机械原理 瞬心法求速度
机械原理瞬心法求速度

中。
A P14
2 P23
C
3
4
D
P34
❖瞬心P13、P24的位置需用三心定理确定
P24
➢ P13与P12、P23 在同一直
线上, P13又与P14、P34 在同一直
P12
12
P23
线上,
故两直线P12P23 和
P14
3
4
P34
P13
P14P34的交点就是P13。
➢同理,两直线P12P14 和P23P34的交点就是P24 。
公法线n-n上。
2
(2)两构件不组成运动副
不直接接触的两构 件,用三心定理确定 其瞬心的位置.
❖三心定理:
作平面运动的三个构件的三个瞬心位于同一直线上。
例:确定图示铰链四杆机构的瞬心
❖ 机构瞬心数
N=k(k -1 ) /2=4(4-1)/2=6
B
P12
❖ 瞬心P12、P23、P34、P14的 1 位置可直观地确定,标在图
用速度瞬心法对机构进行速度分析
瞬 心 的 概 念
例题
瞬心 数目 位置
定义
• 瞬心就是两构件上瞬时绝对速度相同的重合 点(即等速重合点)。
构件i和构件j的瞬心一般用 Pij或Pji表示。
Pij Pji
分类
• 1 绝对瞬心 当两个构件之中有一个构件固定不动时,则 瞬心处的绝对速度为零,这时的瞬心为绝对 瞬心
v3 vP13 1lP13P14
VP13 1lP13P14 1P13P14l
3.利用瞬心,由“图”求v3。
得: 从机构位置图中量出图长: P13P14=12.3mm,
v3 vP13 1P13P14l
=10×0.0123×2=0.246 m/s
机械原理(第七版) 孙桓主编 第3章

二、平面机构运动分析1.图示平面六杆机构的速度多边形中矢量ed代表,杆4角速度ω4的方向为时针方向。
题1图题6图2.当两个构件组成移动副时,其瞬心位于处。
当两构件组成纯滚动的高副时,其瞬心就在。
当求机构的不互相直接联接各构件间的瞬心时,可应用来求。
3.3个彼此作平面平行运动的构件间共有个速度瞬心,这几个瞬心必定位于上。
含有6个构件的平面机构,其速度瞬心共有个,其中有个是绝对瞬心,有个是相对瞬心。
4.相对瞬心与绝对瞬心的相同点是,不同点是。
5.速度比例尺的定义是,在比例尺单位相同的条件下,它的绝对值愈大,绘制出的速度多边形图形愈小。
6.图示为六杆机构的机构运动简图及速度多边形,图中矢量cd代表,杆3角速度ω3的方向为时针方向。
7.机构瞬心的数目N与机构的构件数k的关系是。
8.在机构运动分析图解法中,影像原理只适用于。
9.当两构件组成转动副时,其速度瞬心在处;组成移动副时,其速度瞬心在处;组成兼有相对滚动和滑动的平面高副时,其速度瞬心在上。
10.速度瞬心是两刚体上为零的重合点。
11.铰链四杆机构共有个速度瞬心,其中个是绝对瞬心,个是相对瞬心。
12.速度影像的相似原理只能应用于各点,而不能应用于机构的的各点。
13.作相对运动的3个构件的3个瞬心必。
14.当两构件组成转动副时,其瞬心就是。
15.在摆动导杆机构中,当导杆和滑块的相对运动为动,牵连运动为动时,两构件的重合点之间将有哥氏加速度。
哥氏加速度的大小为;方向与的方向一致。
16.相对运动瞬心是相对运动两构件上为零的重合点。
17.车轮在地面上纯滚动并以常速v前进,则轮缘上K点的绝对加速度αK=αk n=V K n/KP。
---------------------------------------( )18.高副两元素之间相对运动有滚动和滑动时,其瞬心就在两元素的接触点。
---( )19.在图示机构中,已知ω1及机构尺寸,为求解C 2点的加速度,只要列出一个矢量方程a C2=a B2+a n C2B2+a t C2B2就可以用图解法将a C2求出。
机械原理中的速度瞬心讲解

机械原理中的速度瞬心讲解速度瞬心是机械原理中的一个重要概念,它在机械传动、运动学和动力学问题的研究中扮演着至关重要的角色。
本文将从定义、原理、应用以及相关公式等多个角度对速度瞬心进行详细讲解。
一、定义和原理速度瞬心是指在机械运动过程中,质点速度矢量的方向和瞬心所在直线方向相重合的点。
简单来说,速度瞬心就是质点瞬时速度的方向与它所在直线方向的交点。
在机械运动过程中,瞬时速度是质点在某一瞬间的瞬时速度,它的大小是瞬时速度的矢量,方向是切线方向。
而速度瞬心则是质点的速度矢量方向与瞬心所在直线方向相重合的点。
速度瞬心的计算方法有很多,其中最常用的方法是使用切线的性质。
在曲线运动中,我们可以通过将切线向后延长,找到两条切线的交点,这个交点就是速度瞬心。
二、速度瞬心的应用速度瞬心在机械工程中有广泛的应用,尤其在运动学和动力学的问题分析中起到了重要作用。
下面以几个具体的例子来说明速度瞬心的应用。
1. 齿轮传动齿轮传动中,速度瞬心常用来确定传动比和齿轮的尺寸。
在两个齿轮相互啮合时,它们的速度瞬心位于齿轮啮合线上,通过计算速度瞬心的位置,可以确定齿轮的啮合情况、传动比和齿轮的尺寸。
2. 曲柄连杆机构曲柄连杆机构中,速度瞬心可用于分析和计算连杆的运动规律。
通过计算连杆各个位置的速度瞬心,可以得到连杆的位移、速度和加速度等参数,从而研究连杆运动的特性和工作原理。
3. 自行车前叉自行车前叉是一种常见的悬挂系统,其原理基于速度瞬心。
在自行车行驶过程中,前叉通过改变前轮的速度瞬心位置来调整悬挂系统的刚度。
通过调整速度瞬心的位置,可以使得前叉对不同路面的冲击吸收能力更好,提高骑行的舒适性和稳定性。
三、速度瞬心的计算方法计算速度瞬心的方法有多种,下面介绍几种常见的计算方法。
1. 直接法直接法是速度瞬心计算的最基本方法,它适用于已知点的速度矢量和所在直线方向的情况。
根据已知点的速度矢量和所在直线的方向,我们可以直接求解速度瞬心。
机械原理瞬心法求速度习题

机械原理瞬心法求速度习题引言机械原理是工程力学的一部分,研究物体的运动及力学效应。
在机械原理中,瞬心法是一种常用的分析方法,用于求解物体的速度和加速度。
本文将通过解答一些瞬心法求速度的习题,加深对机械原理的理解。
问题一有一个直径为1m的转盘,上面有一个固定在轴上的活动滑块。
滑块到轴的距离为0.5m。
转盘以5 rad/s的角速度逆时针旋转。
求滑块上某点P的速度。
首先,我们需要确定滑块上的点P的位置。
由于滑块到轴的距离为0.5m,而转盘的直径为1m,因此点P的位置位于滑块上与轴对称的位置,距离轴0.5m。
我们可以使用瞬心法来求解滑块上点P的速度。
瞬心法的基本原理是,在运动过程中,物体的速度等于通过瞬时转动中心与物体上的某一点所作的相对速度。
在本题中,我们可以选择转盘的轴作为瞬时转动中心。
因此,我们需要确定点P相对于转动中心的位置向量和其相对于转动中心的速度向量。
点P相对于转动中心的位置向量为[0.5, 0],即P的横坐标为0.5m,纵坐标为0,代表距离转动中心0.5m。
点P相对于转动中心的速度向量为[0, R * ω],其中R 为转盘的半径,即0.5m,ω为转盘的角速度,即5 rad/s。
代入数值计算,得到速度向量为[0, 2.5],即P点的速度大小为2.5 m/s,方向为垂直于转盘的切线方向。
问题二一个直径为0.8m的小车以2 rad/s的角速度逆时针旋转。
小车上有一根长1.2m的杆,杆上距离小车中心0.6m处有一个质量为1kg的小球。
求小球的速度大小和方向。
我们可以使用瞬心法来求解小球的速度。
同样地,选择小车的中心作为瞬时转动中心。
首先,我们需要确定小球相对于转动中心的位置向量和其相对于转动中心的速度向量。
小球相对于转动中心的位置向量为[0.6, 0],即小球距离转动中心0.6m。
小球相对于转动中心的速度向量为[0, R * ω],其中R为小车直径的一半,即0.4m,ω为小车的角速度,即2 rad/s。
机械原理瞬心法求速度

机械原理瞬心法求速度瞬心法是机械原理中常用的一种方法,用于求解速度等相关物理量。
它通过确定物体运动过程中的瞬心位置,将物体分解为一个旋转运动和一个平动运动,从而简化求解的复杂度。
在瞬心法中,首先需要确定物体的瞬心位置。
瞬心位置是指旋转运动和平动运动的合成运动中,旋转运动的瞬时转轴所在的位置。
通常情况下,物体的瞬心位置与物体几何形状的对称轴位置相关,并且只在一些时刻有效。
确定瞬心位置后,可以把物体分解为一个绕瞬心旋转的刚体和一个相对于瞬心平动的刚体。
这样,我们只需要分别对旋转和平动进行分析,再通过合成求得物体的运动情况。
对于旋转运动的部分,我们可以利用刚体的旋转惯量、转动角加速度等物理量,结合牛顿第二定律或者角动量守恒定律,求解物体的旋转运动参数。
具体来说,可以利用力矩平衡方程,或者根据牛顿第二定律和转动学的关系,得到力矩与角加速度之间的关系式,从而求解角加速度。
对于平动运动的部分,我们可以利用质心的平动动力学方程,结合牛顿第二定律,求解物体的平动运动参数。
具体来说,可以利用合外力与质量之积等于质量乘以加速度,求解合外力和加速度之间的关系式,从而求解加速度。
通过求解物体的旋转和平动运动参数,我们可以得到物体的速度。
对于旋转运动的部分,可以利用刚体运动学的关系式,根据角速度和瞬心到质点的距离,求解质点的速度。
对于平动运动的部分,可以直接通过质心的速度来求解。
最后,通过合成旋转和平动的速度,即可得到整个物体的速度。
具体来说,可以将旋转速度的向量与平动速度的向量进行矢量相加,得到物体的总速度。
总之,瞬心法是一种常用的机械原理求解速度的方法。
它通过确定瞬心位置,将物体分解为旋转和平动两个部分,分别计算旋转和平动的速度,再进行矢量相加,得到整个物体的速度。
通过使用这一方法,可以简化计算过程,提高求解的准确性和效率。
机械原理第3章平面机构的运动分析

机构中构件 3 4 5 ……
总数
瞬心数 3 6 10 ……
p12 p13 p23
p12 p13 p14 p23 p24 p34
p12 p13 p14 p15 p23 p24 p25 p34 p35 p45
4
机械原理
§3-2 用速度瞬心法作机构的速度分析 3. 瞬心位置的确定
∴ω4
= ω2
P12 P24 P14 P24
两方构向件?的若角相速对度瞬与心其P绝24对在瞬两心绝对瞬心P12 、P14 至相对瞬的心延的长距线离上成,反比ω2、ω4 同向;若P24
在P12 、15P14之间,则ω2、ω4 反向。
机械原理
(2)求角速度 高副机构
已知构件2的转速ω2,求构件3的角速度ω3
θ3 = arctan a ± a2 +b2 −c2
(3)
2
b+c
* 正负号对应于机构的两个安装 模式,应根据所采用的模式确定 一个解。
此处取“+”
21
机械原理
22
机械原理
⎧⎨⎩ll22
cosθ2 sin θ 2
= =
l3 l3
cosθ3 − l1 cosθ1 + xD − xA sinθ3 − l1 sinθ1 + yD − yA
2 建立速度、加速度关系式 为线性, 不难求解。
3 上机计算, 绘制位移、速度、加速度线图. * 位移、速度、加速度线图是根据机构位移、速度、加速度
对时间或原动件位移的关系式绘出的关系曲线. ** 建立位移关系式是关键,速度、加速度关系式的建立只是求
导过程。
19
机械原理
高等教育:机械原理第一章速度瞬心

瞬心数 N=K(K-1)/2
(1)在图1—18中,构件1和构件2的瞬心P12; (2) 当两构件组成转动副时,转动副的中心便是它们的瞬心;
(3) 当两构件组成移动副时、所以其瞬心位于导路垂线的无穷远处;
1-4 速度瞬心及其在机构速度分析上的应用
一.速度瞬心及其求法 速度瞬心:(瞬时回转中心,瞬心,同速点)
由理论力学可知,当构件1相对构件2作平面运动时,在任一瞬时,它们 的运动都可以看作是绕某一重合点的相对转动,该重合点P1s称为它们的瞬 时速度中心,简称为瞬心。瞬心是相对运动两构件上相对速度为零的重合 点。
• 例1—9 求图1—22所ห้องสมุดไป่ตู้曲柄滑块
机构的瞬心。
二、瞬心在速度分析上的应用
• 1.铰链四杆机构 • Vp24=w4Lp24p14=w2Lp24p12 • W2/w4=P24P14/P12P24
• 两构件的角速度与其绝对瞬心
至相对瞬心的距离成反比、
2.齿轮或摆动从动件凸轮机构 Vp12=w1Lp12p13=w2Lp12p23 组成高副的两构件,其角速度连
(4)当两构件组成纯滚动高副时,接触点就是其瞬心,
(3)当两构件组成滑动兼滚动的高副时,其瞬心应位于过接触点的公法线上
(4)不直接接触的各个构件,其瞬心可用三心定理定理是:作相对平面运动 的三个构件共有三个瞬心.这三个瞬心位于同—条直线上。
• 例1-8 求图1-21所示铰链四杆机构的瞬心。 • P12,P13,P14-----绝对瞬心,P23,P34,P24------相对瞬心
心线被接触点公法线所分割 的两线段长度成反比。
机械原理第四章速度瞬心及其应用一类教资

4.4 共轭曲线与共轭曲线机构(自学)
构件1曲线K1和构件2曲线K2 在点Q高副接触。
构件1、2之间的速度瞬心在点P
瞬心线S1是速度瞬心P 相对于构件1的轨迹线。
瞬心线S2是速度瞬心P 相对于构件2的轨迹线。
曲线K2包络了曲线K1的各个位置, 称K2为包络曲线, K1为被包络曲线
(大小、方向相等)
确定瞬心小结
4.2 速度瞬心在机构速度分析中的应用
P23
∞
P13
P12
情形1:求线速度
已知凸轮转速ω1,求推杆的速度。
求解过程: ①直接观察求瞬心P13、 P23 。
③求瞬心P12的速度 。
V2=V P12=μl(P13P12)·ω1
长度P13P12直接从图上量取。
ω1
1
2
3
P12
2
3
4
ω2
v2
P14→∞
P34
例题:如图所示的带有一移动副的平面四杆机构中, 已知原动件2以角速度w2等速度转动, 现需确定机构在图示位置时从动件4的速度v4。
求解过程:确定机构瞬心如图所示
P24 在P23、P34 连线和P12、P14 连线上。
P24
P13
ω2
情形2:求角速度
求解过程:①瞬心数为
高副低代的含义: 根据一定条件对平面高副机构的中高副虚拟地用低副来代替的方法。
高副低代的条件: ①代替前后机构的自由度不变; ②代替前后机构的瞬时速度和瞬时加速度不变。
高副低代的方法1
高副两元素均为圆弧
高副元素为非圆曲线
用一个含有两个低副的虚拟构件来代替高副,且两低副位置分别在两高副两元素接触点处的曲率中心。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用速度瞬心法对机构进行速度分析
实用文档
用速度瞬心法对机构进行速度分析
瞬 心 的 概 念
例题
瞬心 数目 位置
实用文档
定义
• 瞬心就是两构件上瞬时绝对速度相同的重合 点(即等速重合点)。
构件i和构件j的瞬心一般用 Pij或Pji表示。
Pij Pji
实用文档
分类
• 1 绝对瞬心 当两个构件之中有一个构件固定不动时,则 瞬心处的绝对速度为零,这时的瞬心为绝对 瞬心
2 相对瞬心 当两个构件都在运动时,其瞬心为相对瞬心
实用文档
2.机构中瞬心的数目
设机构由K个构件组成,该机构的瞬心的总数为:
N = K(k-1)/2
实用文档
(1)两构件组成运动副
根据瞬心的定义,通 过观察直接确定两构 件的瞬心位置.
❖两构件组成转动副 转动副的中心就是其瞬心;
❖两构件组成移动副
其瞬心在垂直于导路方向的无穷远处;P12
v 3 v P 1 3 1 l P 1 P 1 34
V 3 V P 1 3 1 l P 1 P 1 3 4 1 P 1 P 1 3 l
实用文档
3.利用瞬心,由“图”求v3。
得: 从机构位置图中量出图长: P13P14=12.3mm,
v 3v P 13 1 P 1 P 1 3 l4
=10×0.0123×2=0.246 m/s
图中。
A P14
2 P23
C34D来自P34实用文档
❖瞬心P13、P24的位置需用三心定理确定
P24
➢ P13与P12、P23 在同一
直线上, P13又与P14、P34 在同一
P12
12
P23
直线上, 故两直线P12P23 和 P14
43
P34
P13
P14P34的交点就是P13。
➢同理,两直线P12P14 和P23P34的交点就是P24 。
❖注意:
图解法的特点体现在直接从“机构位置 图”中量出两点之间的距离。
实用文档
瞬心法小结
▪ 直接利用待求构件和已知构件的相对瞬心,来建立两 者的运动关系。
▪ 图解法的特点体现在从“机构位置图”中直接量出两 点之间的距离。
▪ 瞬心法适于对构件数较少的机构进行速度分析,不受 机构类型的限制。
实用文档
下课
构件1、2之间用 P12 表示
实用文档
3.机构中瞬心位置的确定
1)两个构件之间用运动副连接的瞬心位置
2)两个构件之间没有用运动副连接的瞬心位置
实用文档
(1)两构件组成运动副
根据瞬心的定义,通过观察直接确定两构件的瞬心 位置
❖两构件组成纯滚动高副
接触点就是其瞬心。
❖ 两构件组成滚动兼滑动高副
1
瞬心在接触点处两高副元素的
公法线n-n上。
2
实用文档
(2)两构件不组成运动副
不直接接触的两构件, 用三心定理确定其瞬 心的位置.
❖三心定理:
作平面运动的三个构件的三个瞬心位于同一直线上。
实用文档
例:确定图示铰链四杆机构的瞬心
❖ 机构瞬心数
N=k(k -1 ) /2=4(4-1)/2=6
B
P12
❖ 瞬心P12、P23、P34、P14 1 的位置可直观地确定,标在
实用文档
二、用瞬心法进行机构的速度分析
1. 选择一个适当的比例尺画出机构运动简图; 2. 找出机构的全部瞬心并标注在机构运动简图上; 3. 利用瞬心,用图解法求解。
实用文档
例题
例:如图所示为一曲柄滑块机构,已知l AB=30mm, l BC=60mm,原动件1的位置1=35° 及等角速度ω1
= 10rad/s,求机构在该位置时滑块3的速度。
实用文档
1.选取长度比例尺l = 2mm/mm,作机构位置图。
▪各构件的图长为: ABlAB3015 μl 2
BClBC 6030 μl 2 B ω1
mm mm
A
C
实用文档
2.确定瞬心的位置
P34
P24
P13
B P 12
A
P14
实用文档
C P23
3.利用瞬心,由“图”求v3。 因P13是构件1、3的同速重合点,