李雅普诺夫稳定性的基本定理PPT课件

合集下载

李雅普诺夫方法ppt课件

李雅普诺夫方法ppt课件
第三章 动态系统的稳定性及李雅普诺夫
分析方法
1
§1 稳定性基本概念
一、外部稳定性与内部稳定性 1.外部稳定性
考虑一个线性因果系统,在零初始条件下,如果对应于任意有界输 入的输出均为有界,则称该系统是外部稳定的。
u(t) k1
y(t) k2
系统的外部稳定性也称有界输入-有界输出(BIBO)稳定性。
10
单摆是Lyapunov意义下稳定或渐近稳定的例子。
xe
11
§2 李雅普诺夫稳定性分析方法
一、李雅普诺夫第一法
又称间接法,通过系统状态方程的解来分析系统的稳定性, 比较适用于线性系统和可线性化的非线性系统。
1.线性系统情况
线性定常连续系统平衡状态 xe 0 为渐近稳定的充要条件
是系统矩阵A的所有特征值都具有负实部。
S( ) ,则称平
衡状态 xe 为不稳定。
二维状态空间中零平衡状态 xe 0 为不稳定的几何解释如右图。
对于线性系统一般有:
lim
t
x(t, x0,t0 ) xe

对于非线性系统,也有可能趋于
S ( ) 以外的某个平衡点或某个极限环。
x2
x(t)
x(t0 ) xe
S( ) S( ) x1
4
3. 平衡状态
对于系统

x
f
(
x ,t )
(线性、非线性、定常、时变)
x (t0 ) x0
如果存在 xe,对所有的t有 f (xe,t) 0 成立,称状态 xe为上述 系统的平衡状态。
通常情况下,一个自治系统的平衡状态不是唯一的。而对于 线性定常连续系统的平衡状态有:
x Axe 0 ①若A非奇异,xe 0 唯一的平衡状态

李雅普诺夫稳定性的基本定理描述64页PPT

李雅普诺夫稳定性的基本定理描述64页PPT

1
0















谢谢!
36、自己的鞋子,自己知道紧在哪里。——西班牙
37、我们唯一不会改正的缺点是软弱。——拉罗什福科
xiexie! 38、我这个人走得很慢,但是我从不后退。——亚伯拉罕·林肯
李雅普诺夫稳定性的基本定理描述
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。














9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
39、勿问成功的秘诀为何,且尽全力做你应该做的事吧。——美华纳
40、学而不思则罔,思而不学则殆。——孔子
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。

李雅普诺夫稳定性分析方法

李雅普诺夫稳定性分析方法
则是根据G(s)的特征值来分析其在小扰动 范围内运动稳定性.
(2)李雅普诺夫第二方法
• 也称直接法,属于直接根据系统结构判断内 部稳定性的方法.
• 该方法直接面对非线性系统,基于引入具有 广义能量属性的Lyapunov函数和分析李氏 函数的定量性, 建立判断稳定性的相应结 论.
• 因此直接法也是一般性方法----Lyapunov 第二法更具有一般性.
(2).平衡状态的形式.平衡状态 可由方程定 出,对二维自治系统, 的形式包括状态空 间中的点和线段.
(3).不唯一性.平衡状态 一般不唯一.
对定常线性系统而言,平衡状态 的解.
• 若矩阵A非奇,则有唯一解 • 若矩阵A奇异,则解 不唯一.
为方程
(4).孤立平衡状态,该状态是指状态空间彼此 分隔的孤立点形式的平衡状态,孤立平衡状 态的重要特征是:通过坐标移动可将其转换 为状态空间的原点.
• Lyapunov函数与
有关,用V(x)来
表示.
• 一般情况下V(x)>0 , 间的变化率.
表示能量随时
•当 少.
表明能量在运动中随时间推移而减
•当 加.
表明能量在运动中随时间推移而增
1.预备知识 1).标量函数V(x)性质意义:
令V(x)是向量x的标量函数,Ω是x空间包含 原点的封闭有限区域. (1).如果对所有区域Ω中的非零向量x,有 V(x)>0,且在x=0处有V(x)=0则在域Ω内称 V(x)为正定.
(3)用李氏方法分析的必要性 • 以一个例子说明:用特征值来判断线性时变
系统一般稳定性是会失效的.
• 其中特征值为 -1,-1.
• 但由于其解为
• 当 时,若 则必有 • 故平衡状态是不稳定的,即系统的实际表现

李雅普洛夫稳定性分析精品PPT课件

李雅普洛夫稳定性分析精品PPT课件
4、孤立平衡状态:如果多个平衡状态彼此是孤立的,则称这样 的状态为孤立平衡状态。单个平衡状态也是孤立平衡状态。
2.2 状态向量范数
符号 称为向量的范数,
为状态向量端点至
平衡状态向量端点的范数,其几何意义为“状态偏差
向量”的空间距离的尺度,其定义式为:
①范数 X 0 X e 表示初始偏差都在以Xe 为中心,δ为半径的 闭球域S(δ)内.
(2) 求系统的特征方程:
det(I
A)
1
求得:1 2,2 3
系统不是渐近稳定的。
6
1
(
2)(
3)
0
3.2 非线性系统的李亚普洛夫第一法
对非线性系统 X f (X ,t)
当f (X,t)为与X 同维的矢量函数,且对X 具有连续偏导数,则可将
向于无穷大时,有:
lim x
t
xe
0
即收敛于平衡状态xe,则称平衡状态xe为渐近稳定的。
如果 与初始时刻 t0无关,则称平衡状态xe为一致渐近稳定。
渐近稳定几何表示法:
Hale Waihona Puke 3、大范围渐近稳定如果对状态空间的任意点,不管初始偏差有多大,都有渐
近稳定特性,即:lim x t
xe
0
对所有点都成立,称平衡状态xe为大范围渐近稳定的。其
渐近稳定的最大范围是整个状态空间。
必要性:整个状态空间中,只有一个平衡状态。 (假设有2个平衡状态,则每个都有自己的稳定范 围,其稳定范围不可能是整个状态空间。)
结论:如果线性定常系统是渐近稳定的,则它一定是大范 围渐近稳定的。
4、不稳定 如果对于某一实数 0 ,不论 取得多么小,由 S( )内
域 S( ) ,当初始状态 x0 满足 x0 xe ( , t0 ) 时,对由此出发

李雅普诺夫稳定判据.ppt

李雅普诺夫稳定判据.ppt

例4.13 非线性系统的状态方程为


x1 x 2

x2

x1 (x12

x
2 2
)
x1 x2 (x12 x22 )
分析其平衡状态的稳定性。
解:确定平衡点:
xxe2e1
xe2 xe1
xe1(xe21 xe22 ) 0 xe2 (xe21 xe22 ) 0
取Q=I,P

P11

P12
P12
P22

,代入

T

0 1
1 P11

1

P12
P12 P22


P11

P12
P12 0
P22


1
1 1

10
0 1
P12

P11

P12
P12
P22 P22
不恒等于0,V (x) 也不恒等于0,因此, 系统平衡状态是大范围渐进稳定的。
李雅普诺夫函数不是唯一的。本例也可
取 则
V ( x)

1 2
[( x1
x2 ) 2
2 x12

x
2 2
]
V (x) (x1 x2 )(x1 x 2 ) 2x1 x1 x2 x 2
根据上述定义容易检验下列标量函数的正定性
1) V (x) = x12 2x22 是正定的;
2) V (x) = (x1 x2 )2 是半正定的,因为当 x1 x2 时 , V ( x) =0;
3)V (x) 0

第四章 稳定性与李雅普诺夫方法PPT课件

第四章  稳定性与李雅普诺夫方法PPT课件

03.11.2020
8
三、内部稳定性和外部稳定性间的关系
结论1:线性定常系统是内部稳定的,则其必是BIBO稳定的。
结论2:线性定常系统是BIBO稳定的,不能保证系统必是渐近稳 定的。
证:由系统结构的规范分解定理可知,通过引入线性非奇异变换, 可将系统分解为能控能观、能控不能观、不能控能观和不能控不 能观四个部分,而输入-输出特性只能反映系统的能控能观部分。 因此,系统的BIBO稳定只是意味着其能控能观部分为渐近稳定, 它既不表明也不要求系统的其它部分是渐近稳定的。
早在1892年,俄国数学家李雅普诺夫就提出将判定系统稳定性 的问题归纳为两种方法:李雅普诺夫第一法和李雅普诺夫第二 法。
前者是通过求解系统微分方程,然后根据解的性质来判定系统 的稳定性。它的基本思想和分析方法与经典理论是一致的。
03.11.2020
2
本章重点讨论李雅普诺夫第二法。
它的特点是不求解系统方程,而是通过一个叫李雅普诺夫函数的 标量函数来直接判定系统的稳定性。
因此,它特别适用于那些难以求解的非线性系统和时变系统。
李雅普ቤተ መጻሕፍቲ ባይዱ夫第二法除了用于对系统进行稳定性分析外,还可用于 对系统瞬态响应的质量进行评价以及求解参数最优化问题。
此外,在现代控制理论的许多方面,例如最优系统设计、最优 估值、最优滤波以及自适应控制系统设计等,李雅普诺夫理论 都有广泛的应用。
03.11.2020
只是在满足一定的条件时,系统的内部稳定性和外部稳定性之 间才存在等价关系。
03.11.2020
1
在经典控制理论中,对于单输入单输出线性定常系统,应用劳 斯(Routh)判据和赫尔维茨(Hurwitz)判据等代数方法判定系统的 稳定性,非常方便有效。

李亚普诺夫定义下的稳定性 现代控制理论 教学PPT课件

李亚普诺夫定义下的稳定性 现代控制理论 教学PPT课件

2
sin
x1
0 0
由平衡状态定义,令f(x1,x2)=0,可求得平衡状态
x1 x2
k
0
2021年4月30日
0
xe
,
0
,0,0 Nhomakorabea,
第5章第4页
注: ★
1、线性系统的任意平衡状态均可通过坐标变换将其 移到状态空间原点,其稳定性是一致的。
不失一般性的,我们认为线性系统的平衡状态确 定为xe=0。 2、对线性定常系统,可以认为是研究系统的稳定性; 而对其他系统,只能认为是研究某一平衡态下的稳 定性。
lim
t
x xe
x01 k
在t→∞的过程中,由于系统的解x不是收敛于平衡状态 xe,系 统是稳定的,但不是渐近稳定的。实际上,只要每个特征值均具
有负实部,则每个状态分量的零输入解将衰减为0,即收敛于0平
衡状态,系统是渐近稳定的。 ★
实际上,由于是线性系统,分析原点的平衡状态的稳定 性即可。
2021年4月30日
诺夫意义下的稳定。
2021年4月30日
第5章第10页
工程上往往喜欢渐近稳 定,因为希望干扰除去后, 系统又会回到原来的工作状 态,这个状态正是我们设计 系统时所期望的,也就是前 面所说的平衡状态。
x2 x0
s(ε) s(δ)
x1
渐近稳定
无论是李雅普诺夫意义下的稳定、渐进稳定,都属于系 统在平衡状态附近一小范围内的局部性质。因为系统只要在 包围 xe 的小范围内,能找到δ和ε满足定义中条件即可。至于 从s(δ)外的状态出发的运动,却完全可以超出s(ε)。因此,上 面涉及的是小范围稳定或小范围渐近稳定。
2021年4月30日
第5章第12页

5李雅普诺夫稳定性分析.ppt

5李雅普诺夫稳定性分析.ppt
➢ 由于导数表示的状态的运动变化 方向,因此平衡态即指能够保持 平衡、维持现状不运动的状态, 如上图所示.
平衡态(2/4) —定义1
平衡态
平衡态 平衡态
李雅普诺夫稳定性研究的平衡
x2
态附近(邻域)的运动变化问题.
➢ 若平衡态附近某充分小邻
xe
域内所有状态的运动最后
都趋于该平衡态,则称该
平衡态是渐近稳定的;
李雅普诺夫意义下的稳定性—范数(1/2)
1) 范数
范数在数学上定义为度量n维空间中的点之间的距离. ➢ 对n维空间中任意两点x1和x2,它们之间距离的范数记为 ||x1-x2||. ➢ 由于所需要度量的空间和度量的意义的不同,相应有各种 具体范数的定义. ➢ 在工程中常用的是2-范数,即欧几里德范数,其定义式为
对于定常系统来说,上述定义中的实数(,t0)与初始时刻t0必定 无关,故其稳定性与一致稳定性两者等价. ➢ 但对于时变系统来说,则这两者的意义很可能不同.
李雅普诺夫意义下的稳定性—稳定性定义(4/4)
概述(8/5)
李雅普诺夫稳定性理论不仅可用来分析线性定常系统,而且 也能用来研究 ➢ 时变系统、 ➢ 非线性系统,甚至 ➢ 离散时间系统、 ➢ 离散事件动态系统、 ➢ 逻辑动力学系统
等复杂系统的稳定性,这正是其优势所在.
概述(9/5)
可是在相当长的一段时间里,李雅普诺夫第二法并没有引起 研究动态系统稳定性的人们的重视,这是因为当时讨论系统 输入输出间关系的经典控制理论占有绝对地位.
t
式中,x(t)为系统被调量偏离其平衡位置的变化量; 为任意小的规定量。 ✓ 如果系统在受到外扰后偏差量越来越大,显然它不 可能是一个稳定系统。
概述(3/5)
分析一个控制系统的稳定性,一直是控制理论中所关注的最 重要问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中A为nn维的向量函数f(x)与x间的雅可比矩阵; R(x-xe)为Taylor展开式中包含x-xe的二次及二次以上的余项。 雅可比矩阵A定义为
李雅普诺夫第一法(4/7)
上述线性化方程的右边第一项A(x-xe)代表原非线性状态方程 的一次近似式,如果用该一次近似式来表达原非线性方程的近 似动态方程,即可得如下线性化的状态方程: x’=A(x-xe) ➢ 由于对如上式所示的状态方程总可以通过n维状态空间中 的坐标平移,将平衡态xe移到原点。 ➢ 因此,上式又可转换成如下原点平衡态的线性状态方程: x’=Ax
基本概念: 矩阵和函数的定号性(正定性、负定性等)
基本方法: 非线性系统线性化方法 李雅普诺夫第一法
难点喔!
矩阵符号(正定性、负定性等)检验方法
李雅普诺夫第二法
李雅普诺夫稳定性的基本定理(2/2)
下面先讲述 ➢ 李雅普诺夫第一法,然后讨论 ➢ 李雅普诺夫第二法
李雅普诺夫第一法(1/7)
5.2.1 李雅普诺夫第一法
李雅普诺夫第一法(6/7)
由上述李雅普诺夫第一法的结论可知,该方法与经典控制理论 中稳定性判据的思路一致,需求解线性化状态方程或线性状态 方程的特征值,根据特征值在复平面的分布来分析稳定性。 ➢ 值得指出的区别是: ✓ 经典控制理论讨论的是输出稳定性问题,而李雅普诺 夫方法讨论状态稳定性问题。
➢ 由于李雅普诺夫第一法需要求解线性化后系统的特征值, 因此该方法也仅能适用于非线性定常系统或线性定常系 统,而不能推广至时变系统。
李雅普诺夫第二法又称为直接法。 ➢ 它是在用能量观点分析稳定性的基础上建立起来的。 ✓ 若系统平衡态渐近稳定,则系统经激励后,其储存的能 量将随着时间推移而衰减。当趋于平衡态时,其能量 达到最小值。
✓ 反之,若平衡态不稳定,则系统将不断地从外界吸收能 量,其储存的能量将越来越大。
➢ 基于这样的观点,只要能找出一个能合理描述动态系统的 n维状态的某种形式的能量正性函数,通过考察该函数随 时间推移是否衰减,就可判断系统平衡态的稳定性。
李雅普诺夫第一法又称间接法,它是研究动态系统的一次近似 数学模型(线性化模型)稳定性的方法。它的基本思路是: ➢ 首先,对于非线性系统,可先将非线性状态方程在平衡态附 近进行线性化, ✓ 即在平衡态求其一次Taylor展开式, ✓ 然后利用这一次展开式表示的线性化方程去分析系 统稳定性。 ➢ 其次,解出线性化状态方程组或线性状态方程组的特征值, 然后根据全部特征值在复平面上的分布情况来判定系统 在零输入情况下的稳定性。
Ch.5 李雅普诺夫稳定性 分析
目录
概述 5.1 李雅普诺夫稳定性的定义 5.2 李雅普诺夫稳定性的基本定理 5.3 线性系统的稳定性分析 5.4 非线性系统的稳定性分析 本章小结
目录(1/1)
李雅普诺夫稳定性的基本定理(1/2)
5.2 李雅普诺夫稳定性的基本定理
本节主要研究李雅普诺夫意义下各种稳定性的判定定理和判 定方法。讨论的主要问题有:
李雅普诺夫第二法(1/3)
5.2.2 李雅普诺夫第二法
由李雅普诺夫第一法的结论可知,该方法能解决部分弱非线性 系统的稳定性判定问题,但对强非线性系统的稳定性判定则无 能为力,而且该方法不易推广到时变系统。 ➢ 下面我们讨论对所有动态系统的状态方程的稳定性分析 都适用的李雅普诺夫第二法。
李雅普诺夫第二法(2/3)
李雅普诺夫第一法(2/7)
下面将讨论李雅普诺夫第一法的结论以及在判定系统的状态 稳定性中的应用。
设所讨论的非线性动态系统的状态方程为 x’=f(x)
其中f(x)为与状态向量x同维的关于x的非线性向量函数,其各元 素对x有连续的偏导数。
李雅普诺夫第一法(3/7)
欲讨论系统在平衡态xe的稳定性,先必须将非线性向量函数f(x) 在平衡态附近展开成Taylor级数,即有
李雅普诺夫第一法(7/7)—例5-1
例5-1 某装置的动力学特性用下列常微分方程组来描述:
试确定系统在原点处的稳定性。 解 1: 由状态方程知,原点为该系统的平衡态。
➢ 将系统在原点处线性化,则系统矩阵为
因此,系统的特征方程为
|I-A|=2+K1+K2=0
李雅普诺夫第一法(8/7)
2. 由李雅普诺夫第一法知,原非线性系统的原点为渐近稳定的充 分条件为: K1>0 和 K2>0.
域上的正定函数。
实函数的正定性(2/4)—函数定号性定义
实函数的正定性(1/4)—函数定号性定义
(1) 实函数的正定性
实函数正定性问题亦称为函数定号性问题。
➢ 它主要讨论该函数的值在什么条件下恒为正,什么条件下 恒为负的。
➢ 下面先给出n维向量x的标量实函数V(x)的正定性定义。
定义5-5 设xRn,是Rn中包含原点的一个区域,若实函数V(x) 对任意n维非零向量x都有V(x)>0;当且仅当x=0时,才有
李雅普诺夫第二法(3/3)
在给出李雅普诺夫稳定性定理之前,下面先介绍一些 ➢ 数学预备知识,然后介绍一些 ➢ 李雅普诺夫稳定性定理的直观意义,最后介绍 ➢ 李雅普诺夫稳定性定理
数学预备知识(1/1)
1. 数学预备知识
下面介绍在李雅普诺夫稳定性分析中需应用到的如下数学预 备知识: ➢ 函数的正定性 ➢ 二次型函数和对称矩阵的正定性 ➢ 矩阵正定性的判别方法
判别非线性系统平衡态xe稳定性的李雅普诺夫第一法的思想 即为: ➢ 通过线性化,将讨论非线性系统平衡态稳定性问题转换到 讨论线性系统x’=Ax的稳定性问题。
李雅普诺夫第一法(5/7)
李雅普诺夫第一法的基本结论是: 1. 若线性化系统的状态方程的系统矩阵A的所有特征值都具 有负实部,则原非线性系统的平衡态xe渐近稳定,而且系统 的稳定性与高阶项R(x)无关。 2. 若线性化系统的系统矩阵A的特征值中至少有一个具有正 实部,则原非线性系统的平衡态xe不稳定,而且该平衡态的 稳定性与高阶项R(x)无关。 3. 若线性化系统的系统矩阵A除有实部为零的特征值外,其 余特征值都具有负实部,则原非线性系统的平衡态xe的稳 定性由高阶项R(x)决定。
相关文档
最新文档