期权定价B-S期权定价公式(2)
B-S期权定价公式的简单推导

t),
T t]
(4.19)
对式(6.19)求解:
c SN (d1) Xer (T t ) N (d2 )
(4.20)
详见Hull(8) P232
其中
d1
ln(S
/
X
)
(r T
2
t
/
2)(T
t)
d2
ln(S
/
X
)
(r T
2
t
/
2)(T
则:
S St Sz (4.11)
假设f是依赖于S的衍生证券的价格,则:
df
( f S f
S
t
1 2
2 f S 2
2S 2 )dt
f S
Sdz
(4.12)
f
( f S f
S
t
1 2
2 f S 2
2S 2 )t
Nt
T
t
,标
当△t0时,我们就可以得到极限的标准布朗
运动:
dz dt
(4.3)
2,普通布朗运动
我们先引入两个概念:漂移率和方差率。
标准布朗运动的漂移率为0,方差率为1.0。
若令漂移率为a,方差率为b2,就可得到变 量x的普通布朗运动:
dx adt bdz
(4.4)
( f t
1 2
2 f S 2
2S 2 )t
(4.16)
在没有套利机会的条件下:
rt
把式(4.14)和(4.16)代入上式得:
金融工程_第11章_期权定价的BS公式.ppt

股票价格如何变化的假设
对数正态分布
对数正态分布和正态分布
未来股票价格分布
未来股票价格的期望值和方差
股票价格变化假设:连续时间模 型
股票价格的对数正态分布特性
dS Sdt Sdz
d ln S ( 2 )dt dz
2
ln
ST
ln
S
~
[(
2
2
)(T
t),
T t]
ln
ST
~ [ln
波动率的估计
波动率估计的注意事项
11.3 B-S公式的基本假设及推 导
BS模型推导
Black-Scholes微分方程的正式推导
dS Sdt Sdz
df ( f S f 1 2 f 2S 2 )dt f Sdz
S
t 2 S 2
S
S St Sz
f
( f S
S
f t
1 2
风险中性定价步骤
应用于股票远期合约
到期日远期合约的价值 ST K
f erT E(ST K )
f erT E(ST ) KerT
E(ST ) SerT f S KerT
应用风险中性定价推导B-S公式
欧式看涨期权到期日的期望价值为 E[max(ST X ,0)]
c er(T t) E[max(ST X ,0)]
S
(
2 )(T
2
t),
T t]
期望值
方差
E(ST ) Se(T t)
var(ST ) S e [e 2 2(Tt) 2 (Tt) 1]
例子
例子
练习
11.2 预期收益率和波动率及其估 计
A、预期收益率
B-S期权定价模型

Black—Scholes期权定价模型(重定向自Black—Scholes公式)Black—Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型Black—Scholes 期权定价模型概述1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表.所以,布莱克-斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型.默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献.[编辑]B—S期权定价模型(以下简称B-S模型)及其假设条件[编辑](一)B-S模型有7个重要的假设1、股票价格行为服从对数正态分布模式;2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);5、该期权是欧式期权,即在期权到期前不可实施.6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷.[编辑](二)荣获诺贝尔经济学奖的B—S定价公式[1]C = S*N(d1) − Le− rT N(d2)其中:C—期权初始合理价格L-期权交割价格S—所交易金融资产现价T—期权有效期r—连续复利计无风险利率Hσ2—年度化方差N()—正态分布变量的累积概率分布函数,在此应当说明两点:第一,该模型中无风险利率必须是连续复利形式。
期权定价的连续模型及BS公式

期权定价的连续模型及BS公式期权定价是金融学中一个重要的问题,它涉及到市场上期权的价格如何形成以及如何计算的问题。
在期权定价的研究中,连续模型和BS公式是常用的工具和方法之一连续模型是指在对期权定价进行建模时,假设资产价格(或指数)是连续的、随机的过程。
这些模型通常是基于随机微分方程的形式,最常见的连续模型是几何布朗运动模型和扩散模型。
其中几何布朗运动是一个经典的连续模型,它是由英国数学家罗伯特·布莱利·布朗提出的。
几何布朗运动的数学表达式是一个随机微分方程,即:dS_t = \mu S_t dt + \sigma S_t dW_t其中,S_t是资产价格(或指数),\mu是资产的预期收益率,\sigma是资产价格的波动率,dW_t是布朗运动的增量。
这个方程描述了资产价格的变化情况,包括预期收益率和波动率对价格变化的影响。
通过这个方程,可以计算出期权的价格。
另一个常用的连续模型是扩散模型。
扩散模型是在几何布朗运动的基础上进行扩展的模型,它考虑了资产的波动率是随时间变化的情况。
在扩散模型中,资产价格的波动率是一个随机过程,即:dS_t = \mu S_t dt + \sigma_t S_t dW_t其中的\sigma_t是时间t上的波动率。
这个模型可以更准确地描绘资产价格的变化情况,特别适用于对期限较长的期权进行定价。
BS(Black-Scholes)公式是一个基于几何布朗运动的连续模型的定价公式。
它是由美国经济学家费希尔·布莱克和美国经济学家默顿·米勒·施尔斯在1973年提出的,被广泛应用于期权定价。
BS公式的数学表达式为:C=S_0N(d_1)-Xe^{-rT}N(d_2)其中,C是看涨期权的价格,S_0是资产的当前价格,N(\cdot)是标准正态分布函数,d_1是一个与标准正态分布相关的变量,d_2是另一个与标准正态分布相关的变量,X是期权的执行价格,r是无风险利率,T是期权的时间到期。
B-S期权定价模型

Black-Scholes期权定价模型(重定向自Black—Scholes公式)Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型Black-Scholes 期权定价模型概述1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。
他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。
斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。
与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。
结果,两篇论文几乎同时在不同刊物上发表。
所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。
默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。
瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。
[编辑]B-S期权定价模型(以下简称B-S模型)及其假设条件[编辑](一)B-S模型有7个重要的假设1、股票价格行为服从对数正态分布模式;2、在期权有效期内,无风险利率和金融资产收益变量是恒定的;3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割;4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃);5、该期权是欧式期权,即在期权到期前不可实施。
6、不存在无风险套利机会;7、证券交易是持续的;8、投资者能够以无风险利率借贷。
BS期权定价模型

风险中性世界中可交易资产的随机过程
如果某种可交易资产的价格在现实世界中的随机过程为:
则在风险中性世界中其遵循:
根据伊藤引理,其远期合约的价值在风险中性世界中遵 循
理解风险中性定价
假设一种不支付红利股票目前的市价为10元, 我们知道在3个月后,该股票价格要么是11元, 要么是9元。现在我们要找出一份3个月期协议 价格为10.5元的该股票欧式看涨期权的价值。
三、风险中性定价原理
在所有投资者都是风险中性的条件下(有时我 们称之为进入了一个“风险中性世界”):
– 所有可交易资产的百分比预期收益率都等于无风 险利率r,因为风险中性的投资者并不需要额外 的收益来吸引他们承担风险。
– 同样,在风险中性条件下,所有现金流在求现值 都应该使用无风险利率进行贴现。
第四讲 BS期权定价模型
统计与管理学院
第四讲 BS期权定价模型
第一节 BS期权定价模型的基本思路 第二节 BS期权定价公式 第三节 BS期权定价公式的精确度评价与拓展
第一节 BS期权定价模型的基本思路
股票价格服从的随机过程
dS = mSdt + sSdW
由 Itô 引理可得期权价格相应服从的随机过 程
这就是著名的BS微分分程,它适用于其价格取 决于标的证券价格S的所有衍生证券的定价。
三、风险中性定价原理
观察BS微分方程可以发现,受制于主观的风险收 益偏好的标的证券预期收益率并未包括在衍生证 券的价值决定公式中。这意味着,无论风险收益 偏好状态如何,都不会对f的值产生影响。
因此我们可以作出一个可以大大简化我们工作的 假设:在对衍生证券定价时,所有投资者都是风 险中性的。
二、BS微分方程的推导
BS期权公式

BS期权公式
bs期权定价公式为:C=S·N(d1)-X·exp(-r·T)·N(d2)其中:d1=[ln(S/X)+(r+σ^2/2)T]/(σ√T)
d2=d1-σ·√T
C—期权初始合理价格
X—期权执行价格
S—所交易金融资产现价
T—期权有效期
r—连续复利计无风险利率
σ—股票连续复利(对数)回报率的年度波动率(标准差)
N(d1),N(d2)—正态分布变量的累积概率分布函数,在此应当说明两点:
第1点,这个模型中五风险利率必须是连续复利形式,一个简单的或不连续的无风险利率一般是一年计息一次,而r要求为连续复利利率。
r0必须转化为r方能代入上式计算。
两者换算关系为:r=LN (1+r0)或r0=exp(r)-1例如r0=0.06,则r=LN(1+0.06)=0.0583,即100以583%的连续复利投资第二年将获106,该结果与直接用
r0=0.06计算的答案一致。
第2点,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。
如果期权有效期为100天,则T=100/365=0.274.。
B-S期权定价模型、公式与数值方法

B-S期权定价公式:假设条件
1.证券价格遵循几何布朗运动,,为常数 2.允许卖空标的证券 3.没有交易费用或税收 4.所有证券都是无限可分的 5.标的证券在有效期内没有红利支付 6.不存在无风险套利机会 7.交易是连续的 8.无风险利率为常数
B-S期权定价公式
经典的B-S期权定价公式是对于欧式股票期权给出的。
期权的价值正是来源于签订合约时,未来标的资产价格与合约执 行价格之间的预期差异变化,在现实中,资产价格总是随机变化 的。需要了解其所遵循的随机过程。
研究变量运动的随机过程,可以帮助我们了解在特定时刻,变量 取值的概率分布情况。在下面几节中我们会用数学的语言来描述 这种定价的思想。
6.1 证券价格的变化过程
**随机微积分与非随机微积分的差别 d ln S dS
S
变量x和t的函数G也遵循Ito 过程:
dG ( G xa G t1 2 2 x G 2b2)d t G xbdz
dSSdtSdz
根据Ito引理,衍生证券的价格G应遵循如下过程:
d G ( G SS G t1 2 S 2 G 22 S2)d t G SSdz
但是当人们开始采用分形理论研究金融市场时,发现它的运行并 不遵循布朗运动,而是服从更为一般的分数布朗运动。
对于标准布朗运动来说:设t 代表一个小的时间
间隔长度,z代表变量z在 t 时间内的变化,遵循标
准布朗运动的 z 具有两种特征:
特征1:z和 t 的关系满足:
z = t
其中, 代表从标准正态分布中取的一个随机值。
的普通布朗运动:
Ito过程
dxadb t dz d xa (x,t)d tb (x,t)dz
or:x( t)x0a t bz(t)x(t)x00 tad s0 tbd
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期权定价
教学内容
1. 股价过程 2. BSM随机微分方程 3. 风险中性定价 4. B-S期权定价公式 5. 标的资产支付连续红利情况下的期权定价 6. 欧式指数期权、外汇期权和期货期权
2
马尔科夫过程(Markov process)
1. 无记忆性:未来的取值只与现在有关,与过去无关 2. 如果股价过程是马尔科夫过程,那么股价在未来某时
2. 如果 f S, t 不满足BSM方程,它是某种衍生工具的
价格,那么该衍生工具的交易必然导致套利机会
17
风险中性定价(risk-neutral valuation)
1. Black-Scholes-Merton方程不包含股票收益率,说 明衍生工具的价值与投资者的风险偏好无关。因此, 在定价衍生工具时,可以采用任何风险偏好,特别地, 可以假设投资者是风险中性的
ln ST S0 : 2 2 T, T ln ST : ln S0 2 2 T, T
2. 称股价呈对数正态分布
E ST S0eT
var ST
S02e 2 T
e
2T
1
10
股价过程——收益率分布
1. 股票收益率(长时间尺度)
ST S0eT
或者, 1 ln ST
18
风险中性定价——应用于股票远期
1. 边界条件: fT ST K
2.
根据风险中性定价原则,
f
e
rT
Hale Waihona Puke t) Eer
T
t
) E
ST K ST erT t K
erT terT t S erT t K
S erT t K
19
欧式期权定价
1. 期权定价是一件非常具有挑战性的任务。在20世纪的 前面70多年里,众多经济学家做出无数努力,试图解 决期权定价的问题,但都未能获得令人满意的结果。 在探索期权定价的漫漫征途中,具有里程碑意义的工 作出现在1973年——金融学家F. Black与M. Scholes发表了“期权定价与公司负债”的著名论文
股票远期的价格满足BSM方程
f S KerTt
f t
rKerT t , f S
1,
2 f S 2
0
f t
rS f S
1 2S2
2
2 f S 2
rKerT t
rS
rf
16
BSM随机微分方程
1. BSM的任何解 f S, t 都是某种可以交易的衍生工具
的理论价格,并且它的交易不会导致套利机会
T S0
:
2
2
,
T
2. 与瞬时期望收益率的差异
S : t, t
S
3. 约定:在没有特别声明的情况下,股票收益率指瞬时
期望收益率
11
BSM随机微分方程——假设
1. 股价过程为Ito过程 2. 卖空无限制 3. 没有交易成本、税收,证券是无限可分的 4. 衍生工具在到期之前不产生红利 5. 不存在套利机会 6. 证券可以连续交易 7. 所有期限的无风险利率同为常数
dx adt bdz
漂移速度a是常数 b是常数
2. x是广义Wiener过程
增量 xT x0 为正态分布,均值等于 aT
标准差为 b T
6
Ito引理
中国最庞大的数据库下载
1. x是Ito过程,如果
dx a x,tdt b x,tdz
2. Ito引理:G是x与t的函数,在一定的正则条件下,
dS Sdt Sdz , dS dt dz
S :单位时间内股价的期望收益率(瞬时)
:股价的波动率
S : t, t .
S
2. S为股价过程,则
dG
G S
S
G t
1 2
2G S 2
2
S
2
dt
G S
Sdz
9
股价过程——对数正态分布
1. 股价对数过程, G ln S
dG @d ln S S 2 2 dt dz
4
Wiener过程(布朗运动)——基本性质
1. Wiener过程(长时间段内)的增量
N
z T z 0 i t i 1
N T t
增量的均值等于0
增量的标准差等于 T
2. 在任意时间段内的期望路径长度为无穷大 3. 在任意时间段内,z取某一给定值的期望次数等于无
穷大
5
广义Wiener过程
1. x是广义Wiener过程,如果
刻的概率分布不依赖于股价过去的路径
股价的历史信息全部包含在当前的股价当中,简单的 技术分析不能战胜市场 股价过程是马尔科夫过程等价于股票市场的弱有效性
3
Wiener过程(布朗运动)——定义
1. 瞬时增量为z t
增量的均值等于0
增量的标准差等于 t
2. 在任意两个微小时间段内的改变量是独立的 Wiener过程是Markov过程
3. 由于股价过程与衍生工具价格过程中的随机部分是相
同的,因此,通过选择股票与衍生工具的适当组合可
以消除掉Wiener过程。
1个单位衍生工具空头,
f S
份股票
4. 把上述投资组合的价值记作
f f S S
f
f S
S
f t
1 2
2 f S 2
2
S
2
t
14
BSM随机微分方程——推导
5. 组合的价值不包含随机部分,因此是瞬时无风险的
rt
f t
1 2
2 f S 2
2
S
2
t
r
f
f S
S
t
f t
rS f S
1 2S2
2
2 f S 2
rf
6. 股票衍生工具都满足上述方程,不同工具的差异体现 在边界条件上
欧式买权:当t=T时,f max S X 欧式卖权:当t=T时,f max X S
15
BSM随机微分方程——应用于股票远期
在风险中性世界中,所有证券的期望收益率都等于无 风险利率
2. 风险中性定价的一般程序
假设标的资产的期望收益率等于无风险利率 计算衍生工具在到期日的期望支付(payoff) 把期望支付按无风险利率贴现
3. 风险中性定价是求解BSM方程的一种人造方法,用该 方法求得的解适用于任何投资者(不仅限于风险中性 的投资者)
12
BSM随机微分方程——推导
1. f表示股票衍生工具的价值,则它是股价与时间的函数
dS Sdt Sdz
df
f S
S
f t
1 2 f 2 S 2
2
S
2
dt
f Sdz
S
2. 离散形式
S St Sz
f
f S
S f
t
1 2
2 f S 2
2
S
2
t
f S
Sz
13
BSM随机微分方程——推导
dG
G x
a
G t
1 2
2G x 2
b2
dt
G x
bdz
因此,G也是Ito过程
7
Ito引理——应用于股票远期价格
1. 标的资产为不分红的股票,则远期价格为
F0 S0erT
F SerT t
2. 运用Ito引理,得到,
dF r Fdt Fdz
8
股价过程
1. 股价过程:几何布朗运动