第一章非惯性系中地质点动力学
大学物理质点力学第一章 质点运动学 PPT

方向:
cosa
=
x r
cosβ=
y r
cosγ=
z r
路程:质点所经路径得总长度。
三、速度
描述位置矢量随时间变化快慢得物理量
1、平均速度
在移质为点r由)A,到单B的位过时程间中内(的所平用均时位间移为称为t该,质所点发在生该的过位
程中的平均速度。
v
=
Δ Δ
r t
=
Δx Δt
i
+ΔΔ
y t
j
+
Δ Δ
0
Δx
Δ t —割线斜率(平均速度)
dx —切线斜率(瞬时速度) dt
x~t图
t tt
1
2
2、 v ~ t 图
v ~ t图
割线斜率:
Δv Δt = a
v v2
切线斜率:
dv dt
=a
v1
v ~ t 图线下得面积(位移):
0 t1
t2
x2
dt dx x2 x1 x
t1
x1
t2 t
3、 a ~ t 图
=
dθ
dt
B
Δθ A
θ
0
x
(3)、角加速度
β =ΔΔωt
β
=
lim
Δt
Δω
0Δ t
=ddωt
=ddθt2 2
(4)、匀变速率圆周运动
0
t
1 2
t2
0 t
2
2 0
2
(5)、线量与角量得关系
Δ s = rΔθ
lim Δ s
Δt 0Δ t
=
lim
Δt 0
r
Δθ
第二章 非惯性系中的质点动力学

M1-28
积分可得
mgR(cos jmax 1 1) m 2 R 2 sin 2 jmax 0 2
因 sin 2 jmax 1 cos2 jmax 上式变为
mgR(cos jmax 1) 1 m 2 R 2 (1 cos 2 jmax ) 0 2
z
或
2 R cos2 jmax 2 g cos jmax 2 g 2 R 0
2. 当加速度 ae 2 g tan 时,牵连惯性力 FIe 2mg tan ,应用 相对运动动能定理,有
m v 2 0 ( F cos )l (mg sin )l Ie 2 r
整理后得
y' m
FN FIe
mg θ ae x'
m 2 vr (mg sin )l 2
力大小为 FIe m 2 R sin j ,方向如图。 经过微小角度dj 时,此惯性力作功为
z
W FIe R cos jdj m 2 R sin j cos jRdj
相对运动的动能定理,得
R
0 0 mgR(1 cos j max )
jmax
0
Байду номын сангаас
j
mg
FIe
m 2 R 2 sin j cos j dj
vr 质点相对动参考系速度
M1-20
上式两端点乘相对位移
dr
dvr m dr F dr FIe dr FIC dr dt
dr 注意到vr , 且科氏惯性力垂直于vr , 有FIC dr 0, 则 dt mvr dvr F dr FIe dr
质点动力学2019习题解析

(m1
m2 )g m1 m2
2m2a
a2
a
a
(m1 m2 )g 2m1a
m m 1
2大学物理教学中心
Northeastern University
7.一质量为0.05 kg、速率为10 m·s -1的刚球,以与钢板法线呈45º角
的方向撞击在钢板上,并以相同的速率和角度弹回来;设碰撞时间
1
和m2
的星球,原来为静止,且相
距为无穷远,后在引力的作用下,互相接近 ,到相距为r 时。 求它
们之间的相对速率为多少?
解 由动量守恒,机械能守恒
mv1 mv2 0
1 2
m1v12
1 2
m2v22
G
m1m2 r
0
m1 v 1
v m2 2
解得
v1 m2
2G (m1 m2)r
v2 m1
2G (m1 m2 )r
相对速率 vr v1 v2 m2
2G m (m1 m2 )r 1
2G (m1 m2)r
大学物理教学中心
Northeastern University
x
F
m(x)
mg
o
9.一人从10m深的井中提水,开始桶连 水共10kg,由于水桶漏水,每升高1m 漏去0.2kg的水。水桶被匀速地从井底 提到井口,则人所做的功为多少?重 力做功为多少?(g=9.8m/s2)
m
dt
v dv
t 3t 2dt
2
0
v 2 t3 dx , v(1) 3 dt
x dx
t (2 t 3 )dt
5
0
x 5 2t 1 t 4; x(1) 7.25
《理论力学 动力学》 第五讲 非惯性系中质点的动能定理

4、非惯性系中质点的动能定理惯性参考系中的动能定理只适用于惯性系。
在非惯性参考系中,由于质点的运动微分方程中含有惯性力,因此需要重新推导动能定理。
质点的相对运动动力学基本方程为r d d m t=++Ie IC v F F F 式中e C r2m m m =-=-=-´Ie IC F a F a ωv ,r d d tv 是对时间t 的相对导数r v 上式两端点乘相对位移d ¢r r d d d d d d m t¢¢¢¢×=×+×+×Ie IC v r F r F r F r 注意到,并且科氏惯性力垂直于相对速度,所以IC F r v d 0¢×=IC F r d d r t¢=r v 上式变为:r r d d d m ¢¢×=×+×Ie v v F r F r δW ¢Ie—表示牵连惯性力F Ie 在质点的相对位移上的元功。
δF W ¢—表示力F 在质点的相对位移上的元功。
则有:2r 1d()δδ2F mv W W ¢¢=+Ie 质点在非惯性系中相对动能的增量等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
——质点相对运动动能定理(微分形式)4、非惯性系中质点的动能定理积分上式得22r r01122F mv mv W W ¢¢-=+Ie ——质点相对运动动能定理(积分形式)质点在非惯性系中相对动能的变化等于作用于质点上的力与牵连惯性力在相对路程上所作功的和。
注意:因为在非惯性系中科式惯性力始终垂直于相对速度,因此在相对运动中科式惯性力始终不做功。
例4 已知:一平板与水平面成θ角,板上有一质量为m 的小球,如图所示,若不计摩擦等阻力。
求: (1)平板以多大加速度向右平移时,小球能保持相对静止?(2)若平板又以这个加速度的两倍向右平移时,小球应沿板向上运动。
非惯性系内质点的动力学方程

t0 时 y a, y 0
y a et et ach t 2
A B a/2
0 FRx 2my
FRx 2my 2m 2ash t
0 FRz mg
FRz mg
§5-2 非惯性系内质点的动力学方程
FR 2m 2ash ti mgk
例题4 解法一
§5-2 非惯性系内质点的动力学方程
ma F
ma ma mat mac F
F
m
m a F mat mac
d2R dt 2
m
r
m
r
2m
v
牵连惯性力 Ft mat
科里奥利惯性力 Fc mac
惯性力合力 FI Ft Fc
ma F FI
§5-2 非惯性系内质点的动力学方程
FN FNnen
受惯性力
md2R / dt 2 0(R 0)
m r 0( 0)
m
r
2ma
2
2m
v
2ma
en
coFsc2(veraFtet
)
§5-2 非惯性系内质点的动力学方程
沿圆圈切向的运动微分方程为
mat
ma
2ma
2
cos
2
sin
2
2 sin 0
可见,与大幅角单摆运动的微分方程完全相同.
§5-2 非惯性系内质点的动力学方程
例题3
m
受惯性力
r m 2
yj
m
d2R dt 2
0
2m
v
2my
i
m r 0
mx 0 FRx 2my my m 2 y
mz 0 FRz mg
§5-2 非惯性系内质点的动力学方程
哈工大理论力学教研室《理论力学》(第7版)笔记和课后习题(含考研真题)详解(第16~17章)【圣才出

第16章非惯性系中的质点动力学16.1复习笔记一、基本方程1.非惯性系中的质点动力学基本方程(或称为质点相对运动动力学基本方程),其表达式为r Ie ICma F F F =++v v v v 式中,e Ie F ma =-v v ,表示牵连惯性力;C C I F ma =-v v ,表示科氏惯性力。
2.在动参考系内,把非惯性系质点动力学基本方程写成微分形式22Ie IC d d r m F F F t'=++v v v v 3.几种特殊情况(1)当动参考系相对于定参考系作平移时,则C 0a = ,0F =IC ,于是相对运动动力学基本方程为r Iema F F =+v v v (2)当动参考系相对于定参考系作匀速直线平移时,则C 0a = ,e 0a = ,Ie 0F F ==IC,于是相对运动动力学基本方程与相对于惯性参考系的基本方程形式一样,其表达式为r ma F= ①相对于惯性参考系做匀速直线平移的参考系都是惯性参考系。
②发生在惯性参考系本身的任何力学现象,都无助于发现该参考系本身的运动状况,这称为经典力学的相对性原理。
(3)当质点相对于动参考系静止时,则r r 00a υ==v v ,,0F =IC ,所以质点相对静止的平衡方程为F F +=Ie 上式称为质点相对静止的平衡方程,即当质点在非惯性参考系中保持相对静止时,作用在质点上的力与质点的牵连惯性力相互平衡。
(4)当质点相对于动参考系作等速直线运动时,有r 0a =,质点相对平衡方程为0Ie IC F F F ++=v v v 上式称为质点相对平衡方程。
可见在非惯性参考系中,质点相对静止和作等速直线运动时,其平衡条件是不相同的。
二、非惯性系中质点的动能定理1.质点相对运动动能定理的微分形式质点在非惯性系中相对动能的增量,等于作用于质点上的力与牵连惯性力在相对运动中所作的元功之和。
即2r 1d()δδ2F mv W W ''=+Ie 2.质点相对运动动能定理的积分形式质点在非惯性参考系中相对动能的变化,等于作用在质点上的力与牵连惯性力在相对路程上所作的功之和。
1.2大学物理(上)——质点动力学

t2
t1
n n t 2 n n 1 n Fi外 dt f ij dt mi vi 2 mi vi1 t1 i 1 i 1 i 1 i 1 j 1
因为内力总成对出现即:
i 1 j 1
x n
2mv cos fn fx 20 N t
[例2.6]: 如图(见书),一辆装矿砂的车厢以v=4ms-1的 速率从漏斗下通过,每秒落入车厢的砂为k=200kg/s, 如欲使车厢的速率下变,须施与车厢多大的牵引力(忽 略车厢与地面的摩擦)。
[分析]:系统的质量m在变化。设t时该已落入车厢 的砂为m,经dt后又有dm=kdt的砂落入车厢。以m 和dm为研究对象。在水平方向的动量定理为:
ra
可见万有引力是保守力。
③ 、弹力的功
F kx
1 1 2 2 AS kxdx ( kxb kxa ) xa 2 2 1 1 2 2 kxa kxb 2 2
xb
初态量
末态量
弹簧振子
可见,弹性力是保守力。
[例2.8]:在离水平面高为H岸上,有人用大小不变的 力F拉绳使船靠岸,求船从离岸x1处移到x2处的过 程中,力F对船所作的功。
经典力学中不区分引力质量和惯性质量
三、第三定律(Newton third law)
两个物体之间对各自对方的相互作用总是相等
的,而且指向相反的方向。
F1 F2
作用力与反作用力:
1、它们总是成对出现,它们之间一一对应。
2、它们分别作用在两个物体上,绝不是平衡力。 3、它们一定是属于同一性质的力。
2、功率 指力在单位时间内所作的功
W 平均功率: P t
1第一章-质点力学基础

第6页,共54页。
质点:任何物体都有一定的大小和形状,但 当物体的大小和形状在所描写的运动中所起 的作用可以忽略不计时,我们就把它看作是
一个只有质量而没有大小和形状的点,称为 质点.
第7页,共54页。
二、参考系与坐标系
根据叉积运算定义,可以得到如下结果:
第12页,共54页。
四、质点的运动
运动描述
位置矢量
空间一质点 P 的位置可以用三个坐标 x,y,z 来确定,也可以用从原点O到P点的 有向线段 表示, 称 为位置矢量.
在直角坐标系中, 可以表示为
其中x,y,z,分别表示 在三个坐标轴上的分量, 分别表示沿三个坐标轴正向的单位矢量.
第13页,共54页。
质点运动过程中,其位置随时间的改变可以 表示为
或
第14页,共54页。
位移
质点在一段时间内
位置的改变称为它 在这段时间内的位
y
移,记作 ,大小标
志着在这段时间内质 点位置移动的多少,
方向表示质点的位 O 置移动方向.图中s 表示路程.
z
第15页,共54页。
P1 s P2
x
速度
坐标系:描述一个物体的运动需要另一个物体作为参考,这
个被选定的参考物体称为参考系.
为了定量地描写物体运 动的位置以及位置随时 y 间的变化,在三维空间 中,需要标出三个独立 的量来唯一地确定一点 的位置.如图所示为三 O 条坐标轴(x轴、y轴、z
轴)相互垂直的直角坐标 z
系.
第8页,共54页。
P(x,y,z) x
被称为引力质量
经典力学中不区分引力质量和惯性质量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章非惯性系中的质点动力学
牛顿一、二定律只适用于惯性参考系
前面我们已讲了静力学(研究物体的平衡,而不涉及不平衡物体的运动);运动学(研究物体运动的几何性质,而不追究引起物体运动的原因);
动力学(将力与运动联系起来,研究作用于物体上的力与物体机械运动之间的关系)
动力学:研究作用于物体上的力与物体机械运动之间的关系,即研究物体机械运动的普遍规律
首先要抽象力学模型。
如研究人造地球卫星的轨道时,卫星的形状和大小对所研究的问题没有什么影响,可以忽略不计,因此,可将卫星抽象为一个质量集中在重心的质点。
刚体作平动时,因刚体内各点的运动情况完全相同,也可以不考虑这个刚体的形状和大小,而将它抽象为一个质点来研究。
如果物体的形状和大小在所研究的问题中不可忽略,则物体应抽象为质点系或刚体。
刚体是质点系的一种特殊情形。
研究对象:质点:具有一定质量而无大小的几何点。
质点系:几个或无限个相互有联系的质点组成的系统。
刚体:不变的质点系。
质点→质点系:
第10章质点动力学的基本方程
10—1 动力学的基本方程
动力学共有三个基本定律(牛顿三定律),是牛顿在总结前人研究成果基础上归纳总结出来的。
在《自然哲学的数学原理》中提出的。
牛顿三定律是整个动力学的基础。
可以好不夸张的说动力学中所有方程、定理都可由牛顿三定律推导出来。
其实牛顿三定律我们并不陌生,我们只是复习。
惯性的概念是伽利略在《关于托勒密和哥白尼两大世界体系的对话》一书中明确提出的。
牛顿把这个概念总结成惯性定律是四十年以后的事。
牛顿二定律伽利略也曾非正式提到。
牛顿二定律的内容则是牛顿在总结C.雷恩、J.沃利斯和J.惠更斯等人的结果之后提出的。
必须有力才能保持运动状态的错误观点。
牛顿是万有引力定律的发现者。
他在1665~1666年开始考虑这个问题。
1679年,R.胡克在写给他的信中提出,引力应与距离的平方成反比,地球高处抛体的轨道为椭圆,假设地球有缝,抛体将回到原处,而不是象牛顿所设想的轨道是趋向地心的螺旋线。
牛顿没有回信,但采用了胡克的见解。
在开普勒行星运动定律以及其他人的研究成果上,他用数学方法导出了万有引力定律。
牛顿三定律是整个动力学的基础。
第一定律(刚性定律):任何质点如不受力作用,则将保持原来静止或等速直线运动状态。
定性地给出了力与运动之间的关系。
1、不受力?
2、惯性:质点具有的保持原有的运动状态不变的特性。
3、要运动状态改变,必须有力作用。
第二定律(定量地给出了力与加速度之间的关系):质点在力的作用下所获得的加速度的大
小与力的大小成正比,与质点的质量成反比,方向与力的方向相同。
即
1n
i i ma F ==∑
①F 与a 方向相同是矢量;
②加速度与力的关系是瞬时关系;
③F =0,a =0,v =C ,此时物体做惯性运动,与第一定律相符;
④质量是物体惯性的度量。
对于质量相同的质点,作用力愈大,获得的加速度愈大; 同样大的力作用于不同的质量的物体上,质量大的加速度小,质量小的加速度大。
即,质量越大,物体的运动状态越不易改变,也即物体的惯性越大。
所以,质量是物体惯性的度量。
第三定律(作用与反作用定律):两物体之间的作用力和反作用力总是大小相等,方向相反,
沿同一条直线分别作用在两个物体上。
静力学公理四。
适用与运动的物体
是研究质点系的基础
牛顿定律适用范围:惯性参考系
惯性参考系:适用于牛顿定律的参考系称做惯性参考系。
古典力学中,认为地球不动(地心学)而将其作为牛顿定律的参考系,也称作为惯性参考系。
当天体力学发展起来以后,又不能以地球作为惯性参考系,而以太阳或其它恒星作为惯性参考系,但在地球表面附近,牛顿定律仍然适用。
因此,得出一个抽象的结论:适用于牛顿定律的参考系称做惯性参考系。
用起来又太抽象,以后,若无特别声明,则以地球为惯性参考系。
国际单位制中:长度、质量、时间为基本单位,力的单位是导出单位。
力(N ,kN) 质量( kg) 长度
Joke 买菜
10—2 质点运动的微分方程
利用牛顿定律和质点运动方程建立质点运动的微分方程并运用解决实际问题。
1.矢量形式:F r a ∑==22dt
d m m 2.直角坐标形式:x x F dt
x d m ma ∑==22 y y F dt
y d m ma ∑==22 z z F dt
z d m ma ∑==22 3.自然坐标形式:t t F dt
dv m ma ∑== 2Σn n
v ma m F ρ== b b F ma ∑==0
4、质点动力学的两类基本问题 第一类问题:已知运动求力——微分问题 第二类问题:已知质点所受到的力,求质点的运动——积分问题 混合问题:第一类与第二类问题的混合。
求解步骤与方法:
1、明确研究对象
2、选坐标
3、将质点置于一般位置,受力分析
4、运动分析:v ,a 方向
5、列运动微分方程求解
()()
2,,,,/11cos cos 244:0,?2
AB l OA r C m r l
x l r t t AB F ωλλλωωπϕϕ=====-++===已知:求,杆受力解: 研究滑块
cos x ma F β=-
其中 ()2cos cos2x a x r t t ωωλω==-+
()20,
1,0,x a r ϕωλβ==-+=且
()21F mr ωλ=+得
222,cos 2
x a r l r l πϕωλβ===-且 2222F mr l r ω=--得
例10-3 一圆锥摆,如图所示。
质量m=0.1kg 的小
球系于长l=0.3m 的绳上,绳的另一端系在固定点O ,
并与铅直线成θ=60◦角。
如小球在水平面内作匀
速圆周运动,求小球的速度v 与绳的张力。
已知:m=0.1kg ,l=0.3m ,θ=60◦,匀速圆周运动,
求小球的速度v 与绳的张力。
解: 研究滑块,由运动微分方程
2sin v m F l
θ= 0cos F mg θ=-
可解得:
1.96cos mg F θ
==N 2sin 2.1Fl v m
θ==m s
例 一小球M 从地面以初速度v 0铅直上抛,空气阻力为F R =k m v 2。
试求小球返回初始位置的速度和小球铅直上升的最大高度。
属于第二类问题。
上升和下降的过程受力状态不同因此要分开研究 答:1. 上升阶段 质点受力如图,建立运动微分方程 2d d v
m mg kmv t =--;
即
2d ()d v g kv t =-+ d d d d d d d d y
v v v v
t t y y ==
2d d v v
y g kv =-+
两边同时积分
0020
d d H v v v
y g kv =-+⎰⎰ 0201
ln[]2v g kv H k +=-
20201
1ln[]ln[]
22g
g kv H k g kv k g +=-=+
2. 下降阶段
质点受力如图,建立运动微分方程
2d d v
m mg kmv t =-+;
即
2d (-)d v kv g t = d d d d d d d d y v v v v
t t y y ==
2d d v v
y kv g =-
两边同时积分
20d d v H v v y g kv --=-⎰⎰末
201
ln[]2v g kv H k -=-末
2211
ln[]ln[]22g kv g
H k g k g kv -=-=-末末
20
211
ln[]ln[]
22g kv g
k g k g kv +=-末
2201kv g
g kv g =-+末
2
201kv g
g g kv =-+末
2
020gv v g kv =+末。