电磁兼容课程报告

电磁兼容课程报告
电磁兼容课程报告

电磁兼容工程应用课程报告

电磁兼容现场测试中的干扰源辨识技术研究引言

在科学发达的今天,广播、电视、通信、导航、雷达、遥测测控及计算机等迅速发展,尤其是信息、网络技术以爆炸性方式增长,电磁波利用的快速扩张,产生了不断增长的电磁污染,带来了严重的电磁干扰。各种电磁能量通过辐射和传导的途径,以电波、电场和电流的形式,影响着敏感电子设备,严重时甚至使电子设备无法正常工作。上述情况对电子设备及系统的正常工作构成了很大的威胁,因此加强电子产品的电磁兼容性设计,使之能在复杂的电磁环境中正常工作已成为当务之急。电磁兼容性(Electromagnetic Compatibility,EMC)是设备或系统在其电磁环境中,能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。它包括电磁干扰(Electromagnetic Interference,EMI)和电磁敏感度(Electromagnetic Susceptibility,EMS)两个方面。电磁兼容测试是验证电子设备电磁兼容设计的合理性以及最终评价、解决电子设备电磁兼容问题的主要手段。通过定量的测量,可以鉴别产品是否符合EMC 相关标准或者规范,找出产品在EMC方面的薄弱环节。

目前很多国家和组织都制定了相关的电磁兼容标准,只有符合相关指标要求的电子和电气产品才能进入市场。要判断某电子产品是否存在电磁兼容性问题,就需要依据相关标准对该产品进行具体的电磁兼容测试。

在目前电磁兼容测试中,针对设备或分系统级的电磁兼容测试与评价有着较为完备的电磁兼容标准或规范体系,不仅规定了测试所使用的仪器设备的具体指标要求,同时还规范了测量方案的组成和环境要求,这是其他标准或规范中所少见的。然而针对系统测试,目前还没有详细具体的标准或规范。已经了解的标准有美军标MIL-E-6051D《系统电磁兼容性要求》(已等效成国军标GJB1389《系统电磁兼容性要求》),又如美军标MIL-STD-1541A《对航天系统的电磁兼容性要求》等。在这些标准中给出了一些应该遵从的原则,但如何将这些原则用于工程,还需要一个实践的过程。

虽然许多实验证明了设备和分系统通过了规定标准的EMC 测量,那么一般情况下是能够保证它们组成的系统可以实现自兼容。但是目前系统集成度越来越高,潜在的电磁干扰大大增加,另外复杂的电子系统往往具备多种工作模式,在设备和分系统试验时很难考虑周全;且研究了整个系统的EMC 试验数据,可以成为系统对设备和分系统EMC 指标验收的根据,有利于防止设备在EMC 设计中的过设计,浪费不必要的资源。所以能够评估系统电磁兼容性能的最直接和有效的方法是对系统在正常工作环境下进行测试即电磁兼容现场测试。由于现场测试面临着电磁环境的复杂性和系统组成的多样性等束缚条件,使得现场测试存在环境干扰严重、评估困难、结果不稳定、测试数据利用率低和干扰源难确定等一系列问题。又由于良好的干扰源定位能力能够对差异信号的辨识和故障诊断

提供依据,即提高干扰源的辨识能力对系统电磁兼容问题的评估以及电磁兼容故障诊断具有重要的参考意义,因此研究电磁兼容现场测试中的干扰源辨识技术具有重要的意义和工程应用价值。

国内外发展状况

国外对系统测试的研究开始的较早,在20世纪60年代美军便将系统的电磁兼容性设计和测试验证作为大型系统研究的重点。美国和西方发达国家的研究多集中于军用设备和系统,美国针对系统电磁环境效应问题制订了MIL-STD-46等标准来规范系统的电磁环境效应设计和测试。随着民用通信设备的大量使用和外界电磁环境的日益复杂,对民用设备和系统的电磁兼容研究随之展开。虚拟暗室技术是目前国外应用于现场测试的一种领先的电磁兼容测试方法。虚拟暗室测试理论是由Marino Jr.和Michael A于2000 年提出的。CASSPER 就是一种典型的虚拟暗室系统。CASSPER 最初是为美国空军研究所定制的虚拟暗室EMI 测试系统,该系统即使在恶劣的电磁环境中,也能进行精确的电磁兼容测试,还能精确定位电磁干扰源,是一个兼具远场测试和近场定位的EMI 测试设备。

国内对电磁兼容现场测试的研究起步较晚,只有很少大学和研究所进行这方面的研究。国内对电磁兼容的研究多集中于部件和设备的电磁兼容研究和防护研究,电磁兼容测试主要针对于设备的故障诊断测试和认证测试,对系统级的电磁兼容测试研究较少。国内目前在系统电磁兼容研究方面有GJB1389A作为系统电磁兼容设计的主要依据,但是标准中对测试方法的规定很少。目前在现场测试这个领域的研究成果很少,仅有一些使用CASSPER 系统进行的试验及算法分析。陈京平、刘建平等人使用CASSPER 虚拟暗室系统做了一些试验,其中去除噪声的试验效果并不能令人满意。程君佳、韩朝晖等人对虚拟暗室的相关算法及原理进行了分析。国内对于设备或系统的故障诊断多是人工干预,还无法实现干扰源辨识的自动化。

模式识别是当前科学发展中的一门前沿学科,也是一门典型的交叉科学。电磁兼容测试数据由于其单一性和随机性等特点,存在处理困难、特征不明显等问题。将模式识别的方法应用于干扰源的辨识,能够很好的解决电磁兼容数据处理中的问题。

综上所述,电磁兼容现场测试技术的研究在国内外都属于较为崭新的研究课题。目前国外的研究成果已经投入实用,但是还有很大的改进空间;国内目前还处于起步阶段,迫切的需要对现场测试技术进行研究和提高。

电磁兼容现场测试分析及测试方法研究

随着电子信息技术的飞速发展,各种电子设备间的电磁兼容问题也日益突出,为了掌握和提高这些电子设备的电磁兼容性,最直接的方法就是对它们进行电磁兼容测试。现场系统电磁兼容测试作为最能反映系统真实任务执行能力的电

磁兼容测试起着非常重要的作用。

在电磁兼容测试中,场地对测试结果的影响非常明显。主要原因是场地的差异,即空间直射波与地面反射波的反射影响和接收点不同,造成相互叠加的场强不一致。早期的CISPR 标准要求电磁兼容测试应该在开阔测试场地(OATS)中进行。开阔试验场的基本结构应是周围空旷,无反射物体,地面为平坦而导电率均匀的金属接地表面。场地按椭圆形设计,场地长度不小于椭圆焦点之间距离的2倍,宽度不小于椭圆焦点之间距离的 1.73 倍,具体尺寸的大小一般视测试频率下限的波长而定。实际电磁辐射干扰测试时,EUT 和接收天线分别置于椭圆场地的两个焦点位置。考虑到开阔试验场及屏蔽暗室的建造成本和环境的限值,国内外电磁兼容标准将EUT 到接收天线的距离定为3m 和10m,俗称3m 法和10m 法。如要满足3m 法测量,场地长度不小于6m 距离,宽度不小于5.2m 距离;如要满足10m 法测量,场地长度不小于20m 距离,宽度不小于17.3m 距离。

开阔试验场的要求也给其使用带来了很大的局限性,主要表现在开阔测试场地是一种成本很高的测试场地,很难寻觅,一般在远离城市的农村或山区才能找到合适的场地,因此交通大都不便,测试设备和样机在运输途中易遭破坏。其次,当用开阔测试场地进行辐射敏感度试验时,由于需要建立人为的电磁场,可能会干扰周围其他设备的正常工作,妨碍通信或广播电台,影响频谱划分,而且采用开阔测试场地进行试验往往受到气候等天气条件的限制。电波暗室的出现,为电磁兼容试验提供了一个无外界干扰、无向外泄漏、无反射回波的电磁波自由传播空间,不仅能替代开阔场的大量试验内容,而且更大程度地完善和弥补了开阔场试验的不足,因此得到了广泛的应用。

标准测试在针对部件级或者设备级的电磁兼容测试方面具有无可比拟的优势,但是在反映任务系统的系统性能方面却有一定的局限性。主要体现在:

1) 标准实验室的测试是针对单个设备的测试,无法体现上装环境下成组设备工作时的成组特性。

2) 标准实验室内的测试由于空间及连接限制,无法体现设备的实际工作模式。

3) 标准实验室中电源采用LISN 供电,LISN 的阻抗为50 欧姆标准阻抗,能够与设备实现较好的阻抗匹配,无法体现上装环境下设备实际的阻抗特性。

综上所述,标准实验室测试特点表明标准实验室环境下的测试是一种理想条件下的测试,能够反映单个设备的电磁兼容性能,但是无法反映上装系统的实际电磁兼容性能。目前实验室标准测试还无法满足系统上装条件下的电磁兼容测试要求。所以需要开展基于任务剖面的电磁兼容系统现场测试研究,为大型复杂系统的电磁兼容分析、设计和整改提供支持。

现场测试由测试方法、测试数据处理技术和后期整改组成。测试方法包括微弱信号的测试方法和近场抗饱和测试方法。测试数据处理包括数据预处理技术和干扰源辨识技术。现场测试的方案如下图。

图1 现场测试整体方案

在现场测试时,经常会遇到大信号的测量。这时需要兼顾大小信号的测量又需要防止仪器的饱和,建议选用尽可能小的内置衰减器的衰减量而使用外置带通/带阻滤波器,滤波器的损耗可在自动测试软件中补偿。

以下方法能提高频谱仪测量微小信号的能力:

1)减小频谱仪分辨率带宽;

2)减小射频衰减器的衰减

3)减小频谱仪视频带宽

4)使用前置放大器

在测试过程中可以使用衰减器防止接收到大功率的信号使得频谱仪混频器饱和,给测试带来误差。但是使用了宽带的衰减器引起的问题是:衰减器不仅将大信号进行了衰减,小信号也被衰减以至于小信号可能被噪声淹没。为了解决该问题,在测试过程中使用中心频率可调的带通或带阻滤波器,该滤波器的功能就是实现EMC 接收机的前端预选器的功能,使用该滤波器可以防止大功率信号进入频谱仪,只要在测试过程中将带阻滤波器的中心频率调节到电台的发射频率即可。

近场抗饱和测试的测试示意图如图 2 所示。测试中的接收端使用了带通/带阻滤波器和宽带衰减器。在进行宽带测试时使用宽带衰减器;在进行电台基波特性测试时使用带阻滤波器;在进行电台谐波测试时使用带通滤波器。

图2 抗饱和辐射发射特性测试示意图

干扰源辨识方案设计

随着现代通信电子科学技术的高速发展和广泛应用,电子通信系统正在向集成化、多任务化、微型化发展。各种各样的电子设备或系统以及其他的电子、电气设备越来越密集导致的系统内电磁环境及其复杂,高密度、宽频谱的电磁信号

充满整个空间,使电子通信系统受到了严重的考验,电磁兼容性问题日益突出。以车载通信系统举例来说,由于车辆的车内、车顶空间都非常狭小,在这样狭小的空间内安装了多部不同频带及功能的电台、计算机、数字化车通等各种数字化设备,存在着多种导致系统电磁兼容(EMC)性能恶化的因素。如何解决在复杂的大型电子通信系统中电磁兼容问题是目前业界的研究重点和难点。

模式识别(pattern recognition)是当前科学发展中的一门前沿科学,也是一门典型的交叉科学,它的发展与人工智能、计算机科学、传感技术、信息论、语言学等科学的研究水平息息相关,相辅相成。所谓模式识别是根据研究对象的特征或属性,利用计算机为中心的机器系统运用一定的分析算法认定它的类别,系统应使分类识别的结果尽可能地符合真实。

模式识别的过程是由数据空间经特征空间到类别空间的映射,主要过程可以分为数据采集、数据预处理、特征提取与特征选择及模式分类等四个部分。模式识别的整个过程如图3所示。

图3 模式识别过程

模式识别目前主流的技术是:统计模式识别、句法模式识别、模糊数学方法、神经网络方法、人工智能方法,本文选择使用统计模式识别的方法。基本思想是先建立关键设备的模板数据库,然后将受扰设备端的测试结果作为待辨识数据,将其通过干扰源辨识算法和模板库中的数据进行比较,最后辨识出干扰源。干扰源辨识算法如下图所示。

图4 干扰源辨识算法

模式识别的基本过程是数据预处理、特征提取、特征选择、学习和训练、分

类识别。结合模式识别的方法,对电磁兼容现场测试结果做相应的数据分析。

1)数据预处理

在进行辨识之前先要对目标的有关信息进行预处理。

本文处理的数据全部来自于现场电磁兼容测试。现场电磁兼容的测试结果包含有多种噪声信号,需要进行消噪处理。所以在本过程中对原始测试数据进行小波消噪,对发射特性曲线进行包络和延拓处理。

2)特征提取

无论是辨识还是学习过程,都要对研究对象固有的、本质的及重要的特征或属性进行量测并将结果数值(字)化,或将对象分解并符号化,形成特征矢量或符号串、关系图,从而产生代表对象的模式。

现场电磁兼容测试结果具有数据记录,它已经是数值化的对象,本身就是一种特征。测试曲线的其它特征又可以分为峰值特征、包络特征、谐波特征等。

3)特征选择

通常能描述对象的元素很多,为了节约资源,节省计算机存储空间、机时、特征提取的费用,有时更为了可行性,在满足分类识别正确率要求的条件下,按某种准则尽量选用对正确分类识别作用较大的特征,使得用较少的特征就能完成分类识别任务。

针对不同的电磁兼容测试对象,可以选择不同的特征作为辨识对象。如电台类的对象特征选择峰值特征和谐波特征较为合适,电源类的对象特征更合适选择包络特征。

4)学习和训练

为了让机器具有分类识别功能,如同人类自身一样,人们应首先对它进行训练,将人类的识别知识和方法以及关于分类识别对象的知识输入机器中,产生分类识别的规则和分析程序。这个过程一般要反复进行多次,不断地修正错误、改进不足,这包括修正特征提取方法、特征选择方案、判决规则方法及参数,最后使系统正确识别率达到设计要求。目前,机器的学习需要人工干预,这个过程通常是人机交互。

在干扰源辨识过程中的模板选择是一个学习的过程,辨识结果则需要通过训练不断地优化改进。

5)分类识别

在学习、训练之后,所产生的分类规则及程序用于未知类别的对象识别。对测试结果提取特征,采用聚类分析中的相似性判断,得出辨识结果。

综上所述,干扰源的辨别方案流程是数据预处理、特征提取、特征选择、学习和训练、分类识别,具体如下图所示。

图5 干扰源辨识方案

干扰源辨识关键技术分析

1、数据预处理技术

在使用频谱仪进行现场测试的过程中,仪器会采集到三种信号的数据:有用信号、仪器内部噪声和外界环境噪声。数据预处理技术的作用正是用于消除噪声的影响。

1)小波消噪

小波消噪的原理是基于信号与噪声的小波系数在尺度上的不同性质,采用相应规则,对含噪信号的小波系数进行取舍、提取或切削等非线性处理,以达到去除噪声的目的。

从信号处理的角度看,小波消噪是一个信号滤波的问题,尽管在很大程度上小波消噪可视为低通滤波,但是由于消噪后,还能成功的保留信号的特征,所以在这一点上,小波消噪方法又优于传统的低通滤波器。由此可见,小波消噪实际上是特征提取和低通滤波的综合,其流程如图6所示:

图6 小波消噪原理框图

2)包络和延拓数据预处理技术

针对不同的无线设备,由于测试环境往往不同,导致得到的发射特性曲线也不同。所以经过消噪处理后的测试曲线虽然变得较为光滑,但是在峰值的两侧区间信号分布依然很复杂,依然很难从测试结果中提取关键特征,需要进行包络计

算,使测试曲线更加平滑,这种方法称为包络处理。

原始的测试数据经过各种处理之后,可能导致底部噪声比原始的噪声要高,而需要的测试数据的底部噪声要比实际获得的测试数据的底部噪声要低的多,为了解决上述由于先前的数据处理带来的问题,需要将包络后的测试数据进行再处理,把噪声处理成需要的大小,这种方法称为延拓处理。

2、特征提取

1)峰值特征提取

在电磁兼容测试中,峰值信号是最为关心的信号。峰值信号所在频率和相应幅值是发现问题、解决问题的关键信息。峰值的判别可以根据测试数据的单调性确定。对测试点左右两侧进行单调性判断,如果该测试点的左侧为单调递增并且右侧为单调递减,则认定其为峰值点,否则不是峰值点。但是由实际的测试曲线可知,环境信号的测试结果中大部分都不是有用信号,而是频谱仪的底部噪声。频谱仪底噪是在一定范围内波动的随机数,若按单调性的方法进行峰值提取,必然会提取出很多的底噪数据,达不到提取干扰信号峰值的效果。所以在进行峰值提取前需要进行噪声阈值判断,对于大于该阈值的信号才进行峰值提取。峰值提取如下图所示。

图7 峰值提取流程图

2)包络特征提取

包络特征在现场电磁兼容测试曲线的分析中具有重要的意义。为了提取包络特征,引入包络因子的概念。包络因子定义为均方根和绝对均值之比,是一个无量纲参数。包络因子的计算公式如下式所示:

式(1)

式中,

由于现场测试信号波动剧烈,包络曲线上可能因为毛刺信号导致包络因子判断的不合理,所以在计算包络因子之前还需进行第二章的消噪处理。另外,在进行包络因子参数计算时应做零均值处理,即从原始数据中减去其均值,只保留信号的动态部分进行计算。

包络因子的值域范围是[1,2),包络相似度可由下式计算得到:

式(2)其中:S1、S2是两条不同曲线段的包络因子。

结论

本文主要研究了电磁兼容现场测试中的干扰源辨识技术。本文着眼于实际的工程应用,首先对电磁兼容现场测试的背景及国内外在该项技术上的发展现状和趋势进行了研究,指出了进行电磁兼容现场测试的干扰源辨识的重要性和必要性。在此基础上对电磁兼容现场测试的测试方法进行了研究,重点和电磁兼容标准测试作比较,阐述了现场测试相对于标准测试的不同点和复杂性。针对现场测试的特点,提出了微弱信号测试和现场抗饱和测试的测试方法。借鉴模式识别理论设计了一套干扰源自动辨识的辨识方案并提出干扰源辨识算法。在构建干扰源自动辨识系统的过程中突破了以下关键技术:数据预处理技术和特征提取技术。

本文研究了电磁兼容现场测试中的干扰源辨识技术,并且结合现场测试的实际情况和电磁兼容测试数据的性质,构建了干扰源自动辨识系统。但由于该研究内容涉及到的测试环境多变、数据繁杂和数据处理的内容较多,该研究内容还存在以下问题有待研究:

1) 对干扰源模板的建立,还需要大量测试结果的验证并根据测试结果对模板的建立方法进行改善和优化;

2) 干扰源辨识技术中的特征提取方法还可做进一步研究,以找到其它合适的特征。

数字钟设计报告——数字电路实验报告

数字钟设计实验报告 专业:通信工程 姓名:王婧 班级:111041B 学号:111041226

数字钟的设计 目录 一、前言 (3) 二、设计目的 (3) 三、设计任务 (3) 四、设计方案 (3) 五、数字钟电路设计原理 (4) (一)设计步骤 (4) (二)数字钟的构成 (4) (三)数字钟的工作原理 (5) 六、总结 (9) 1

一、前言 此次实验是第一次做EDA实验,在学习使用软硬件的过程中,自然遇到很多不懂的问题,在老师的指导和同学们的相互帮助下,我终于解决了实验过程遇到的很多难题,成功的完成了实验,实验结果和预期的结果也是一致的,在这次实验中,我学会了如何使用Quartus II软件,如何分层设计点路,如何对实验程序进行编译和仿真和对程序进行硬件测试。明白了一定要学会看开发板资料以清楚如何给程序的输入输出信号配置管脚。这次实验为我今后对 EDA的进一步学习奠定了更好的理论基础和应用基础。 通过本次实验对数电知识有了更深入的了解,将其运用到了实际中来,明白了学习电子技术基础的意义,也达到了其培养的目的。也明白了一个道理:成功就是在不断摸索中前进实现的,遇到问题我们不能灰心、烦躁,甚至放弃,而要静下心来仔细思考,分部检查,找出最终的原因进行改正,这样才会有进步,才会一步步向自己的目标靠近,才会取得自己所要追求的成功。 2

二、设计目的 1.掌握数字钟的设计方法。 2熟悉集成电路的使用方法。 3通过实训学会数字系统的设计方法; 4通过实训学习元器件的选择及集成电路手册查询方法; 5通过实训掌握电子电路调试及故障排除方法; 6熟悉数字实验箱的使用方法。 三、设计任务 设计一个可以显示星期、时、分、秒的数字钟。 要求: 1、24小时为一个计数周期; 2、具有整点报时功能; 3、定时闹铃(未完成) 四、设计方案 一个基本的数字钟电路主要由译码显示器、“时”,“分”,“秒”计数器和定时器组成。干电路系统由秒信号发生 3

输电线路技术实训报告-2010级

输电线路技术实训报告 专业:电气工程及其自动化 班级:电气(6)班 姓名: 学号: 指导教师:何耀佳、陈剑 实训地点:华南理工大学广州学院 实训时间:2014年4月16日至19日 填表日期:2014 年 5 月 1 日

目录 一、前言 (3) 二、实训内容 (3) 三、实训收获和感受 (6) 四、对本次实训课程的意见、改进措施及建议 (6) 五、结束语 (7) 课程设计(论文)评语: 实训报告总评成绩: 老师签字: 年月日

一、前言 理论知识往往被认为枯燥无味,实际上我也是这么认为的,要真正学懂,明白只有通过多次的实践,加深了对理论知识的理解,才能认清真理。通过这次线路实训,我们对输电线路有了新的认识,对安全工作有了更高层次的体会。这次实训的主要任务有用脚扣登杆练习、攀登铁塔练习、更换110KV线路直线杆绝缘子、更换110KV线路直线杆防震锤和拉线的制作。在将来的就业中,动手能力,实践经验等等都是很重要的,使学生对电工技术有一定的感性和理性认知,对电工技术等方面的专业知识作进一步的理解。同时通过实训熟悉登杆和杆上作业的一般操作规程,了解登杆和杆上作业的安全知识,掌握用脚扣上下杆的基本方法和技能,学习更换绝缘子和防震锤,熟悉拉线制作过程。 二、实训内容 1、实训时间 2014年4月15日至2014年4月19日 2、实训使用的设施、器材和工具 安全帽、手套、安全带、扳手、脚扣 3实训项目及操作要就 用脚扣登杆练习、攀登铁塔练习、更换110KV线路直线杆绝缘子、更换110KV线路直线杆防震锤和拉线的制作。 (1)、安全防护用品穿戴基本要求 ①佩戴安全帽的作用:安全帽是重要的头部保护用品,在劳动作业过程中有异物撞击头部时能起到有效的缓冲和保护作用。佩戴安全帽的要求:安全帽在佩戴前,应调整好松紧大小,以帽子不能在头部自由活动,自身未感觉不适为宜。安全帽由帽衬和帽壳两部分组成,帽衬必须与帽壳连接良好,同时帽衬与帽壳不能紧贴,应有一定间隙,该间隙一般为2-4cm(视材质情况),当有物体坠落到安全帽壳上时,帽衬可起到缓冲作用,不使颈椎受到伤害。必须栓紧下颚带,当登高作业或身体倾斜时,不至于脱落。 ②系安全带的要求:系安全带的作用:防止登高作业时意外落地,保护作业人员在登高作业时不从高空滑落。系安全带的要求:有可能进行高空作业的工作,在进入工作场所时,身上必须佩有安全带;高度超过2米的高空作业,必须配有安全带;系安全

电磁兼容技术实训报告

电磁兼容技术实训报告 课题:USB电缆线的EMC设计与测试班级: 姓名: 学号: 指导老师: 实训时间:2014.10.27-2014.11.01

一、电磁兼容 1、EMC概念: 电磁兼容性(Electro Magnetic Compatibility,简称EMC)是指设备或系统在其电磁环境中符合要求运行并不对其环境中的任何设备产生无法忍受的电磁干扰的能力。因此,EMC包括两个方面的要求:一方面是指设备在正常运行过程中对所在环境产生的电磁干扰不能超过一定的限值;另一方面是指器具对所在环境中存在的电磁干扰具有一定程度的抗扰度,即电磁敏感性。所谓电磁干扰是指任何能使设备或系统性能降级的电磁现象。而所谓电磁干扰是指因电磁干扰而引起的设备或系统的性能下降。 电磁干扰(Electro Magnetic Interference,简称EMI),即处在一定环境中的设备或系统,在正常运行时,不应产生超过相应标准所需要的电磁能量,相对应的测试项目有: ●电源线传导骚扰(CE); ●信号、控制线传导骚扰(CE); ●辐射骚扰(RE); ●谐波电流测量(Harmonic); ●电压波动和闪烁测量(Fluctuation and Flicker); 电磁干扰度(Electro Magnetic Susceptibility,简称EMS),即处在一定环境中的设备或系统,在正常运行时,设备或系统能承受相应标准规定范围内的电磁能量干扰,相对应的测试项目有: ●静电放电抗扰度(ESD);

●电快速瞬变脉冲群抗扰度(EFT/B); ●浪涌(SURGE); ●辐射抗扰度(RS); ●传导抗扰度(CS); ●电压跌落与中断(DIP); 2、电磁干扰的危害: 电磁干扰有可能使设备或系统的工作性能偏离预期的指标或使工作性能出现不希望的偏差,即工作性能发生了“降级”。甚至还可能使设备或系统失灵,或导致寿命缩短,或使系统效能发生不允许的永久性下降,严重时,还能摧毁设备或系统。而且还将影响人体健康。 3、电磁兼容设计的目的: 电磁兼容设计的目的是使设计的电子设备或系统在预期的电磁环境中实现电磁兼容,其要求是使电子设备或系统满足EMC标准的规定并具有两方面的能力:a.能在预期的电磁环境中正常工作,无性能降低或故障;b.对该电磁环境不是一个污染源。 二、EMC三要素 系统要发生电磁兼容性问题,必须存在三个因素,即电磁干扰源、传播路径(耦合途径)、敏感设备。 1、电磁干扰源 任何形式的自然或电能装置所发射的电磁能量,能使共享同一环境的人或其它生物受到伤害,或使其它设备、分系统或系统发生电磁危害,导致性能降级或失效。

电磁兼容实验报告

实验四电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

自感磁链:11ψ=1N 11Φ 22ψ=2N 22Φ 互感磁链:21ψ=2N 21Φ 12ψ=1N 12Φ 2.伏安关系 耦合线圈中的总磁链:1ψ=11ψ±12ψ=1L 1i ±M 2i 2ψ=22ψ±21ψ=2L 2i ±M 1i 根据法拉第电磁感定律及楞次定律:电路变化将在线圈的两端产生自感,电压U L1,U L2和互感电压U M21,U M12。 于是有: dt di L dt d L U 11111== ψ dt di L dt d L U 2 2 222 == ψ dt di M dt d M U 1 2121== ψ dt di M dt d M U 21212==ψ 两线圈的总电压U1和U2应是自感电压和互感电压的代数和。即: dt di M dt di L M U L U U 211 1211±±=±±= dt di M dt di L M U L U U 1 22 2122±±=±±= 仿真图: 图中,信号源选择sources 中的AC power ,互感线圈选择Basic Virtual 中的TS Virtual 元件 图 10-1 耦合电感 M + _ + _ * * i 1 1L 2L i 2 u 1 u 2 图 10-2 同名端

数字电子技术实验心得

数字电子技术实验心得 这学期学了数字电子技术实验,让我了解到了更多知识,加深了对数字电子技术的理解。这是一门理论与实践密切相关的学科,能让我们自己去验证一下书上的理论,自己去设计,这有利于培养我们的实际设计能力和动手能力。 通过数字电子技术实验, 我们不仅仅是做了几个实验,不仅要学会实验技术,更应当掌握实验方法,即用实验检验理论的方法,寻求物理量之间相互关系的方法,寻求最佳方案的方法等等,掌握这些方法比做了几个实验更为重要。 在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.做实验时,一定要亲力亲为,务必要将每个步骤,每个细节弄清楚,弄明白,实验后,还要复习,思考,这样,你的印象才深刻,记得才牢固,否则,过后不久你就会忘得一干二净,这还不如不做.做实验时,老师还会根据自己的亲身体会,将一些课本上没有的知识教给我们,拓宽我们的眼界,使我们认识到这门课程在生活中的应用是那么的广泛. 我也学习到一些经验: 1、如果发现了实验中问题所在,此时,我们应该静下心来,冷静地分析问题的所在,有可能存在哪一环节,比如实验原理不正确,或是实验电路需要修正等等,只有这样我们的能力才能有所提高。不要盲目的把导线全部拆掉,然后又重新连接一遍,这样不但浪费时间,而且也无法达到锻炼我们动手动脑能力的目的。 2、在实验过程中,我们也要学会分工协作,不能一味的我行我素或是自己一点也不参与其中。 3、在实验过程中,要互相学习,学习优秀同学的方法和长处,同时也要学会虚心向指导老师请教,当然这要建立在自己独立思考过的基础上。 在实验的过程中我们要培养自己的独立分析问题,和解决问题的能力。培养这种能力的前题是你对每次实验的态度。数字电子技术实验,有利于掌握知识体系与学习方法,有利于激发我们学习的主动性,增强自信心,有利于培养我们的创新钻研的能力,有利于书本知识技能的巩固和迁移。我们认为,在这学期的实

变电站实习报告3000字

变电站实习报告3000字 下面是XXXX为大家整理的,更多请关注XX实习报告。[一] 电力工业是国民经济发展中最重要的基础能源产业,是国民经济的第一基础产业,是关系国计民生的基础产业,是世界各国经济发展战略中的优先发展重点。作为一种先进的生产力和基础产业,电力行业对促进国民经济的发展和社会进步起到重要作用。与社会经济和社会发展有着十分密切的关系,它不仅是关系国家经济安全的战略大问题,而且与人们的日常生活、社会稳定密切相关。随着我国经济的发展,对电的需求量不断扩大,电力销售市场的扩大又刺激了整个电力生产的发展。 据悉1974年建成了第一条330kv输电线路,由甘肃刘家峡水电站厂到陕西关中地区。1981年建成了第一条500kv 输电线路,由河南姚孟火电厂到武汉。电力系统输电电压等级,除西北电网为330110kv夕卜,其他电网都采用500110kv。国内各省电网都已形成220kv 网架,华北、东北、华东、华中、南方等电网都已建成500kv大容量输电线路和跨省联 络线,并将逐步形成跨大区域互联的骨干网络。正在建设中的西北750kv输电工程,标志着我国电网输电电压等级由目前最高的500kv 即将升级为750kv,实现历史性跨越。除超 高压输电外,1988年建成了从葛州坝到上海南桥的500kv

直流输电线路,全长1080km, [220kv变电站实习报告]输电容量 120* kw ,使华中和华东两大电力系统互联,形成了跨 大区的联合电力系统。在这些电力建设工程中,超高电压等级变电站自动化系统占有重要的地位。 一、实习目的 实习的目的是理论联系实际,增强学生对社会、国情和专业背景的了解;使学生拓宽视野,巩固和运用所学过的理论知识,培养分析问题、解决问题的实际工作能力和创新精神;培养劳动观念,激发学生的敬业、创业精神,增强事业心和责任感;本次实习在学生完成部分专业课程学习后进行,通过本次实习,使学生所学的理论知识得以巩固和扩大,增加学生的专业实际知识;为将来从事专业技术工作打下一定的基础;进一步培养学生运用所学理论知识分析生产实际问题的能力。 二、实习内容 ①搜集整理变电站主要一、二次设备以及变电站运行 方面的相关知识和资料。 ②搜集整理500kv变电站特点方面资料。 ③将搜集学习到的相关知识与云田站的实践相结合,对 理论知识进行深化理解,总结收获. ④实地考察云田500kv变电站的主接线、主要电气设备电气设 备布置方式、变电站主要运行控制方式、变电站的通讯方式 等,参观考察过程中要求作好笔记。

数字电子技术实验报告

专业: 班级: 学号: 姓名: 指导教师: 电气学院

实验一集成门电路逻辑功能测试 一、实验目的 1. 验证常用集成门电路的逻辑功能; 2. 熟悉各种门电路的逻辑符号; 3. 熟悉TTL集成电路的特点,使用规则和使用方法。 二、实验设备及器件 1. 数字电路实验箱 2. 万用表 3. 74LS00四2输入与非门1片74LS86四2输入异或门1片 74LS11三3输入与门1片74LS32四2输入或门1片 74LS04反相器1片 三、实验原理 集成逻辑门电路是最简单,最基本的数字集成元件,目前已有种类齐全集成门电路。TTL集成电路由于工作速度高,输出幅度大,种类多,不宜损坏等特点而得到广泛使用,特别对学生进行实验论证,选用TTL电路较合适,因此这里使用了74LS系列的TTL成路,它的电源电压为5V+10%,逻辑高电平“1”时>2.4V,低电平“0”时<0.4V。实验使用的集成电路都采用的是双列直插式封装形式,其管脚的识别方法为:将集成块的正面(印有集成电路型号标记面)对着使用者,集成电路上的标识凹口左,左下角第一脚为1脚,按逆时针方向顺序排布其管脚。 四、实验内容 ㈠根据接线图连接,测试各门电路逻辑功能 1. 利用Multisim画出以74LS11为测试器件的与门逻辑功能仿真图如下

按表1—1要求用开关改变输入端A,B,C的状态,借助指示灯观测各相应输出端F的状态,当电平指示灯亮时记为1,灭时记为0,把测试结果填入表1—1中。 表1-1 74LS11逻辑功能表 输入状态输出状态 A B C Y 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 悬空 1 1 1 悬空0 0 0 2. 利用Multisim画出以74LS32为测试器件的或门逻辑功能仿真图如下

变电站实习报告10篇完整版

《变电站实习报告》 变电站实习报告(一): 前言 电力工业是国民经济发展中最重要的基础能源产业,是国民经济的第一基础产业,是关系国计民生的基础产业,是世界各国经济发展战略中的优先发展重点。作为一种先进的生产力和基础产业,电力行业对促进国民经济的发展和社会进步起到重要作用。与社会经济和社会发展有着十分密切的关系,它不仅仅是关系国家经济安全的战略大问题,而且与人们的日常生活、社会稳定密切相关。随着我国经济的发展,对电的需求量不断扩大,电力销售市场的扩大又刺激了整个电力生产的发展。 据悉1974年建成了第一条330kv输电线路,由甘肃刘家峡水电站厂到陕西关中地区。1981年建成了第一条500kv输电线路,由河南姚孟火电厂到武汉。电力系统输电电压等级,除西北电网为330/220/110kv外,其他电网都采用500/220/110kv。国内各省电网都已构成220kv网架,华北、东北、华东、华中、南方等电网都已建成500kv大容量输电线路和跨省联络线,并将逐步构成跨大区域互联的骨干网络。正在建设中的西北750kv输电工程,标志着我国电网输电电压等级由目前最高的500kv即将升级为750kv,实现历史性跨越。除超高压输电外,1988年建成了从葛州坝到上海南桥的500kv直流输电线路,全长1080km,输电容量120*kw,使华中和华东两大电力系统互联,构成了跨大区的联合电力系统。在这些电力建设工程中,超高电压等级(220kv/330kv/500kv/750kv)变电站自动化系统占有重要的地位。 一、实习目的 实习的目的是理论联系实际,增强学生对社会、国情和专业背景的了解;使学生拓宽视野,巩固和运用所学过的理论知识,培养分析问题、解决问题的实际工作潜力和创新精神;培养劳动观念,激发学生的敬业、创业精神,增强事业心和职责感;本次实习在学生完成部分专业课程学习后进行,透过本次实习,使学生所学的理论知识得以巩固和扩大,增加学生的专业实际知识;为将来从事专业技术工作打下必须的基础;进一步培养学生运用所学理论知识分析生产实际问题的潜力。 二、实习资料 ①搜集整理变电站主要一、二次设备以及变电站运行方面的相关知识和资料。 ②搜集整理500kv变电站特点方面资料。 ③将搜集学习到的相关知识与云田站的实践相结合,对理论知识进行深化理解,总结收获.

电磁兼容检测领域中-CNAS

CNAS—GL07 EMC检测领域不确定度的评估指南 中国合格评定国家认可委员会 二〇〇六年六月

电磁干扰测量中不确定度的评定指南 1目的与范围 1.1本指南是采用国际电工委员会下属国际无线电干扰特别委员会(缩写为CISPR)的标准CISPR 16-4(First edition 2002-05)编制而成的,为EMC检测中电磁干扰测量时的不确定度评定提供指南。 1.2在EMC检测中,如需考虑所使用的仪器引入的不确定度对测量结果或符合性判断结论的影响时,可以参考本指南。 1.3本指南的附录A提供了为确定各测量不确定度分量而需要的有关数据信息。附录A不是用户指南,不希望用户在进行不确定度评定时照搬照抄。 1.4本指南在文献目录中列出了部分不确定度评定的参考资料。 2引用文件 JJF1059-1998 《测量不确定度的评定与表示》 JJF1001-1998《通用计量术语及定义》 JJF1049-2003《测量仪器特性的评定》 3术语、定义和符号 本指南采用下列术语、定义和符号。 3.1术语、定义 关于不确定度的术语和定义见JJF1059-1998 《测量不确定度的评定及表示》;计量学通用名词术语和定义见JJF1001-1998 《通用计量术语及定义》。 3.2通用符号 X i:输入量 x i:X i的估计值

u(x i):x i的标准不确定度 c i:灵敏系数 y:测量结果,被测量的估计值,对所有能识别的和明显的系统影响已修正的测量结果 u c(y):y的合成标准不确定度 k:包含因子 U:y的扩展不确定度 3.3被测量 V:电压,dBμV P:骚扰功率,dB PW E:电场强度,dBμV/m 3.4输入量 V r:接收机电压读数,dBμV Lc:接收机与人工电源网络、吸收钳或天线之间的连接网络的衰减量,dB 注:“阻抗稳定网络”-在CISPR 16-4原文中称为“人工电源网络”(Artificial Mains Network),所以采用的缩写符号为AMN。 Lamn:人工电源网络的电压分压系数,dB Lac:吸收钳的插入损耗,dB AF:天线系数,dB(/m) δVsw:对接收机正弦波电压不准确的修正值,dB δVpa:对接收机脉冲幅度响应不理想的修正值,dB δVpr:对接收机脉冲重复频率响应不理想的修正值,dB δVnf:对接收机本底噪声影响的修正值,dB δM:对失配误差的修正值,dB δMD:对电源骚扰造成的误差的修正值,dB δZ:对人工电源网络阻抗不理想的修正值,dB δE:对环境条件影响的修正值,dB δ AFf:对天线系数内插误差的修正值,dB

全桥实验报告

《EDA技术应用》大作 业 --全桥开关电源设计与测试 学院:信息与电子工程学院 班级:13应用电子技术2班 指导老师:严添明 姓名:王浩 学号:1305220147 日期:2015-01-10

目录 全桥电源开关电源的设计与测试 (1) 1.1作业内容 (1) 1.2芯片工作原理 (1) 1.2.1VIPER22A芯片管脚功能 (1) 1.2.2VIPER22A芯片内部构图 (1) 1.2.3TOP246Y芯片管脚功能 (2) 1.2.4TOP246Y芯片内部构图 (2) 1.2.5TL494芯片管脚功能 (3) 1.2.6TL494芯片内部构图 (4) 1.3电路工作原理 (5) 1.3.1高频开关电源的电磁兼容 (5) 1.3.2软开关技术 (5) 1.3.3功率因数校正技术(PFC) (5) 1.3.4低电压大电流技术 (5) 1.3.5整理滤波 (5) 1.3.6填谷式功率因数校正 (5) 1.3.7辅助电源模块设计 (6) 1.3.8PWM脉冲产生模块设计 (7) 1.3.9驱动模块设计 (8) 1.4原理图 (1) 1.5印制板 (3)

1.6元件清单 (3) 1.7调试过程 (5) 1.7.1前级辅助电源调试 (5) 1.7.2TL494 PWM产生调试 (5) 1.7.3死区电压比较电路 (6) 1.7.4输出控制电路 (7) 1.7.5驱动电路和功率变换调试 (8) 1.8总结 (10)

全桥电源开关电源的设计与测试 1.1作业内容 (1)使用DXP2004软件,画出TOP246Y PCB板及元件封装。 (2)熟悉掌握制作PCB板的流程,成功制作出TOP246Y PCB板。 (3)调试TOP246Y电路板。 (4)了解TOP246Y电路的工作原理。 1.2芯片工作原理 1.2.1VIPER22A芯片管脚功能 图1.1 VIPER22A芯片管脚图 1.2.2VIPER22A芯片内部构图 图1.2 VIPER22A 芯片内部构图

数字电路实验报告

数字电路实验报告 姓名:张珂 班级:10级8班 学号:2010302540224

实验一:组合逻辑电路分析一.实验用集成电路引脚图 1.74LS00集成电路 2.74LS20集成电路 二、实验内容 1、组合逻辑电路分析 逻辑原理图如下:

U1A 74LS00N U2B 74LS00N U3C 74LS00N X1 2.5 V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V GND 图1.1组合逻辑电路分析 电路图说明:ABCD 按逻辑开关“1”表示高电平,“0”表示低电平; 逻辑指示灯:灯亮表示“1”,灯不亮表示“0”。 真值表如下: A B C D Y 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 表1.1 组合逻辑电路分析真值表 实验分析: 由实验逻辑电路图可知:输出X1=AB CD =AB+CD ,同样,由真值表也能推出此方程,说明此逻辑电路具有与或功能。 2、密码锁问题: 密码锁的开锁条件是:拨对密码,钥匙插入锁眼将电源接通,当两个条件同时满足时,开锁信号为“1”,将锁打开;否则,报警信号为“1”,则接通警铃。

试分析下图中密码锁的密码ABCD 是什么? 密码锁逻辑原理图如下: U1A 74LS00N U2B 74LS00N U3C 74LS00N U4D 74LS00N U5D 74LS00N U6A 74LS00N U7A 74LS00N U8A 74LS20D GND VCC 5V J1 Key = Space J2 Key = Space J3 Key = Space J4 Key = Space VCC 5V X1 2.5 V X2 2.5 V 图 2 密码锁电路分析 实验真值表记录如下: 实验真值表 A B C D X1 X2 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 1 1 1 0 1 1 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 0 1 表1.2 密码锁电路分析真值表 实验分析: 由真值表(表1.2)可知:当ABCD 为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。由此可见,该密码锁的密码ABCD 为1001.因而,可以得到:X1=ABCD ,X2=1X 。

供配电实习报告

广东机电职业技术学院 供配电实习报告 (2012-2013学年第二学期) 专业:电气自动化技术 班级:电气1107班 姓名: 学号: 指导教师:廖忠、朱卓诚 时间:第8 周(2013年4月22日——2013年4月26日)

实训室供配电开关柜实训 一、实习动员与安排及查阅相关资料 1.熟悉供配电系统的各种相关规范。 2.熟悉广州市供电部门对高压供配电系统及计量方面的技术要求 3.掌握负荷分级的原则及供电要求 4.熟悉应急电源与自备发电电电源的选择 5.掌握负荷的计算方法 6.掌握电能质量要求及电压选择原则 7.熟悉公配系统的接线方式及特点 8.了解无功补偿的设计要求 为了了解上面的信息,我上网查了很多资料,部分资料如下: 一、供电要求 (1)一级负荷的供电电源应符合下列规定: 1)一级负荷应由两个电源供电;当一个电源发生故障时,另一个电源不应同时受到损坏。 2)一级负荷中特别重要的负荷,除由两个电源供电外,尚应增设应急电源,并严禁将其它负荷接入应急供电系统。 (2)二级负荷的供电系统,宜由两回线路供电。在负荷较小或地区供电条件困难时,二级负荷可由一回6kV及以上专用的架空线路或电缆供电。当采用架空线时,可为一回架空线供电;当采用电缆线路时,应采用两根电缆组成的线路供电,其每根电缆应能承受100%的二级负荷。 (3)三级负荷供电无特别要求。 注:(1)独立电源是指若干电源中,任一电源因故障而停止供电时,不影响其他电源继续供电。同时具备下列两个条件的变电所的不同母线段均属独立电源。 ①每段母线的电源来自不同的发电机; ②母线段之间无联系,或虽有联系但在其中一段发生故障时,能自动断开联系,不影 响其余母线段继续供电。 (2)独立电源点是指若干独立电源来自不同的地点。任一电源点因故障而停止供电时,不影响其他电源继续供电两个发电、一个发电厂和一个地区电网或一个电力系统中的两个区域性变电所都属于两个独立电源点。

电磁兼容课程报告教材

电磁兼容工程应用课程报告

电磁兼容现场测试中的干扰源辨识技术研究引言 在科学发达的今天,广播、电视、通信、导航、雷达、遥测测控及计算机等迅速发展,尤其是信息、网络技术以爆炸性方式增长,电磁波利用的快速扩张,产生了不断增长的电磁污染,带来了严重的电磁干扰。各种电磁能量通过辐射和传导的途径,以电波、电场和电流的形式,影响着敏感电子设备,严重时甚至使电子设备无法正常工作。上述情况对电子设备及系统的正常工作构成了很大的威胁,因此加强电子产品的电磁兼容性设计,使之能在复杂的电磁环境中正常工作已成为当务之急。电磁兼容性(Electromagnetic Compatibility,EMC)是设备或系统在其电磁环境中,能正常工作且不对该环境中任何事物构成不能承受的电磁骚扰的能力。它包括电磁干扰(Electromagnetic Interference,EMI)和电磁敏感度(Electromagnetic Susceptibility,EMS)两个方面。电磁兼容测试是验证电子设备电磁兼容设计的合理性以及最终评价、解决电子设备电磁兼容问题的主要手段。通过定量的测量,可以鉴别产品是否符合EMC 相关标准或者规范,找出产品在EMC方面的薄弱环节。 目前很多国家和组织都制定了相关的电磁兼容标准,只有符合相关指标要求的电子和电气产品才能进入市场。要判断某电子产品是否存在电磁兼容性问题,就需要依据相关标准对该产品进行具体的电磁兼容测试。 在目前电磁兼容测试中,针对设备或分系统级的电磁兼容测试与评价有着较为完备的电磁兼容标准或规范体系,不仅规定了测试所使用的仪器设备的具体指标要求,同时还规范了测量方案的组成和环境要求,这是其他标准或规范中所少见的。然而针对系统测试,目前还没有详细具体的标准或规范。已经了解的标准有美军标MIL-E-6051D《系统电磁兼容性要求》(已等效成国军标GJB1389《系统电磁兼容性要求》),又如美军标MIL-STD-1541A《对航天系统的电磁兼容性要求》等。在这些标准中给出了一些应该遵从的原则,但如何将这些原则用于工程,还需要一个实践的过程。 虽然许多实验证明了设备和分系统通过了规定标准的EMC 测量,那么一般情况下是能够保证它们组成的系统可以实现自兼容。但是目前系统集成度越来越高,潜在的电磁干扰大大增加,另外复杂的电子系统往往具备多种工作模式,在设备和分系统试验时很难考虑周全;且研究了整个系统的EMC 试验数据,可以成为系统对设备和分系统EMC 指标验收的根据,有利于防止设备在EMC 设计中的过设计,浪费不必要的资源。所以能够评估系统电磁兼容性能的最直接和有效的方法是对系统在正常工作环境下进行测试即电磁兼容现场测试。由于现场测试面临着电磁环境的复杂性和系统组成的多样性等束缚条件,使得现场测试存在环境干扰严重、评估困难、结果不稳定、测试数据利用率低和干扰源难确定等一系列问题。又由于良好的干扰源定位能力能够对差异信号的辨识和故障诊断

数电课程设计-温度计实验报告(提交版)

一、设计项目名称 温度采集显示系统硬件与软件设计 二、设计内容及要求 1,根据设计要求,完成对单路温度进行测量,并用数码管显示当前温度值系统硬件设计,并用电子CAD软件绘制出原理图,编辑、绘制出PCB印制版。 要求: (1)原理图中元件电气图形符号符合国家标准; (2)整体布局合理,注标规范、明确、美观,不产生歧义。 (3)列出完整的元件清单(标号、型号及大小、封装形式、数量) (4) 图纸幅面为A4。 (4)布局、布线规范合理,满足电磁兼容性要求。 (5)在元件面的丝印层上,给出标号、型号或大小。所有注释信息(包括标号、型号及说明性文字)要规范、明确,不产生歧义。 2.编写并调试驱动程序。 功能要求: (1)温度范围0-100℃。 (2)温度分辨率±1℃。 (3)选择合适的温度传感器。 3.撰写设计报告。 提示:可借助“单片机实验电路板”实现或验证软件、硬件系统的可靠性。

温度传感器 摘要:温度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用,利用新型单总线式数字温度传感器 实现对温度的测试与控制得到更快的开发,随着时代的进步和发展,单 片机技术已经普及到我们生活,工作,科研,各个领域。一种数字式温 度计以数字温度传感器DS18B20作感温元件,它以单总线的连接方式, 使电路大大的简化。传统的温度检测大多以热敏电阻为传感器,这类传 感器可靠性差,测量温度准确率低且电路复杂。因此,本温度计摆脱了 传统的温度测量方法,利用单片机STC89C52对传感器进行控制。这样 易于智能化控制。 关键词:数字测温;温度传感器DS18B20;单片机STC89C52; 一.概述 传感器从功能上可分为雷达传感器、电阻式传感器、电阻应变式传感器、压阻式传感器、热电阻传感器、温度传感器、光敏传感器、湿度传感器、生物传感器、位移传感器、压力传感器、超声波测距离传感器等,本文所研究的是温度传感器。 温度传感器是最早开发,应用最广泛的一类传感器。温度传感器是利用物质各种物理性质随温度变化的规律把温度转换为电量的传感器。这些呈现规律性变化的物理性质主要有半导体。温度传感器是温度测量仪表的核心部分,品种繁多。 随着科学技术的发展,测温系统已经被广泛应用于社会生产、生活的各个领域,在工业、环境监测、医疗、家庭多方面均有应用。从而使得现代温度传感器的发展。微型化、集成化、数字化正成为发展的一个重要方向。

数字电路实验报告——译码器

第五次试验报告 实验五 译码器 一、实验目的要求 1、熟悉中规模集成电路T4138译码器的工作原理与逻辑功能 2、掌握译码器的应用 二、实验仪器、设备 直流稳压电源、电子电路调试器、万用表、两个T4138、74LS20 三、实验线路、原理框图 1、T4138的逻辑符号 T4138是一个3线—8线译码器,它是一种通用译码器,其逻辑符号如图1所示。 图1 其中,A 2、A 1、A 0是地址输入端,Y 0、Y 1、Y 2、Y 3、Y 4、Y 5、Y 6、Y 7是译码输出端,S 1、 S 2、S 3是使能端,当S 1=1, S 2+S 3=0时,器件使能。 2、T4138的管脚排列 T4138的管脚排列如图2所示: 图2 3、T4138的逻辑功能 T4138的功能表如下表所示: Y Y Y Y Y Y Y 32 (a )原SJ 符号 (b )GB 符号

3线—8线译码器实际上是一个负脉冲输出的脉冲分配器。若利用使能端中的一个输入端输入数据信息,器件就成为一个数据分配器。 4、用T4138实现一个逻辑函数 译码器的每一路输出,实际上是地址码的一个最小项的反变量,利用其中一部分输出端输出的与非关系,也就是它们相应最小项的或逻辑表达式,能方便地实现逻辑函数。 本试验要求实现以下逻辑函数: Y=AB C +A B C+A BC+ABC=ABC BC A C B A C AB ???=7356Y Y Y Y 用T4138和74LS20实现以上逻辑函数,实验线路见下图(图3): 图3 5,用两个3线—8线译码器组成一个4线—16线的译码器 4线—16线的真值表为: “0Y

电磁兼容实验报告3-4

电磁兼容实验报告 学院:信息科学与工程学院 班级: 姓名: 学号:

实验三电感耦合对电路性能的影响电力系统中,在电网容量增大、输电电压增高的同时,以计算机和微处理器为基础的继电保护、电网控制、通信设备得到广泛采用。因此,电力系统电磁兼容问题也变得十分突出。例如,集继电保护、通信、SCADA功能于一体的变电站综合自动化设备,通常安装在变电站高压设备的附近,该设备能正常工作的先决条件就是它能够承受变电站中在正常操作或事故情况下产生的极强的电磁干扰。 此外,由于现代的高压开关常常与电子控制和保护设备集成于一体,因此,对这种强电与弱电设备组合的设备不仅需要进行高电压、大电流的试验,同时还要通过电磁兼容的试验。GIS的隔离开关操作时,可以产生频率高达数兆赫的快速暂态电压。这种快速暂态过电压不仅会危及变压器等设备的绝缘,而且会通过接地网向外传播,干扰变电站继电保护、控制设备的正常工作。随着电力系统自动化水平的提高,电磁兼容技术的重要性日益显现出来。 一、实验目的 通过运用Multisim仿真软件,了解此软件使用方法,熟悉电路中因电感耦合造成的电磁兼容性能影响。 二、实验环境:Multisim仿真软件 三、实验原理: 1.耦合 (1)耦合元件:除二端元件外,电路中还有一种元件,它们有不止一条支路,其中一条支路的带压或电流与另一条支路的电压或电流相关联,该类元件称为偶合元件。 (2)磁耦合:如果两个线圈的磁场村相互作用,就称这两个线圈具有磁耦合。(3)耦合线圈:具有磁耦合的两个或两个以上的线圈,称为耦合线圈。 (4)耦合电感:如果假定各线圈的位置是固定的,并且忽略线圈本身所具有的电阻和匝间分布电容,得到的耦合线圈的理想模型就称为耦合电感。

输电线路实习工作总结

输电线路实习工作总结 输电线路实习工作是一段不平凡的考验和磨砺。下面带来输电线路实习工作总结,以供赏析和参考借鉴! 输电线路实习工作总结一 作为大四的准毕业生,根据学校的教学要求,我们输电专业的学生终于迎来了毕业实习。经过这差不多十多天的实习,我感觉自己在输电专业知识学习上有了很大的补充与提高,这次生产实习,是培养我们实际动手能力和分析问题、解决问题能力,学会自主查阅资料,理论与实践相结合的学习;这次的实习是锻炼我们从事专业技术工作以及治理工作所必须的各种基础技能和实践动手能力并培养了我们理论联系实际、从实际出发分析问题、研究问题和解决问题的能力,将所学知识系统化实际化;培养我们热爱劳动、不怕苦不怕累的工作作风。同时也是毕业设计选题以及设计工作原始资料的来源,为我们广大毕业生在即将踏上工作岗位打下扎实基础。现将我这段时间的实习作一个总结。 通过为期十天左右的实习,我收获了良多,虽然实习期不长,但是内容却是丰富的,第一天我们举行了实习动员大会,由于我们在学校所学的都是理论知识,对输电线路的设计,施工,运行,维护等工作的实习操作

都不熟悉,所以进行现场的实习对于我们来说是十分重要的,也是一个难得的磨练我们自己的机会。在实习大会上老师给我们讲了一些实习过程中的要求,要我们明确实习的目的,端正学习态度和谦虚好学的学习精神,要学到真正的知识不能空手而归,我们都怀着激动的心情,对这次实习充满了期待。后面我李老师带领我们大家参观了猇亭培训基地参观了铁塔以及看员工登塔。 猇亭实地培训基地培训项目 从上图我们可以看到猇亭实地培训基地培训项目还是挺多的,一眼看去都是需要亲自动手操作,包括停电作业与带电作业两大块,停电作业包括更换导地线防震锤、更换间隔棒、更换绝缘子、线路标准化巡视、接地电阻测量、经纬仪测量;带电作业包括带电更换耐张整串绝缘子、带电更换耐张单片绝缘子、带电检测绝缘子、带电更换档中金具、带电拆除导地线上异物、进出等电位。由这些我们大概知道了我们以后工作的性质给我们职业有了一个更深层的认识,看来现在把书本知识学牢固才能有很好的前瞻性,才能够好的适应以后的工作。 通过上面的图我们可以看到爬塔对于我们还是具有相当的考验性,实际工作中我们需要克服恐高及体力等不良因素,所以老师提醒我们平时要注意锻炼身体,做到身体力行。在猇亭培训基地,我们看过各种各样的杆

电磁兼容性测试报告

泉海科技电磁兼容性(EMC)测试报告(电源电压:24V)机 型QH7101H2图 号 DZ93189781020状 态正常生产 失效模式等级的定义(依据ISO 7637-3附页A): A等级:在干扰照射期间和照射后,器件或系统所有功能符合设计要求。 B等级:在干扰照射期间,器件或系统所有功能符合设计要求,但部分指标超差,在照射移开后,超差的指标能自动恢复正常,记忆功能应保持A级。 C等级:在照射期间,器件或系统有一个功能不符合设计要求,但在照射移开后,能自动恢复正常操作。 D等级:在照射期间,器件或系统有一个功能不符合设计要求,在照射移开后,不能自动恢复正常操作,需通过简单的操作,器件或系统才能复位。 E等级:在照射期间和照射后,器件或系统有多个功能不能符合设计要求,需要修理或替换器件或系统才能恢复正常。 测试项目测试条件等级要求 测试结果备注 脉冲1Ua: 27 V Us: -600 V t1: 5 s t2: 200 ms t3: ≤100 μs td: 2ms tr: ≤(3+0/1.5)μs Ri: 50 Ω 脉冲数量: 5000 。 B级 符合要求B级 本报告由泉海公司实验室提供 脉冲2a Ua:27 V Us: +50 V t1: 5 s t2: 200 ms td: 0.05ms tr: ≤(3+0/1.5)μs Ri: 2 Ω 脉冲数量:5000个 B级 符合要求B级 脉冲2b Ua:27 V Us: +20 V td:0.2~2s tr: 1ms ±0.5ms Ri: 0.05Ω t12: 1ms ±0.5ms t6: 1ms ±0.5ms 脉冲数量:10个 B级符合要求B级 脉冲3a Ua:27 V Us: -200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h。 A级 符合要求A级 脉冲3b Ua: 27 V Us:+200 V t1: 100 μs t4: 10 ms t5: 100 ms td: 0.1μs tr:≤5 ns±1.5ns Ri: 50 Ω 测试时间:1h A级 符合要求A级 脉冲4Ub: 27 V Us: -16V Ua: -5~12V V t7: 100 ms t8: ≤50 ms t9: 20s t10:10ms t11: 100 ms Ri: 0.02 Ω 脉冲数量:9000个(其中t8=100ms, 3000个t8=1s,3000个,t8=5s,3000个) B级符合要求B级 脉冲5a Ua: 27 V Us: +174 V td: 350 ms tr: 10 ms Ri: 2 Ω 周期:1min 脉冲数量:10个B级符合要求B级 测试员:何秀英 测试日期:2013.1.12 报告编号:qh-js-1201003

数字电子技术实验报告汇总

《数字电子技术》实验报告 实验序号:01 实验项目名称:门电路逻辑功能及测试 学号姓名专业、班级 实验地点物联网实验室指导教师时间2016.9.19 一、实验目的 1. 熟悉门电路的逻辑功能、逻辑表达式、逻辑符号、等效逻辑图。 2. 掌握数字电路实验箱及示波器的使用方法。 3、学会检测基本门电路的方法。 二、实验仪器及材料 1、仪器设备:双踪示波器、数字万用表、数字电路实验箱 2. 器件: 74LS00 二输入端四与非门2片 74LS20 四输入端双与非门1片 74LS86 二输入端四异或门1片 三、预习要求 1. 预习门电路相应的逻辑表达式。 2. 熟悉所用集成电路的引脚排列及用途。 四、实验内容及步骤 实验前按数字电路实验箱使用说明书先检查电源是否正常,然后选择实验用的集成块芯片插入实验箱中对应的IC座,按自己设计的实验接线图接好连线。注意集成块芯片不能插反。线接好后经实验指导教师检查无误方可通电实验。实验中

1.与非门电路逻辑功能的测试 (1)选用双四输入与非门74LS20一片,插入数字电路实验箱中对应的IC座,按图1.1接线、输入端1、2、4、5、分别接到K1~K4的逻辑开关输出插口,输出端接电平显 图 1.1 示发光二极管D1~D4任意一个。 (2)将逻辑开关按表1.1的状态,分别测输出电压及逻辑状态。 表1.1 输入输出 1(k1) 2(k2) 4(k3) 5(k4) Y 电压值(v) H H H H 0 0 L H H H 1 1 L L H H 1 1 L L L H 1 1 L L L L 1 1 2. 异或门逻辑功能的测试

图 1.2 (1)选二输入四异或门电路74LS86,按图1.2接线,输入端1、2、4、5接逻辑开关(K1~K4),输出端A、B、Y接电平显示发光二极管。 (2)将逻辑开关按表1.2的状态,将结果填入表中。 表1.2 输入输出 1(K1) 2(K2) 4(K35(K4) A B Y 电压(V) L H H H H L L L H H H H L L L H H L L L L L H H 1 1 1 1 1 1 1 1

相关文档
最新文档