数学应用之分形

合集下载

分形原理及其应用

分形原理及其应用

分形原理及其应用
分形原理,也称为分形几何原理,是由波兰数学家曼德尔布罗特于1975年首次提出的。

分形原理指的是存在于自然界和人
造物体中的重复模式,这些模式在不同的尺度上都呈现出相似的结构和特征。

换句话说,分形是一种具有自相似性的形态。

分形原理的应用十分广泛,下面列举几个主要领域:
1. 自然科学领域:生物学、地理学、气象学、天文学等都能从分形原理中获得启示。

例如,树叶、花瓣和岩石都具有分形结构,通过分析这些结构可以揭示它们的生长和形成规律。

2. 数学与计算机图形学:分形理论为图形图像的生成、压缩和渲染提供了新的思路和方法。

通过分形原理,可以生成具有逼真效果的山水画、云彩图等。

3. 经济学和金融学:金融市场中的价格变动往往呈现出分形特征,通过分析分形模式可以帮助预测市场走势和制定投资策略。

4. 艺术设计:分形原理在艺术设计中被广泛应用。

通过将分形结构应用到艺术作品中,可以创造出独特而美丽的图案和形态。

5. 计算机网络和通信:分形技术可以用于改进数据传输的效率和可靠性。

通过在网络中应用分形压缩算法,可以减少数据传输的带宽需求,提高网络性能。

综上所述,分形原理作为一种有着广泛应用价值的理论,已经
渗透到了各个学科和领域中,为科学研究和技术创新提供了新的思路和方法。

分形图形与分形的产生

分形图形与分形的产生

分形图形分形理论是非线性科学的主要分支之一,它在计算机科学、化学、生物学、天文学、地理学等众多自然科学和经济学等社会科学中都有广泛的应用。

分形的基本特征是具有标度不变性。

其研究的图形是非常不规则和不光滑的已失去了通常的几何对称性;但是,在不同的尺度下进行观测时,分形几何学却具有尺度上的对称性,或称标度不变性。

研究图形在标度变换群作用下不变性质和不变量对计算机图形技术的发展有重大的意义。

说到分形(fractal),先来看看分形的定义。

分形这个词最早是分形的创始人曼德尔布诺特提来的,他给分形下的定义就是:一个集合形状,可以细分为若干部分,而每一部分都是整体的精确或不精确的相似形。

分形这个词也是他创造的,含有“不规则”和“支离破碎”的意思。

分形的概念出现很早,从十九世纪末维尔斯特拉斯构造的处处连续但处处不可微的函数,到上个世纪初的康托三分集,科赫曲线和谢尔宾斯基海绵。

但是分形作为一个独立的学科被人开始研究,是一直到七十年代曼德尔布诺特提出分形的概念开始。

而一直到八十年代,对于分形的研究才真正被大家所关注。

分形通常跟分数维,自相似,自组织,非线性系统,混沌等联系起来出现。

它是数学的一个分支。

我之前说过很多次,数学就是美。

而分形的美,更能够被大众所接受,因为它可以通过图形化的方式表达出来。

而更由于它美的直观性,被很多艺术家索青睐。

分形在自然界里面也经常可以看到,最多被举出来当作分形的例子,就是海岸线,源自于曼德尔布诺特的著名论文《英国的海岸线有多长》。

而在生物界,分形的例子也比比皆是。

近20年来,分形的研究受到非常广泛的重视,其原因在于分形既有深刻的理论意义,又有巨大的实用价值。

分形向人们展示了一类具有标度不变对称性的新世界,吸引着人们寻求其中可能存在着的新规律和新特征;分形提供了描述自然形态的几何学方法,使得在计算机上可以从少量数据出发,对复杂的自然景物进行逼真的模拟,并启发人们利用分形技术对信息作大幅度的数据压缩。

分形几何概述

分形几何概述
(5)分形集的生成具有迭代性。
三、分形几何的研究方法
1、以分数维数来描述分形;
Mandelbrot提出了一个分形维数的概念。
在Euchlid几何学中我们知道维数的概念
点---0维;
线---1维;
面---2维;
分形几何与传统几何相比有什么特点:
⑴从整体上看,分形几何图形是处处不规则的,它的整体与局部都不能用传统的几何语言来描述。例如,海岸线和山川形状,从远距离观察,其形状是极不规则的。
⑵分形集都具有任意小尺度下的比例细节,或者说它具有精细的结构。
例如:Mandelbrot集,简称M集,是人类有史以来最奇异最瑰丽的几何图形. 它由一个主要的心形图与一系列大小不一的圆盘芽苞突起连在一起构成.你看,有的地方象日冕,有的地方象燃烧的火焰,那心形圆盘上饰以多姿多彩的荆棘,上面挂着鳞茎状下垂的微小颗粒,仿佛是葡萄藤上熟透的累累硕果.它的每一个细部都可以演绎出美丽的梦幻般仙境似的图案,因为只要把它的细部放大,展现在眼前的景象会更令人赏心悦目.而这种放大可以无限地进行下去,无论放大到哪一个层次,都会显示同样复杂的局部,这些局部与整体有某种相似的地方,但又不完全相同,仿佛里面酝藏着无穷的创造力,使你感到这座具有无穷层次结构的雄伟建筑的每一个角落都存在无限嵌套的迷宫和回廊,催生起你无穷的探究欲望.。
6、可以制作成各种尺寸的分形挂历、台历、贺卡、书签等等。
7、装点科技馆、少年宫、旅游景点等地点,美化公众环境。

我们来看曼德勃罗的分析:
当你用一把固定长度的直尺(没有刻度)来测量时,对海岸线上两点间的小于尺子尺寸的曲线,只能用直线来近似。因此,测得的长度是不精确的。
如果你用更小的尺子来刻画这些细小之处,就会发现,这些细小之处同样也是无数的曲线近似而成的。随着你不停地缩短你的尺子,你发现的细小曲线就越多,你测得的曲线长度也就越大。如果尺子小到无限,测得的长度也是无限。

分形几何学在数学中的应用

分形几何学在数学中的应用

分形几何学在数学中的应用分形几何学是一门描述非整体几何形态的学科,旨在研究自然中那些看似复杂但具有某种重复结构的“异形体”,如云朵、树枝、海岸线等。

分形几何学涉及的多为斐波那契数列、曼德博集、朱利亚集等著名的分形图像,它们虽然看似艺术品,但同时也为科学家研究探索提供了许多思路和启示。

在数学领域中,分形几何学有着广泛的应用,本文将会介绍其中的一些。

一、分形理论在图像压缩中的应用分形图像压缩技术是一种全新的图像压缩模式,它对自相似性的图像进行了探索,并且寻找到了自相似性的一般规律,最终形成了基于分形特征的高比例压缩模式。

这种压缩模式的具体应用包括电子图象、遥感图象、数字信号、地图等领域。

二、分形理论在金融市场预测中的应用分形几何学在金融市场的应用主要是通过其分形特征来预测市场走势。

经过多年的研究,科学家们发现,在金融市场中,股票、期货等商品的价格走势常常表现出来分形的特征,因此可以利用分形理论来剖析市场,预测市场走势和涨跌趋势。

许多金融大佬利用分形理论,制定交易策略,从而取得了良好的投资回报。

三、分形理论在土地利用规划中的应用利用分形特征对地形进行分段,可以得到一系列体块空间,这种方法被应用于城市风貌的分析和规划以及土地利用的方案制定中。

利用分形特征进行空间自动分割,在统计分析地表质心变化的同时,改进了城市土地利用的管理和规划模式。

四、分形理论在生命科学中的应用生命科学中的DNA序列、蛋白质序列等都具有自相似的特点,生物界的许多分形现象都存在着是否是一种更为高级的自组织模式仍然存在争议,但是利用分形特征,科学家们已经开始了一系列的探索和实验,涉及癌症诊断和治疗策略的制定、人体运动过程的测量以及脑功能的计算等等。

五、分形理论在计算机科学中的应用计算机科学中的随机生成、优化问题、自适应控制、图像处理等领域都有分形特征,利用分形理论所构建的智能化算法,可以在较小的规模区间内进行高效的检索和组合,进一步提高了计算机科学的研究和应用水平。

分形原理及其应用

分形原理及其应用

分形原理及其应用
分形原理,也称为分形几何,是一种描述自相似性和复杂性的数学理论。

它指的是在自然界和人造物中,许多物体和现象都具有在不同尺度上重复出现的特征。

分形几何试图通过数学模型来解释这种自相似性,并提供了一种理解和描述复杂系统的方法。

分形原理的应用非常广泛。

以下是几个常见的应用领域:
1. 自然科学:许多自然界中的物体和现象都具有分形特征,如云朵、植物的分枝结构、山脉的形状等。

通过分形原理,科学家可以更好地理解和描述这些自然现象,并研究它们背后的原理。

2. 数据压缩:分形压缩是一种常用的图像和视频压缩方法。

它基于分形原理,将复杂的图像分解成一系列相似的子图像,并利用这些子图像的变换来重建原始图像。

分形压缩能够在保持图像质量的同时实现较高的压缩比。

3. 金融市场:金融市场的价格走势也常常具有分形特征。

通过分形分析,可以识别出市场中的重要转折点和趋势,为投资决策提供参考。

4. 计算机图形学:分形几何提供了一种生成逼真自然风景的方法。

通过分形算法,可以模拟出山脉、云彩等自然对象的形态和纹理,用于电影特效、游戏开发等领域。

5. 网络优化:分形原理可以应用于网络布线、数据传输等领域的优化。

比如,通过分析网络的分形结构,可以设计出更高效的布线方案,提高数据传输速度和可靠性。

以上只是一些分形原理应用的例子,实际上分形几何在科学、艺术、工程等各个领域都有广泛的应用,并且不断地拓展出新的应用领域。

分形图形学

分形图形学

其实对分形的理解并没有那么神奇。可以说,虽然曼德布劳特硬是制造了分形(fractal)这个名词,是个新鲜的事情,但是,分形所反映的内容本身,其苗头确实古已有之。如前所叙述的那样,分形的重要来源,是数学上的思考,属于科学研究的产物,常常是某种离散动力系统参数分布的图示。因为表现这种参数分布须借助计算机的计算和处理;而作为处理的结果,这类图示观看起来是那么的漂亮、琢磨下去又是那么的含蓄,于是它的影响远远超出了数学的领域。分形不仅引起科学家们的注意,而且在艺术界造成了轰动。社会学家从人文的角度,分析与演绎分形的哲理;艺术大师们,以审美的观点,推崇与渲染分形的艺术特征…。
参考文献:分形理论在计算机图形学中的应用
人们谈论分形,常常有两种含义。其一,它的实际背景是什么?其二,它的确切定义是什么?数学家研究分形,是力图以数学方法,模拟自然界存在的、及科学研究中出现的那些看似无规律的各种现象。在过去的几十年里,分形在物理学、材料科学、地质勘探、乃至股价的预测等方面都得到了广泛的应用或密切的注意,并且由于分形的引入,使得一些学科焕发了新的活力。数学上所说的分形,是抽象的。而人们认为是分形的那些自然界的具体对象,并不是数学家所说的分形,而是不同层次近似。
几乎在曼德布劳特获得Barnard奖章的同时,以德国布来梅大学的数学家和计算机专家H.Peotgen与P.Richter等为代表,在当时最先进的计算机图形工作站上制作了大量的分形图案;J. Hubbard等人还完成了一部名为《混沌》的计算机动画。接着,印刷着分形的画册、挂历、明信片、甚至T恤衫纷纷出笼。80年代中期开始,首先在西方发达国家,接着在中国,分形逐渐成为脍炙人口的词汇,甚至连十几岁的儿童也迷上了计算机上的分形游戏。我国北京的北方工业大学计算机图形学小组于1992年完成了一部计算机动画电影《相似》,这部电影集中介绍了分形图形的相似性,这也是我国采用计算机数字技术完成的第一部电影,获得当年电影电视部颁发的科技进步奖。

分形原理及其应用

分形原理及其应用

分形原理及其应用
分形是一种几何图形,它具有自相似的特性,即整体的形状和局部的形状都具
有相似性。

分形原理最早由法国数学家Mandelbrot提出,他认为自然界中的许多
现象都可以用分形来描述。

分形原理不仅在数学领域有着广泛的应用,还在生物学、物理学、经济学等领域都有着重要的意义。

在数学领域,分形可以用来描述自然界中的许多复杂现象,比如云彩的形状、
树叶的脉络、河流的分布等。

利用分形原理,我们可以更好地理解这些现象背后的规律。

而在生物学领域,分形原理也有着广泛的应用。

比如,我们可以利用分形原理来研究植物的生长规律,动物的群体分布等。

在物理学领域,分形可以用来描述许多复杂的物理现象,比如分形几何可以用来描述分形维度,分形维度可以用来描述物体的复杂程度。

除了在基础科学领域有着广泛的应用之外,分形原理还在工程技术领域有着重
要的意义。

比如,在图像处理领域,我们可以利用分形原理来进行图像的压缩和识别。

在信号处理领域,分形原理也可以用来进行信号的分析和处理。

在金融领域,分形原理可以用来描述股票价格的波动规律,从而帮助投资者进行风险管理。

总的来说,分形原理是一种非常有用的数学工具,它不仅可以用来描述自然界
中的复杂现象,还可以在工程技术领域有着广泛的应用。

随着科学技术的不断发展,相信分形原理会有更多的应用场景被发现,为人类的发展带来更多的帮助和便利。

希望本文的介绍能够让读者对分形原理有更深入的了解,并且能够在实际应用
中发挥更大的作用。

分形原理的应用领域还在不断扩大,希望大家能够关注并且深入研究,为人类的发展做出更大的贡献。

数学的分形几何

数学的分形几何

数学的分形几何分形几何是一门独特而迷人的数学领域,它研究的是自相似的结构和形态。

分形几何的概念由波蒂亚·曼德博(Benoit Mandelbrot)在1975年首次提出,之后得到了广泛应用和发展。

本文将介绍分形几何的基本概念和应用领域,旨在帮助读者更好地了解这一令人着迷的学科。

一、分形几何的基本概念分形(fractal)是一种非几何形状,具有自相似的特点。

简单来说,分形就是在各个尺度上都具有相似性的图形。

与传统的几何图形相比,分形图形更加复杂、细致,其形状常常无法用传统的几何方法进行描述。

分形几何的基本概念包括分形维度、分形特征和分形生成等。

1. 分形维度分形维度是分形几何中的重要概念之一。

传统的几何图形维度一般为整数,如直线的维度为1,平面的维度为2,而分形图形的维度可以是非整数。

分形维度能够描述分形的复杂程度和空间占据情况,是衡量分形图形特性的重要指标。

2. 分形特征分形几何的分形特征是指分形图形所具有的一些独特性质。

其中最著名的就是自相似性,即分形图形在不同尺度上具有相似的形态和结构。

此外,分形图形还具有无限的细节,无论放大多少倍都能够找到相似的结构。

3. 分形生成分形图形的生成是分形几何中的关键问题之一。

分形图形可以通过递归、迭代等方式进行生成,比如著名的分形集合——曼德博集合就是通过迭代运算得到的。

分形生成的过程常常需要计算机的辅助,对于不同的分形形状,生成算法也有所不同。

二、分形几何的应用领域分形几何的独特性质使其在许多领域中得到广泛应用。

以下列举了几个典型的应用领域。

1. 自然科学分形几何在自然科学中有着广泛的应用。

例如,分形理论可以用来研究自然界中的地形、云雾形态等。

通过分形几何的方法,我们能够更好地理解和描述自然界的复杂性,揭示出隐藏在表面之下的规律。

2. 经济金融分形几何在经济金融领域也有着重要的应用。

金融市场的价格走势往往具有分形特征,通过分形几何的方法可以更好地预测未来的市场走势和波动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/10/14 黄建华制作 8
x ai bi x ei wi y y c d f , i 1,2,...,n i i i
4.6.2由迭代函数系生成的分形图形
步骤: (1)设定迭代的可视区域为: V={(x,y)|xmin≤x≤xmax,ymin≤y≤ymax}再按分辨率的大小V分成 a*b的网格,网格点为(xi,yi),其中: xi=xmin+(xmax-xmin)*i/a,i=0,1,2,...,a yi=ymin+(ymax-ymin)*i/b,i=0,1,2,...,b 设迭代N次; (2)设定初始点(x0,y0),不妨取(0,0); (3)在数列{1,2,...,n}中,以概率pi选取变换wi; (4)将变换作用到点(xk,yk) 上,得到新点(xk+1,yk+1) ; (5)画出点(xk,yk) ,直到循环结束。
2018/10/14 黄建华制作 10
4.6.2由迭代函数系生成的分形图形
vv=v(i); % 取概率 if vv<0.01 % 概率p=0.01 y(i)=0.16*y(i-1); elseif vv<0.86 % 概率p=0.85 x(i)=0.85*x(i-1)+0.04*y(i-1); y(i)=1.6-0.04*x(i-1)+0.85*y(i-1); elseif vv<0.93 % 概率p=0.07 x(i)=0.2*x(i-1)-0.26*y(i-1); y(i)=1.6+0.23*x(i-1)+0.22*y(i-1); else x(i)=-0.15*x(i-1)+0.28*y(i-1); y(i)=0.26*x(i-1)+0.24*y(i-1)+0.44; end
2018/10/14
黄建华制作
6
4.6.1由生成元生成的分形图形
2018/10/14
黄建华制作
7
4.6.2由迭代函数系生成的分形图形
由迭代函数系(IFS)产生分形的一般算法是:给定平面上的 一组仿射变换wi:
以及相应的一组概率:p1,p2,...,pn(p1+p2+...+pn=1,pi>0) 。 对 于任意选取的初始值z0=(x0,y0),以概率pi选取变换wi做迭代: zk+1=(xk+1,yk+1)=wi(xk,yk),k=0,1,2,... 则点列{zk}收敛的极限图形称为一个IFS吸引子,即分形。 利用IFS迭代可以生成美丽的分形,而且IFS迭代的程序具 有通用性,要想得到不同的分形只需改变变换种的系数和概率 值。
4.6.1由生成元生成的分形图形
由生成元产生的分形是一种规则分形,是数学家按照一定 规则构造出来的,相当于物理学种的模型。构造特点:最终图 形是按照一定规则R对初始F0不断修改得到的。
cantor三分集
生成方法:选取一条直线段F0,将该线段三等分,去掉中 间一段,剩下两段。将剩下的两段分别再三等分,各去掉中间 的一段,剩下四段。继续这样的操作,直至无穷,则可得到一 个离散的点集,称为cantor三分集。
2018/10/14
黄建华制作
1
4.6.1由生成元生成的分形图形
程序:clear;clf;new=[0,1];%定义初始线段的两端 kmax=20; %迭代次数 for k=1:kmax old=new; %保存原有各点的坐标 n=length(old)-1; %计算需要改变图形的线段数目 for m=0:n-1 %计算各新线段两端点的坐标(5点) diff=(old(m+2)-old(m+1))/3; %取新线段长度向量 new(4*m+1)=old(m+1); %新线段第一点坐标 new(4*m+2)=old(m+1)+diff; %新线段第二点坐标 new(4*m+3)= new(4*m+2)+diff*((1+sqrt(3)*i)/2); %第三点 new(4*m+4)=old(m+1)+2*diff; %第四点 end new(4*n+1)=old(n+1); %最后一点 plot(new) ; axis equal; end
程序略。
2018/10/14
黄建华制作
0
4.6.1由生成元生成的分形图形
koch曲线
生成方法:选取一条直线段F0,将该线段三等分,并将中 间一段用以该线段为边的等边三角形的另外两条边代替,得到 图形F1。再将F1的每一段都按上述方法修改,直至无穷,则最 后得到的极限曲线,称为koch曲线。
0.5
0.5
0.5 0.5
0
0 0
0
0 0
0.5
0.5 0.5
0
0.25 0.5
0
0.433 0
0.333
0.333 0.333
程序:clear;clf;n=100000;%设置迭代次数
v=rand(n,1); %随机数用于每一步做概率系数 x0=0;y0=0 ; x=[x0;zeros(n-1,1)]; y=[y0;zeros(n-1,1)]; %可视区域点数 for i=2:n % 按规则计算下一点坐标
2018/10/14 黄建华制作 13
4.6.2由迭代函数系生成的分形图形
vv=v(i); % 取概率 if vv<0.333 % 概率p=0.333 x(i)=0.5*x(i-1); y(i)=0.5*y(i-1); elseif vv<0.666 % 概率p=0.333 x(i)=0.5*x(i-1)+0.25; y(i)=0.433+0.5*y(i-1); else x(i)=0.5*x(i-1)+0.5; y(i)=0.5*y(i-1); end end plot(x(1:n),y(1:n),'.b','markersize',1) ;axis off
2018/10/14 黄建华制作 9
4.6.2由迭代函数系生成的分形图形
barnsley羊齿叶
w
a
b
c
d
e
f
p
1
2 3 4
0
0.85 0.2 -0.15
0
0.04 -0.26 0.28
0
-0.04 0.23 0.26
0.16
0.85 0.22 0.44
0
0 0 0
0
1.6 1.6 0.44
0.01
0
0.2 0.2 0.2
0.05
0.4 0.4 0.15
程序:clear;clf;n=100000;%设置迭代次数
v=rand(n,1); %随机数用于每一步做概率系数 x0=0;y0=0 ; x=[x0;zeros(n-1,1)]; y=[y0;zeros(n-1,1)]; %可视区域点数 for i=2:n % 按规则计算下一点坐标
2018/10/14 黄建华制作 2
4.6.1由生成元生成的分形图形
2018/10/14
黄建华制作
3
4.6.1由生成元生成的分形图形
分形树
生成方法:选取一条直线段F0,将该线段三等分,在等分 点上各画一条长度为原线段长度三分之一的线段,并与原线段 成固定夹角,得到图形F1。再将F1的每一段都按上述方法修改, 直至无穷,则最后得到的极限图象,称为分形树。
0.85 0.07 0.07
程序:clear;clf;n=100000;%设置迭代次数
v=rand(n,1); %随机数用于每一步做概率系数 x0=0;y0=0 ; x=[x0;zeros(n-1,1)]; y=[y0;zeros(n-1,1)]; %可视区域点数 for i=2:n % 按规则计算下一点坐标
2018/10/14 黄建华制作 11
4.6.2由迭代函数系生成的分形图形
end plot(x(1:n),y(1:n),'.r','markersize',1) ;axis off
2018/10/14
黄建华制作
12
4.6.2由迭代函数系生成的分形图形
sierpinski垫
w
a
b
c
d
e
fp12来自32018/10/14 黄建华制作 14
4.6.2由迭代函数系生成的分形图形
2018/10/14
黄建华制作
15
4.6.2由迭代函数系生成的分形图形
分形树
w
a
b
c
d
e
f
p
1
2 3 4
0
0.42 0.42 0.1
0
-0.42 0.42 0
0
0.42 -0.42 0
0.5
0.42 0.42 0.1
0
0 0 0
0.5
0.5
0.4
0.4
0.4
0.3
0.3
0.3
0.2
0.2
0.2
0.1
0.1
0.1
0
0
0
-0.1
-0.1
-0.1
-0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-0.2 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2018/10/14 黄建华制作 5
4.6.1由生成元生成的分形图形
lp=rov1*pp; %第一条树枝偏转向量 lp=p1+lp'; %第一条树枝端点C坐标 rp=rov2*pp; %第二条树枝偏转向量 rp=p2+rp'; %第二条树枝端点D坐标 uu=[u(2*m+1,:);p1;p1;lp;p1;p2;p2;rp;p2;u(2*m+2,:)]; %按顺序排列新线段两端点的坐标 uuu=[uuu;uu]; end u=[uuu]; plot(u(:,1),u(:,2)) ; axis([-0.5,0.5,0,1] ); end
相关文档
最新文档