第四章电路定理

合集下载

电路定理

电路定理

定理的内容:由线性含源电阻性二端网络 N 传递给可变负载 RL 的功率为最大的条件是:负载 RL
应与网络 N 的戴维南等效电阻 Req 相等,即 RL = Req ,其最大功率为
Pmax
=
U
2 oc
4Req
一般,最大功率传输定理要与戴维南定理联合使用。
知识点 6 特勒根定理
特勒根定理是电路理论中的一个重要定理,它适用于任何集中参数电路,且与电路元件的性质
不存在诺顿等效电路。若 Geq ≠ ∞ ,诺顿等效电路总是存在的。
对于同一电路,当两种等效电路都存在时,二者是等效的,等效条件与电压源模型和电流
源模型的等效条件完全相同。
Req
+ uoc

isc
=
uoc Req
Geq
=
1 Req

isc

Geq
uoc
=
isc Geq
Req
=
1 Geq
知识点 5 最大功率传输定理
第四章 电路定理
一、 教学目标
本章讨论电路的性质。通过学习,使学生熟练掌握(1)叠加定理和齐性定理;(2)等效电源定 理和最大功率传输定理;掌握(1)替代定理;(2)互易定理;了解(1)特勒根定理;(2)对偶原 理。 1. 知识教学点
叠加定理和齐性定理 替代定理 等效电源定理和最大功率传输定理 特勒根定理和互易定理 对偶原理 2. 能力训练点 掌握线性电路的叠加定理和齐性定理内容,利用叠加定理和齐性定理分析线性电路。 掌握替代定理。 掌握戴维南定理和诺顿定理的内容和适用范围;了解定理的证明;会求解线性含源电路的 戴维南和诺顿等效电路;会分析最大功率问题。 掌握互易定理内容和适用范围;会应用互易定理分析线性纯电阻电路,特别是抽象电路。

第4章电路定理th

第4章电路定理th

电流源单独作用时:电压源短路,电路等效如图, 由分流公式(注意方向)得:
南 京 工 业 大 学 信 息 科 学 与 工 程 学 院 通 信 系
I2 4Ω 3Ω
4Ω 4Ω 6A I2 6Ω 3Ω
6A 4Ω 6Ω
I 2 4 A
根据叠加定理,电流为:
I I1 I 2 3 A
第 4-15 页
设I1=1A,则利用OL,KCL, KVL逐次求得
306V 2Ω c 2Ω b 2Ω a 2Ω I7 I6 I5 I4 I3 I2 1Ω US 1Ω 1Ω d I1 1Ω
Ua =(2+1)I1 = 3V I2 = Ua /1 = 3A I3 = I1+ I2 = 1+3 = 4A Ub =2I3+ Ua = 2×4+3 =11V I4 = Ub /1 = 11A I5 = I3+ I4 = 4+11 = 15A
南 京 工 业 大 学 信 息 科 学 与 工 程 学 院 通 信 系
4.1 齐次定理和叠加定理 一、齐次定理 二、叠加定理 4.2 替代定理 一、替代定理 二、替代定理应用举例
4.3 等效电源定理 一、戴维宁定理 二、诺顿定理 三、等效内阻的计算 四、定理的应用举例 4.4 最大功率传输定理 4.5 特勒根定理和互易定理 一、特勒根定理 二、互易定理
4.1 齐次定理和叠加定理
对于一些未知结构(黑盒子)电路,利用性质进行分析,用叠 加定理求解更为方便。
南 京 工 业 大 学 信 息 科 学 与 工 程 学 院 通 信 系
例2 如图电路,N是含有独立源的线性电路,已知 当us = 6V,iS= 0时,开路电压uo= 4V; 当us = 0V,iS= 4A时,uo= 0V; 当us = -3V,iS= -2A时,uo= 2V; 求当us = 3V,iS= 3A时的电压uo

电路分析第四章 电路定理

电路分析第四章  电路定理

Uoc = U1 + U2
= -104/(4+6)+10 6/(4+6)
= -4+6=2V I a
Ri
+
(2) 求等效电阻Ri
Rx
a
Ri b
Uoc – b (3) Rx =1.2时,I= Uoc /(Ri + Rx) =0.333A I= Rx =5.2时, Uoc /(Ri + Rx) =0.2A Rx = Ri =4.8时,其上获最大功率。
计算; 2 加压求流法或加流求压法。
3 开路电压,短路电流法。
2 3 方法更有一般性。
(3) 外电路发生改变时,含源一端口网络的等效电路不变(伏安特性等效)。 (4) 当一端口内部含有受控源时,控制电路与受控源必须包 含在被化简的同一部分电路中。
21
第4章 电路定理
例1.
4 a Rx 6 + I b 10V
2.5A
10V 2 5V
?1A
?
这里替代后,两并联理想电压源 5V 5 1.5A 电流不确定,该支路不能被替代
14
第4章 电路定理
例.
3 + 1 Rx – U Ix + 0.5 0.5 若要使 I x 试求Rx。
1 8
I,
10V

I
0.5
解: 用替代:
1
1
I 0.5
8
I
1
0.5
又证:
ik
A
+ uk –
支 路 k
A
ik
+

uk
A
+ uk – uk
支 路 k
uk

电路课件(邱关源)04第四章电路定理

电路课件(邱关源)04第四章电路定理

( 3)
i3 = i3 + i3 + i3
(1) ( 2)
( 3)
上述以一个具体例子来说明叠加的概念, 上述以一个具体例子来说明叠加的概念,这个方 法也可推广到多个电源的电路中去。 法也可推广到多个电源的电路中去。
叠加定理: 叠加定理
在线性电路中, 任一电流(或电压 或电压)都是电路中各个独立 在线性电路中 , 任一电流 或电压 都是电路中各个独立 电源单独作用时,在该处产生的电流(或电压 的叠加( 或电压)的叠加 电源单独作用时 , 在该处产生的电流 或电压 的叠加 ( 代数 和)。 使用叠加定理应注意以下几点: 使用叠加定理应注意以下几点: (1)叠加定理适用于线性电路,不适用于非线性电路。 )叠加定理适用于线性电路,不适用于非线性电路。 (2)在叠加定理中,不作用的电压源置零,在电压源处 )在叠加定理中,不作用的电压源置零, 用短路代替; 不作用的电流源置零, 用短路代替 ; 不作用的电流源置零 , 在电流源处用开路 代替。 电路中所有电阻都不予更动,受控源则保留在各 代替。 电路中所有电阻都不予更动 , 分电路中。 分电路中。
i2 = im1 − im2
= i2 + i2 + i2
(1) ( 2)
R21 + R22 R11 + R12 + R21 + R22 R11 + R12 us1 − us2 + us3 = ∆ ∆ ∆
( 3)
i3 = im2
(1)
R11 + R21 − R21 − R11 us1 + us2 + us3 = ∆ ∆ ∆
( 2)
4 4Ω U I1 = − × 4 = −1.6 A 4+6 6 ( 2) I2 = × 4 = 2.4 A 4+6 ( 2) ( 2) ( 2) U 3 = −10 I 1 + 4 I 2 = −10 × ( −1.6 ) + 4 × 2.4 = 25.6V

第4章 电路的基本定理

第4章 电路的基本定理
(2 1)(i 2) 2i 0
i 1.2A
u 2(2 i) 1.6V
i i i 1.4 1.2 0.2A u u u 7.2 1.6 5.6V
【例4-4】图示N为线性含源网络。已知:当iS1=8A, iS2=12A 时,响应ux=80V;当iS1=-8A, iS2=4A时,响应ux=0V;当 iS1 =iS2 =0A时,响应ux=-40V。当iS1 =iS2 =20A时,ux为多少? 解 设网络N内所有独立源作为一组, 所产生的响应分量为ux(3), iS1和 iS2产 生的响应分量为AiS1与B iS2 。则
uk 为原值
(b)
ik 可以是任意值(电压源特点)
原电路[图(a)]的所有支路电压和电流将满足图(b)的全 部约束关系。若电路只有惟一解,则所有电压和电流保持原 值。
替代定理不适用:
⑴ 电路在替代前后,具有多解;
⑵ 被替代支路中,含有网络N中受控源的控制量, 且替代将使控制量消失。
【例4-6】图a电路中,i1=4A, i2=6A, i3=10A,u1=80V,
uS u Rin i iS
iS

u
i


uS
N

输入电阻
【例4-5】已知U=68V,求各支路电流。
A

U
I1
1
I3

1
I5

1
I7

1

U2

1
U4

1
U6

1
1
B
I2
I4
I6
I8
解 设 I8=1A,则
I 7 I 8 1A

第四章 电路定理

第四章 电路定理
R1 R4 R2 R3
2、电路中含有受控源。
R1 R2 R3 R4 R2 R3
即: R1 R3 R2 R4
求uoc 时,就是含受控源的线性电路分析问题; 求Re q 时,将独立源置零、受控源保留,用外加激励法。
1 uS R1 R2
i1
i2
R2 iS R1 R2
R1 iS R1 R2
u2 R2i2
R1 R2 iS R1 R2
i1 i1 i1,
u2 u2 u2
二,使用叠加定理的注意事项: • • • 叠加定理只适用于线性电路; 分解电路时,除独立电源以外的所有元件及连线不予更动; 电路中所有电压电流的参考方向不变;
示线性电阻电路,用叠加定理求得:
10 2 i1 (t ) A 2.5e t A (2.5 1.25e t )A 22 22 10 2 i 2 (t ) A 2.5e t A (2.5 1.25e t )A 22 22
§4-3 戴维南定理和诺顿定理 一、问题的引入: 1、对于一个无源线性一端口: 2、对于一个含独立源的线性一端口:
思考一下:如果上图中,不止一个电源激励,还有另外一个激励时, 如何分析? 结论:当两个电源激励同时增大K倍时,所有支路的响应也相 应增大K倍。 (这一点可以很方便的用叠加定理加以证明。) 2、齐性定理的推广: 在线性电路中,如果所有激励同时均增大K倍,则所有响 应也相应增大K倍。
再思考:如果线性电路中有两个电源激励,不同时增大同一倍数, 一个增大K1倍,而另一个增大K2倍,则响应会如何变化? 请看下图电路:

• •
独立电压源置零,用短路线取代(支路作短路处理) ;

邱关源《电路》第五版 第四章 电路定理

邱关源《电路》第五版   第四章 电路定理

1 + u 1
-
任何一个有源一端口网络,对外电路来说,可 以用一个电流源和电阻相并的组合来等效代替。电
1 R0=Req + + u uS =uOC 1
i
外 电 路
u uS R0i
uS uoc
R0 Req
§4-3 戴维宁定理和诺顿定理
3. 举例
【例1】电路如图,求通过电阻R3的电流I3 。
I3
4
R3 5
8
a Uoc
b 8
2
2
4 2
2 I1
+
40V
+
40V
10
+
-
2.25A 1
A 1.5A 1
B
1 0.5A 1A
US
+ Us D 4.5A 1 6
0.75A
6.75V
U AD 6 4.5V
U BC 2 3V
U 0 =2V
C 1 B 1
A 3A
+ 13.5V
1.5A
1A
2A
Us
-
6
U AD 6 9V
U BC 2 6V
U 0 =4V
iS1
+
R3
uS3
R3 iS1
中,任一支路电流
(或支路电压)都是
i iR1 R4 R2 R2 R1
i R1
R1
uS2
+ -
=
R4 i R 2 R2电路各个独立电源单
独作用时在该支路产
+
i R1
R1
R4 i R 2 R2
iR1
生的电流(或电压)

电路理论 .ppt

电路理论 .ppt
第四章 电路定理
本章主要内容:介绍重要的电路定理。 包括:叠加定理(包括齐性定理)、替代定理、戴维宁定理、 诺顿定理、特勒根定理、互易定理、有关对偶原理概念。
利用上述定理分析求解电路一般需要将电路作等效变换。灵 活运用电路定理可以使电路分析求解大为简化和方便。
4-1 叠加定理 由线性元件组成的电路称为线性电路 叠加定理:在线性电路中,若含有两个或两个以上的激励 电源,电路中任一支路的响应电流(或电压)就等于各电 源单独存在是在该支路产生的电流(或电压)的代数和。
16
注意:戴维宁等效电阻也等于含源一端口的开路电压 与短路电流的比值Req=uoc / isc
+ -
isc
由以上分析,端口的伏安特性为: u= uoc- iReq 令u=0, 则得到Req=uoc / isc
17
例:4-6 含源一端口网络如图所示,已知:uS1=25V, iS2=3A, R1=5, R2=20, R3=4, 求戴维宁等效电路。
它们具有相同的图,但由内容不同的支路构成。假设各支
路电流和支路电压取关联方向,并分别用(i1, i2, …ib)、 (u1,
u2, …ub)和 (iˆ1,iˆ2,...,iˆb )、(uˆ1,uˆ2,...,uˆb ) 表示两电路中b条
支路的电流和电压,则对任何时间t ,有:
b
ukiˆk 0
互易定理3:对于一个仅含线性电阻的电路,在单一电流源激 励而响应为电流时,如果将激励与响应互换位置,并将电流源 激励改为电压源激励,响应改为电压时,则比值保持不变。
33
4-6 对偶原理
注意以下关系式:u Ri, i Gu 对于CCVS: u2 ri1, 对于VCCS: i2 gu1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( 2)
9.6V
u3 u3 u3
(1)
( 2)
29.2V
方法1:考虑各个电阻 和总电流的分流关系
15A + 30V+ 11V 11A + 8V-
4A 3A + 2V + 1V 1A
+ 3V -
方法2:倒退法。先假设末端电阻两端的电压为1V
给定的电压源电压为82V, 这相当于将激励增加了82/41倍(即K=2), 故各支元件的电压和电流也同样增加了2倍。 本例计算是先从梯形电路最远离电源的一端算起, 倒退到激励处,故把这种计算方法叫做“倒退法”。 此方法利用了线性电路的一个特性---齐性定理。
等效电阻
Req
Req=16+20//5 =20kΩ
i
电阻R的改变不会影响原一端口的戴维宁等效电路, R吸收的功率为 U2 R
p i2R
oc
( Req R) 2
R变化时,最大功率发生在dp/dR=0的条件下。 这时有R=Req 。 本题中, Req=20kΩ,故R=20kΩ时才能获得最大功率, 2 uoc pmax 0.2mW 4Req
Isc
U ( 3 1) 4 16V
a + 1A U 4 b -
4.4 最大功率传输定理
一个含源线性一端口电路,当所接负载不同时,一端 口电路传输给负载的功率就不同,讨论负载为何值时能从 电路获取最大功率,及最大功率的值是多少的问题是有工 程意义的。
i A
i + Req 应用戴维 + 宁定理 Uoc – + u – RL
支路的电压uk和电流ik已知,那么这条支路就可以 用一个具有电压等于uk的独立电压源,或者用一个 具有电流等于ik的独立电流源来替代,替代后电路 中全部电压和电流均将保持原值。
ik Rk ik
uk
usk
uk
us is
u s uk
is ik
替代定理既适用于线性电路也适用于非线性电路.
另外,支路K也可用一个电阻来代替,替代电阻为Rs:
u 负载 –
负载的功率:
uoc 2 P RL ( ) Req RL
P
uoc 2 P RL ( ) Req RL
对P求导:
2 P ' uoc
P max
0
RL
( Req RL ) 2 2 RL ( Req RL ) ( Req RL )
4
0
2 oc
RL Req
u3
(c)
( 2)
(b)
i
(1) 1
10i
(1) 1
i1
( 2)
10i1
( 2)
i2
(1)
u3
(1)
i2
( 2)
u3
(c)
( 2)
(b)
在图b中 在图c中
10 i1 i2 1A 64 (1) (1) (1) u3 10i1 4i2 6V
(1) (1)
4 i1 4 1.6A 64 6 ( 2) i2 4 2.4A 64
压器。 变压器还有变换负载阻抗的作用,以实现匹配,采用 不同的变比,把负载变成所需要的、比较合适的数值。

含源一端口外接可调电阻R, 当R等于多少时,它可以从电路 中获得最大功率? 求此最大功率。 一端口的戴维宁等效电路可作前述方法求得: Uoc=4V Req=20kΩ
结点电压法求开路电压
10 3 Uoc 5 =4V 1 1 5 20
( 2)
i
(1) 1
10i
(1) 1
i1
( 2)
10i
( 2) 1
+
i2
( 2)
u3
(b)
(1)
i2
( 2)
u3
(c)
( 2)
在图b中
在图c中
( 2)
前面已知 u3 19.6V
所以
(1)
6 i1 i2 0.6A 64 ( 2) ( 2) ( 2) u3 10i1 4i2 6
4V

I
Uab=4V Req=2Ω
I=1A
例:
I
求电流 I 。 解: 1、如图断开电路 2、求开路电压 Uabo=4+4+1=9V
+ 4V -
- 4V +
a
b
3、求R0
电源置0
R0
R0=2+2.4 =4.4Ω
4、恢复原电路
I
U abo I =1.8A R0 0.6
I
例: 求电流 I 。
( 2)
( 2)
u3
所以
10i1
( 2)
4i2
( 2)
25.6V
u3 u3 u3
(1)
( 2)
19.6V
i1
上例中,增 加一个电压 源,求u3
10i1
u3
(a)
i
(1) 1
10i
(1) 1
i1
+
( 2)
10i
( 2) 1
+
=
i2
( 2)
u3
(b)
(1)
i2
( 2)
u3
(c)
戴维宁定理也称为等效电压源定理
1
Ns
1′
外 电 路
Req + uoc -
1
1′
外 电 路
1
Ns
1′
+ uoc -
1
No
Req
1′
注意: uoc 的方向
例:
1A
I
利用戴维宁定理求电流I
a
电压源置零,用短路替代 电流源置零,用开路替代
变成无源
b
Req + 1V a
Req=2Ω b Uab=4V
I 1A
来说,电路的其余部分就成为一个有源二端网
络,可等效变换为较简单的含源支路 ( 电压源 与电阻串联或电流源与电阻并联支路 ), 使分 析和计算简化。戴维宁定理和诺顿定理正是给 出了等效含源支路及其计算方法。
一、戴维宁定理
内容
一个含独立电源、线性电阻和受控源的一端口, 对外电路来说,可以用一个电压源和电阻的串 联组合等效置换,此电压源的电压等于一端口 的开路电压,电阻等于一端口的全部独立电源 置零后的输入电阻。
U0 =9 (2/3)I0=6I0
Req = U0 /I0=6
a + U0 b Req Uoc + –
独立源置零 (3) 等效电路
3 U0 9 3V 6 3
6
9V
3
•请同学们自己复习输入电阻Rin和等效电阻的求法.
二、诺顿定理
一个含独立电源、线性电阻和受控源的一端口, 对外电路来说,可以用一个电流源和电导的并联组 合等效变换,电流源的电流等于该一端口的短路电 流,电导等于把该一端口全部独立电源置零后的输 入电导。
i i
i
( 2) ( 2) 1 1 ( 2) 2
图a
i1
( 2)
i2
+
i2
( 2)
图b
图c
i
(1) 1
i1
i2
(1)
( 2)
i2
( 2)
图b 在图b中 在图c中
图c
(1)
i1 i2
( 2)
(1)
10 1A 64
4 i1 4 1.6A 64 6 ( 2) i2 4 2.4A 64
R u /i
s k
k
ik Rk
uk
Rs
usk
例:
i1 i2
i3
u3
u3
20 4 + + 4 6
1 1 1 6 8 4
=8V
i3 1A
i1 i2
i3
u3 8V
u3
i3 1A
§4.3 戴维宁定理和诺顿定理
(Thevenin-Norton Theorem)
工程实际中,常常碰到只需研究某一支路 的电压、电流或功率的问题。对所研究的支路
诺顿定理也称为等效电流源定理
应用电压源和电阻的串联组合与电流源和电 导的并联组合之间的等效变换,可推得诺 顿定理。
i + Ns u i + u -
i Req + -
isc
+
Geq u -
uoc
例2
求电压U。
解 本题用诺顿定理求 比较方便。因a、b 处的短路电流比开 路电压容易求。
(1) 求短路电流Isc
i1 i2
所以
i1 i
(1) 1 (1)
i
( 2) 1 ( 2)
1 1.6 0.6A 1 2.4 3.4A
受控电压源
i2
(a)
u3
i
=
(1) 1
10i
(1) 1
i1
+
( 2)
10i1
( 2)
i2
(1)
u3
(1)
i2
( 2)
二、说明 1、叠加定理适用于线性电路,不适用于非线性 电路; 2、叠加时,电路的联接以及电路所有电阻和受 控源都不予更动;
3、叠加时要注意电流和电压的参考方向与电源分别 作用时的方向关系(代数和); 4、不能用叠加定理来计算功率,因为功率不是电流 或电压的一次函数。以电阻为例:
p i R (i1 i2 ) R i1 R i2 R
Pmax
u 4 Req
相关文档
最新文档