《函数的零点》优质课比赛说课教案
高中数学《函数的零点》说课稿

说课稿《函数的零点》说课稿课题:函数的零点我说课的内容是高三第二轮复习《函数》的一个专题《函数的零点》,我将从教材分析、教学目的、教学重点、难点、教法、学法、教学过程、教学评价六个方面来陈述我对本节课的设计方案。
一、教材分析:教材的地位和作用函数与方程的理论是高中新课标教材中新增的知识点,从近几年高考的形势来看,十分注重对“函数的零点”的考察,如2007年文科21题、理科20题,2009年文科21题、理科20题。
而结合函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与方程的根的关系以及解决函数零点存在问题、方程的根的问题、两个函数交点问题是培养学生“等价转化思想”、“数形结合思想”、“方程与函数思想”的优质载体,本节课就是在教师的引导下,让学生自主探究解决有关函数零点的问题。
二、教法分析:1、学情分析备课不只是对知识和教学内容的准备,也包括对学生、学情的分析和掌握。
我这节课是第二轮的一个专题复习,而我担任的是高三的两个文科班,高三经过第一轮的复习,学生已经具备一定的分析问题、探索问题的能力,较多的同学对数学有较浓厚的兴趣,但知识迁移和综合运用能力还比较薄弱,这节课通过研究函数零点问题的分析和处理,提高学生的自主探索、分析问题的能力,加强函数与方程思想,数形结合思想,分类讨论思想、化归思想的应用。
2、教学方法教法上,以问题为纽带,用问题引出内容,激发学生积极主动地进行探索,在思维训练的过程中,感受数学知识的魅力;同时向学生渗透问题意识,培养学生发现问题、解决问题的能力。
采用“提出问题⇒引导探究⇒交流讨论⇒得出结论⇒回顾反思”的教与学模式.3、教学手段:采用多媒体辅助教学,同时给学生印发学案。
三、教学目标(一)知识目标:1、理解函数的零点与方程的根的联系,并能利用零点存在定理处理函数的零点等有关问题。
2、在探究函数的零点问题时渗透函数与方程思想、数形结合思想,分类讨论思想,转化与化归思想(二)能力目标:通过函数零点问题的探究,培养学生自主发现、探究实践的能力。
函数的零点教案详细

函数的零点教案详细教学目标:1.理解函数的零点概念;2.掌握求解函数零点的方法;3.能够应用函数零点解决实际问题。
教学准备:1.教师准备白板、黑板和彩色粉笔;2.学生准备教材和笔记。
教学步骤:第一步:概念讲解(10分钟)教师首先解释函数的零点的定义:当函数的自变量取一些值时,函数的值等于零。
即,在坐标系中,函数图像与x轴的交点即为函数的零点。
教师示范画出一条函数图像并指出该图像的零点,并要求学生观察和思考。
第二步:解决一元一次方程(10分钟)教师给出一元一次方程的定义并解释其与函数的零点的关系。
然后,教师以具体的一元一次方程为例,介绍求解一元一次方程的步骤和方法。
第三步:求解函数的零点(20分钟)教师示范以一元一次函数为例,介绍如何求解函数的零点。
教师解释首先要将函数转化为一元一次方程,然后解方程得到函数的零点。
第四步:练习与巩固(20分钟)教师出示几个函数图像,并要求学生找出函数的零点并解释其含义。
然后,教师提供一些函数的表达式,要求学生求解函数的零点。
第五步:应用实例(20分钟)教师给出一些实际问题,要求学生将其转化为函数并求解函数的零点。
例如,商品制造企业的销售函数为y=500-2x,其中x为单位时间内生产的商品数量,y为单位时间内的销售额。
学生需要求解销售额为零的情况,即找出生产多少单位商品时销售额为零。
第六步:总结与展望(10分钟)教师与学生共同总结函数的零点的概念和求解方法,并回顾本节课所学的内容。
最后,教师展望下节课的内容,引起学生的兴趣和思考。
教学反思:本节课通过理论讲解和实际问题的应用,使学生对函数的零点概念有了深入的理解,并掌握了求解函数零点的方法。
通过练习和实例的训练,学生的求解能力得到了提高。
然而,在实际问题的应用中,一些学生仍然存在困难,需要进一步加强训练和巩固。
因此,下节课将继续举一些实际问题进行训练和拓展。
函数的零点教案

函数的零点教案教案标题:函数的零点教案教案目标:1. 理解函数的零点的概念和意义;2. 能够通过图像、方程和计算等方式确定函数的零点;3. 掌握求解函数零点的方法和技巧;4. 运用函数的零点解决实际问题。
教学准备:1. 教师准备:计算器、白板、彩色粉笔、投影仪;2. 学生准备:笔、纸。
教学过程:步骤一:引入1. 教师通过提问和展示实际问题的图像,引发学生对函数零点的思考,例如:什么是函数的零点?为什么函数的零点在图像上表现为与x轴交点?2. 教师解释函数的零点是使得函数值等于零的x值,即f(x) = 0。
步骤二:图像法确定函数的零点1. 教师通过投影仪展示一些函数图像,并指导学生观察图像上与x轴交点的位置,解释这些点是函数的零点。
2. 学生在纸上绘制给定函数的图像,并标出零点。
步骤三:方程法确定函数的零点1. 教师解释通过方程来确定函数的零点的方法,即将函数f(x) = 0转化为一个方程,然后解方程得到零点。
2. 教师通过例题演示如何通过方程法求解函数的零点,并引导学生进行练习。
步骤四:计算法确定函数的零点1. 教师解释通过计算法确定函数的零点的方法,即将函数的表达式代入到计算器或手算中,求解函数值为零的x值。
2. 教师通过例题演示如何通过计算法求解函数的零点,并引导学生进行练习。
步骤五:应用实际问题1. 教师提供一些与函数的零点相关的实际问题,并引导学生运用所学的方法解决这些问题。
2. 学生个别或小组合作解决实际问题,并将解决过程和结果进行展示和讨论。
步骤六:总结1. 教师对本节课所学的内容进行总结回顾,强调函数的零点的概念和求解方法。
2. 学生进行课堂小结,回答教师提出的问题或总结要点。
作业布置:1. 预习下一节课的内容;2. 完成课堂练习题。
教学延伸:1. 学生可以进一步研究函数的零点在图像上的性质和变化规律;2. 学生可以探究更复杂的函数零点的求解方法,如二次函数、三次函数等。
教学评估:1. 教师观察学生在课堂上的参与度和学习态度;2. 教师检查学生课堂练习的完成情况;3. 学生通过解决实际问题展示对函数零点的理解和应用能力。
函数的零点-说课稿

学教材体系中起着承上启下的作用,地位至关
重要。
学 高一年级的学生,他们刚进入高中不久, 学生的动手动脑能力,以及观察能力和语言表
情 达能力还没有很全面的发展,所以在学习本节 分 课的时候仍然会遇到很多问题。因此,在本节
课的教学中,我将从学生已有的知识和生活经
析 验出发,环环紧扣提出问题让学生思考,将学 生至于主动地位.
布 示揭 形 引 置 例示 成 入 作 练定 概 课 业 习理 念 题
教 学 过 程 分 析
以旧带新 引入课题
启发引导 形成概念
讨论探究 揭示定理
新知初用 示例练习
反思小结 布置作业
(一)、以旧带新 引入课题
设计意图
引例:
(1)一元二次方程是否有实根的判 定方法。 (2)二次函数 y ax2 bx c 的顶 点坐标、对称轴方程等相关内容。
的横坐标。 (3)两者之间有何关系?
从学生熟悉的一元二 次方程入手,让学生 动手动脑来感知知识 发生发展的过程,训 练作图和识图以及自 主解决问题的能力, 也让学生体会知识之 间的相互联系,为后 续学习奠定基础。
结论:一元二次方程的根就是对应
的二次函数的图像与 x 轴交点的横
坐标。
以旧带新 引入课题
教学目标
(一)知识与技能目标:
教 理解函数零点的意义以及方程的根与函 数的零点之间的关系,掌握函数零点存在的
材 判定方法,会求简单函数的零点。 分 (二)过程与方法目标:
通过对具体实例的探究,归纳概括所发
析 现的结论,体验从特殊到一般的认知的过程 和数形结合的思想方法。 (三)情感态度与价值观目标: 从函数与方程的联系中体会转化的辩证思 想。
学 判别定理”是本节课的另一个重点,所以我采 用了探索发现与讲练相结合的教学方法。
函数的零点 教案

函数的零点教案教案主题:函数的零点教学目标:1. 理解函数的零点的概念和意义。
2. 掌握求解函数的零点的方法。
3. 能够应用函数的零点解决实际问题。
教学准备:1. 教师准备:白板、黑板笔、投影仪、计算器。
2. 学生准备:笔、纸、计算器。
教学过程:一、导入(5分钟)1. 教师通过引入实际问题,如“如果一个物体从100米的高度自由落下,求它落地时的时间”,激发学生对函数零点的兴趣。
2. 引导学生思考,探讨如何解决这个问题。
二、概念讲解(10分钟)1. 教师通过示意图和实例,解释函数的零点是函数图像与x轴相交的点。
2. 引导学生理解零点的意义:函数的零点表示函数取值为0的x值,即函数的输入使得函数的输出为0。
3. 教师给出函数零点的定义和符号表示。
三、求解零点的方法(15分钟)1. 教师介绍常见的求解函数零点的方法,如图像法、代数法和数值法。
2. 通过示例演示每种方法的步骤和应用场景。
3. 引导学生讨论每种方法的优缺点。
四、练习与应用(20分钟)1. 学生个别或小组完成一些简单的函数零点求解练习题,巩固所学的方法。
2. 学生在小组中,结合实际问题,设计一个需要求解函数零点的应用场景,并通过演示解决问题。
五、总结与拓展(10分钟)1. 教师对本节课的内容进行总结,强调函数零点的重要性和应用。
2. 教师提供一些拓展的问题,引导学生进一步思考和探索。
六、作业布置(5分钟)1. 布置课后作业:完成课堂练习剩余的题目,并思考如何应用函数零点解决其他实际问题。
2. 提醒学生预习下节课的内容。
教学反思:本节课通过引入实际问题,激发了学生的兴趣和思考,使学生能够理解函数的零点的概念和意义。
通过讲解和示例演示,学生掌握了求解函数零点的方法,并能够应用于实际问题中。
通过练习和应用,学生巩固了所学的知识。
整节课的教学过程紧凑有序,学生参与度高,达到了预期的教学目标。
《函数的零点》优质课比赛说课课件

观察感知, (四)观察感知,例题学习
典例分析 求函数y= 例. 求函数 =x3-2x2-x+2 + 的零点,并画出它的图象 的零点,并画出它的图象.
法1:因式分解 :
y =x3-2x2-x+2 + =
( x + 1)( x − 1)( x + 2)
零点为- , , 零点为-1,1,2.
法2:图象法
教学重点、 教学重点、难点
教 材 分 析
教学重点: 教学重点: 函数零点的概念及求法。 函数零点的概念及求法。
教学难点: 教学难点: 利用函数的零点作图。 利用函数的零点作图。
教 学 目 标 分 析
教学目标
(一)知识目标: 知识目标: 结合二次函数的图象, 1.结合二次函数的图象,能判断二次函数零点 的存在性,会求简单函数的零点, 的存在性,会求简单函数的零点,了解函数的零 点与方程根的关系。 点与方程根的关系。 能力目标: (二)能力目标: 体验函数零点概念的形成过程, 体验函数零点概念的形成过程,提高数学知 识的综合应用能力。 识的综合应用能力。 情感目标: (三)情感目标: 让学生初步体会事物间相互转化的辩证思想。 让学生初步体会事物间相互转化的辩证思想。
(三)自主探究,概念深化 自主探究,
如果函数y=f(x)在区间[a,b]上的图象是连续 如果函数y=f(x)在区间[a,b]上的图象是连续 y=f(x)在区间[a,b] 不断的一条曲线,并且有f(a) f(b)<0,那么, f(a)·f(b)<0 不断的一条曲线,并且有f(a) f(b)<0,那么, 函 y=f(x)在区间 在区间(a,b) 内有零点, 数y=f(x)在区间(a,b) 内有零点,即存在 c∈(a,b),使得f(c)=0 这个c f(c)=0, c∈(a,b),使得f(c)=0,这个c也就是方程 f(x)=0的根 的根。 f(x)=0的根。
高中数学人教B版必修一第二章《2.4.1 函数的零点》优质课公开课教案教师资格证面试试讲教案
高中数学人教B版必修一第二章《2.4.1 函数的零点》优质课公开课教案教师资格证面试试讲教案
1教学目标
根据课程标准要求,结合学生现有认知水平和本节课教学内容确定以下目标
1、知识与技能:
(1)理解函数(结合二次函数)零点的概念,会求简单函数的零点;
(2)领会函数零点与相应方程的根与函数图象与x轴交点的关系.
2、过程与方法:
(1)体验函数零点概念的形成过程,提高数学知识的综合应用能力;
(2)让学生归纳整理本节所学知识.
3、情感、态度与价值观:
在函数与方程的联系中体验数形结合思想和转化思想的意义和价值,发展学生对变量数学的认识,体会函数知识的核心作用.体验数学内在美,激发学习热情,培养学生创新意识和科学精神.
2学情分析
通过初中和高一前一阶段的学习,学生已具备一定知识储备和一定认知能力.通过平时的观察、了解、检测,学生对函数的基础知识和基本技能掌握达到了教学目标的要求,但在应用的灵活性和熟练程度上还是有所欠缺,并且对数学思想方法的领悟还需要加强,应对知识的综合应用和思想方法的提炼多下工夫.
3重点难点
重点:函数零点的概念及求法.
难点:是利用函数的零点作图.
4教学过程
4.1第一学时
教学活动
1【导入】复习引入
1、求方程x2-2x-3=0的实数根,并画出函数y=x2-2x-3的图象.。
函数的零点优质课比赛说课教案
《函数的零点》优质课比赛说课教案(总8页)-本页仅作为预览文档封面,使用时请删除本页-函数的零点说稿各位评委大家上午好:我今天的说课题目是《函数的零点》根据新课标理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标分析、教法学法分析、教学过程分析、板书设计以及效果分析六方面进行我的说课。
一、教材分析教材地位与作用:1、本节课是人教B版新教材必修一第二章第四节的内容,是高中数学的新增内容,也是近年来高考关注的热点.本节课是在学习了函数的性质的基础上,对函数性质的进一步研究和拓展,下节“二分法求方程的近似解”和后续的“算法学习”提供了基础,具有承前启后的作用. 对培养学生的“等价转化思想”、“数形结合思想”、“方程与函数思想”有重要作用。
教学重点、难点教学重点:了解函数零点的概念,体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件.教学难点:探究发现函数零点的存在性.在合情推理中让学生体会到判定存在性的充分非必要性,能利用适当的方法判断零点的存在或确定零点 .二、教学目标分析(一)知识目标:1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的根的联系.2.理解并会用函数在某个区间上存在零点的判定方法.(二)能力目标:培养学生自主发现、探究实践的能力.(三)情感目标:在函数与方程的联系中体验数学转化思想的意义和价值.三、教法学法分析教法:“将课堂还给学生,让课堂焕发出生命的活力”是进行教学的指导思想,充分发挥教师的主导作用和学生的主体作用. 采用“启发—探究—讨论”式教学模式.23学法:以培养学生探究精神为出发点,着眼于知识的形成和发展,着眼于学生的学习体验,设置问题,由浅入深、循序渐进,给不同层次的学生提供思考、创造和成功的机会。
四、教学过程分析 零点概念的建构零点存在问题的探究创设情境,复习引入辨析讨论,形成概念自主探究,概念深化观察感知,例题学习知识应用,尝试练习应用与巩固反思小结,培养能力布置作业,反馈延伸约12分钟:约12分钟:约12分钟:约4分钟:结课教学过程分析(一)创设情景、复习引入问题1、(多媒体演示楼上抛球)问题2、已知函数2-56y x x =+,(1)当x 为何值时,0?y =(2)试作出函数的简图?设计意图:由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.问题3:思考1.如何求一元二次方程的根?2.一元二次方程方程的根与图像的关系?3.结合引例指出函数、方程、不等式三者存在的关系?设计意图: 有利于培养学生思维的完整性,也为学生归纳方程与函数的关系打下基础.问题4:思考:对于二次函数y=ax2+bx+c (a≠0)是否一定有根如何判断(二)辨析讨论,形成概念函数零点的定义:一般地,如果函数y=f(x)在实数a处的值等于零,即f(a)=0,则a叫做这个函数的零点。
函数的零点优质课教学设计
课堂教学设计表课程名称《函数的零点》设计者单位(学校)授课班级章节名称《函数的零点》学时 1目标分析本课是高三的一节复习课,是方法课。
本节课的目的就是巩固已有的知识基础,熟练掌握函数的零点概念及其简单应用,增强数学活动经验,提升对零点问题的认识和解题能力。
学生特征学生已经在高一学习了零点的定义及其相关的知识,掌握了一些求零点的常见方法,对常规问题也比较熟悉。
具有了进一步研究零点的知识储备和能力要求。
学习目标描述知识点编号学习目标具体描述语句1、函数的零点理解对函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.2、零点的存在性定理掌握如果函数()y f x=在区间[]a,b上的图象是连续不断一条曲线,并且有()()0f a f b⋅<,那么,函数()y f x=在区间()a,b内有零点.即存在()c a,b∈,使得()0f c=,这个c也就是方程()0f x=的根3、函数零点、方程的根与函数图像的关系理解函数()()()y F x f x g x==-有零点方程()()()0F x f x g x=-=有实数根函数()()12,y f x y g x==图像有交点.4、零点问题常用的办法理解(1)用定理;(2)解方程;(3)用图象5转化思想了解函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.项目内容解决措施教学重点常见的零点问题;转化方法的应用典例探究、总结归纳、变式应用教学难点转化方法的运用.递进式加深理解、变式应用教学媒体(资源)的选择知识点编号学习目标媒体类型媒体内容要点教学作用使用方式所得结论占用时间媒体来源1、函数的零点理解黑板定义表达式K直接板书明确定义2分钟板书2、零点的存在性定理掌握黑板定义表达式K直接板书正确理解概念3分钟板书3、函数零点、方程的根与函数图像的关系理解投影对划归方法有一个清晰的认识。
函数的零点的3优秀教学教案说课稿
24函数的零点【学情分析】本节课从学生熟悉的二次函数与二次方程入手,借助对图象的观察获得二次函数的零点与一元二次方程根的关系,并将这种关系推广到了一般情形.初学者大多不清楚为什么要研究函数的零点,因为在此之前他们都能用公式法直接求方程的根.所以,教学时可首先考虑解决这一问题.通过举例让学生知道,有许多方程都不能用公式法求解,为了研究更多方程的根,就有必要学习函数的零点.如果带着这样的疑问学习,必然会激发其求知欲,从而提高学习的效率.零点知识是陈述性知识,关键不在于学生提出这个概念。
而是理解提出零点概念的作用,沟通函数与方程的关系。
【学习内容分析】本节课是在学生学习了《一次函数和二次函数》的基础上,学习函数与方程的第一课时,通过对二次函数图象的绘制、分析,得到零点的概念及存在个数问题,从而进一步探索函数零点存在性的判定,这些活动就是想让学生在了解初等函数的基础上,利用计算机描绘函数的图象,通过对函数与方程的探究,对函数有进一步的认识,解决方程根的存在性问题,为下一节《用二分法求函数零点的近似值》做准备.本节内容有函数零点概念、函数零点与相应方程根的关系、探究函数零点存在性。
函数零点是研究当函数的值为零时,相应的自变量的取值,反映在函数图象上,也就是函数图象与轴的交点横坐标。
由于函数的值为零亦即,其本身已是方程的形式,因而函数的零点必然与方程有着不可分割的联系,事实上,若方程有解,则函数存在零点,且方程的根就是相应函数的零点,也是函数图象与轴的交点横坐标.顺理成章的,方程的求解问题,可以转化为求函数零点的问题。
这是函数与方程关系认识的第一步。
零点存在性定理,是函数在某区间上存在零点的充分不必要条件。
如果函数在区间[a ,b ]上的图象是一条不间断的曲线,并且满足fa ·fb )0(02>=++a c bx ax )0(2>++=a c bx ax y )0(2>++=a c bx ax y0 Δ=0 Δ)0(02>=++a c bx ax62--=x x y 62--=x x y 0,<0相应的取值,初步了解函数零点的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的零点说稿
各位评委大家上午好:
我今天的说课题目是《函数的零点》
根据新课标理念,对于本节课,我将以教什么,怎样教,为什么这样教为思路,从教材分析、教学目标分析、教法学法分析、教学过程分析、板书设计以及效果分析六方面进行我的说课。
一、教材分析
教材地位与作用:
1、本节课是人教B版新教材必修一第二章第四节的内容,是高中数学的新增内容,也是近年来高考关注的热点.
本节课是在学习了函数的性质的基础上,对函数性质的进一步研究和拓展,下节“二分法求方程的近似解”和后续的“算法学习”提供了基础,具有承前启后的作用. 对培养学生的“等价转化思想”、“数形结合思想”、“方程与函数思想”有重要作用。
教学重点、难点
教学重点:了解函数零点的概念,体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件.
教学难点:探究发现函数零点的存在性.在合情推理中让学生体会到判定存在性的充分非必要性,能利用适当的方法判断零点的存在或确定零点 .
二、教学目标分析
(一)知识目标:
1.结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程的根的联系.
2.理解并会用函数在某个区间上存在零点的判定方法.
(二)能力目标:
培养学生自主发现、探究实践的能力.
(三)情感目标:
在函数与方程的联系中体验数学转化思想的意义和价值.
三、教法学法分析
教法:“将课堂还给学生,让课堂焕发出生命的活力”是进行教学的指导思想,充分发挥教师的主导作用和学生的主体作用. 采用“启发—探究—讨论”式教学模式.
学法:以培养学生探究精神为出发点,着眼于知识的形成和发展,着眼于学生的学习体验,设置问题,由浅入深、循序渐进,给不同层次的学生提供思考、创造和成功的机会。
四、教学过程分析 零点概念的建构零点存在问题的
探究
创设情境,复习引入
辨析讨论,形成概念
自主探究,概念深化观察感知,例题学习知识应用,尝试练习应用与巩固反思小结,培养能力
布置作业,反馈延伸
约12分钟:约12分钟:约12分钟:
约4分钟:结课
教学过程分析
(一)创设情景、复习引入
问题1、(多媒体演示楼上抛球)
问题2、已知函数2-56y x x =+,
(1)当x 为何值时,0?y =
(2)试作出函数的简图
设计意图:由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲.
问题3:思考
1.如何求一元二次方程的根
2.一元二次方程方程的根与图像的关系
3.结合引例指出函数、方程、不等式三者存在的关系
设计意图: 有利于培养学生思维的完整性,也为学生归纳方程与函数的关系打下基础.
问题4:思考:对于二次函数y=ax2+bx+c (a≠0)是否一定有根如何判断
(二)辨析讨论,形成概念
函数零点的定义:
一般地,如果函数y=f(x)在实数a处的值等于零,即f(a)=0,则a 叫做这个函数的零点。
辨析练习:判断下列说法的正误.函数223
=--的零点是:
y x x
⑴(-1,0),(3,0);()
⑵ x=-1;()
⑶ x=3;()
⑷ -1和3.()
等价关系
方程f(x)=0有实根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点
设计意图:
利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点.
引导学生得出三个重要的等价关系,体现了“转化”和“数形结合”的数学思想,这也是解题的关键.
(三)自主探究,概念深化
问题5:在什么情况下,函数f(x)在区间(a,b)一定存在零点呢
1.如果把函数比作一部电影,那么函数的零点就像是电影的一个瞬间,一个镜头。
有时我们会忽略一些镜头,但是我们仍然能推测出被忽略的片断。
现在我有两组镜头(下图),哪一组能说明他的行程一定曾渡过河
2.将河流抽象成x轴,将前后的两个位置视为A、B两点。
请问当A、B与x轴怎样的位置关系时,函数图象与x轴一定会有交点AB间是一段连续不断的图像时
、B与x轴的位置关系,如何用数学符号(式子)来表示
用f(a)·f(b)<0来表示
设计意图:
从现实生活中的问题,让学生体会动与静的关系,系统与局部的关系.
将现实生活中的问题抽象成数学模型,进行合情推理,将原来学生只认为静态的函数图象,理解为一种动态的过程。
由原来的图象语言转化为数学语言。
培养学生的观察能力和提取有效信息的能力。
体验语言转化的过程。
问题6:函数y=f(x)在某个区间上是否一定有零点怎样的条件下,函数y=f(x)一定有零点
设计意图:通过小组讨论完成探究,教师恰当辅导,引导学生大胆猜想出函数零点存在性的判定方法.这样设计既符合学生的认知特点,也让学生经历从特殊到一般过程.
二次函数零点的性质:
1、二次函数的图像是连续的,当它通过零点时(不是二重零点),函数值变号。
2、相邻两个零点之间的所有函数值保持同号。
对任意函数,只要它的图像是连续不间断的,上述性质同样成立。
二次函数的零点的应用
1、研究函数的图像,作函数的简图。
2、判断相邻两个零点间的符号,观察函数的性质。
设计意图:引导学生理解函数零点存在定理,分析其中各条件的作用,并通过特殊图象来帮助学生理解,将抽象的问题转化为直观形象的图形,更利于学生理解规律的本质.
1、零点个数与单调性的关系
答:函数在区间上单调则在区间上有一个或没有零点
2、零点个数与函数奇偶性的关系
(1)奇函数零点个数一定有奇数个吗
答:不一定,奇函数在0处有定义时有奇数个,无定义时有偶数个。
(2)偶函数零点的个数一定有偶数个吗
答:不一定,当f(0)=0事奇数个,当在0处无定义或f(0) ≠0时有偶数个零点。
设计意图:通过与前面函数性质的联系,使学生学会运用所学知识分析研究问题,从而对函数零点的问题加深认识。
(四)观察感知,例题学习
例、 求函数y =x 3-2x 2-x +2的零点,并画出它的图象.
设计意图:引导学生思考如何应用零点来解决相关的具体问题,接着让学生利用计算器完成对应值表,然后利用函数单调性判断零点的个数,并借助函数图象对整个解题思路有一个直观的认识.
(五)知识应用,尝试练习
设计意图:对新知识的理解需要一个不断深化完善的过程,通过练习,进行数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,同时反映教学效果,便于教师进行查漏补缺.
(六)反思小结,培养能力
1.你能说说二次函数的零点与一元二次方程的根的联系吗
2.如果函数图象在区间[a,b]上是连续不断的,那么在什么条件下,函数在(a,b)内有零点 2
()23f x x x a a =---已知,求取何值
①有两个零点,②3个零点,③4个零点
设计意图:
通过师生共同反思,优化学生的认知结构,把课堂教学传授的知识较快转化为学生的素质.
(七)布置作业,反馈延伸
1.必做题:教材P72练习B 1(3)、2(2)题
2.选做题:求函数的零点时,当函数不可分解因式时怎么办设计意图:巩固学生所学的新知识,将学生的思维向外延伸,激发学生的发散思维.达到熟练使用零点存在条件的目的(没有图像的情况下),同时为下一节课作好铺垫。
五、板书设计
六、效果分析
本节课的教学通过提出问题,引导学生发现问题,经历思考交流概
括归纳概念,由问题的提出进一步加深理解;这一过程能够培养学生发现问题、分析问题、解决问题的能力。
加强过程性评价,创设公平、平等、宽松、积极向上的课堂环境,这就要求对学生的语言行为及时地给予肯定性的表扬和鼓励,充分暴露思维,及时矫正,调整思路。