.在直角坐标系中,函数2 23 a x a y += )0(为常数>a 所表示的曲线叫箕舌线,则箕舌线可能是下列图形中的( )A 3.设()?? ?<≥=1 , 1, 2x x x x x f ,()x g 是二次函数,若()[]x g f 的值域是[)+∞,0,则()x g 的 值域是( )C A.(][)+∞-∞-,11, B.(][)+∞-∞-,01, C.[)+∞,0 D. [)+∞,1 分析:本题为复合函数,()x g 相当于()f x 中的x 的值, 结合函数的图象,可以求得()x g 的值域. 解:作出函数()f x 的图象如图所示,由图知 当(] [),10,x ∈-∞-+∞时,函数()f x 的值域

圆切线相似和锐角三角函数综合题中考专题复习无复习资料

圆切线、相似和锐角三角函数综合题专题复习 复习目标:巩固圆的切线和相似三角形的性质和判定、锐角三角函数求法和特殊锐角三角函数值,熟练应用它们解决相应的问题。 复习过程 一、热身练习 二、实战演练

三、巩固提高 2.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA的延长线相交于点E,G是AD的中点,连接CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P. (1)求证:BF=EF; (2)求证:PA是⊙O的切线; 3,求BD和FG的长度. (3)若FG=BF,且⊙O的半径长为2 3.如图,△ABC中,AD平分∠BAC交△ABC的外接圆⊙O于点H,过点H作EF∥BC交AC、AB的延长线于点E、F. (1)求证:EF是⊙O的切线; (2)若AH=8,DH=2,求CH的长; (3)若∠CAB=60°,在(2)的条件下,求弧BHC的长.

4.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,弦CD ⊥AB 于点E ,∠POC=∠PCE . (1)求证:PC 是⊙O 的切线; (2)若OE :EA=1:2,PA=6,求⊙O 的半径; (3)求sin ∠PCA 的值. 5.如图,在△ABC 中,∠ABC=90°,AB=6,BC=8.以AB 为直径的⊙O 交AC 于D ,E 是 BC 的中点,连接ED 并延长交BA 的延长线于点F . (1)求证:DE 是⊙O 的切线; (2)求DB 的长; (3)求S △FAD :S △FDB 的值. 6.如图i ,半圆O 为△ABC 的外接半圆,AC 为直径,D 为劣弧BC 上的一动点,P 在CB 的延长线上,且有∠BAP=∠BDA . (1)求证:AP 是半圆O 的切线; (2)当其它条件不变时,问添加一个什么条件后,有BD 2=BE?BC 成立?说明理由; (3)如图ii ,在满足(2)问的前提下,若OD ⊥BC 与H ,BE=2,EC=4,连接PD ,请探究四边形ABDO 是什么特殊的四边形,并求tan ∠DPC 的值.

数形结合思想方法(新课标)

数形结合思想方法 一、知识整合 1.数形结合是数学解题中常用的思想方法,使用数形结合的方法,很多问题能迎刃而解,且解法简捷。所谓数形结合,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法。数形结合思想通过“以形助数,以数解形”,使复杂问题简单化,抽象问题具体化能够变抽象思维为形象思维,有助于把握数学问题的本质,它是数学的规律性与灵活性的有机结合。 2.实现数形结合,常与以下内容有关:①实数与数轴上的点的对应关系;②函数与图象的对应关系;③曲线与方程的对应关系;④以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;⑤所给的等式或代数式的结构含有明显的几何意义。 如等式()()x y -+-=21422 3.纵观多年来的高考试题,巧妙运用数形结合的思想方法解决一些抽象的数学问题,可起到事半功倍的效果,数形结合的重点是研究“以形助数”。 4.数形结合的思想方法应用广泛,常见的如在解方程和解不等式问题中,在求函数的值域,最值问题中,在求复数和三角函数问题中,运用数形结合思想,不仅直观易发现解题途径,而且能避免复杂的计算与推理,大大简化了解题过程。这在解选择题、填空题中更显其优越,要注意培养这种思想意识,要争取胸中有图,见数想图,以开拓自己的思维视野。 二、例题分析 例1.2 230 13x x kx k k ++=-若关于的方程的两根都在和之间,求的取值范围。 分析:2 ()23f x x kx k x =++令,其图象与轴交点的横坐标就是方程 ()0f x =()13y f x =-的解,由的图象可知,要使二根都在,之间, (1)0f ->只需, (3)0f >,()()02b f f k a -=-<同时成立. 10(10)k k -<<∈-解得,故, 例2. 解不等式x x +>2 解:法一、常规解法: 原不等式等价于或()()I x x x x II x x ≥+≥+>??? ? ?<+≥??? 20 20202

相关文档
最新文档