七年级数学下册专题训练2几何图形的运算及证明课件新版北师大版
合集下载
北师大版七年级数学下册《图形的全等》课件

2、表示三角形全等时应注意什么?
3、识别全等三角形的对应边、对应角的关键是 正确识别它们的对应顶点。
4、注意在数学中常常通过平移、旋转或翻折 这三种图形变换方式,识别全等三角形。
2.判断题:
①全等三角形的对应边相等,
对应角相等. ( √ )
②全等三角形的周长相等.
( √)
③全等三角形的面积相等.
(√)
④面积相等的三角形是全等三角形. ( × )
3.下面2幅图是三对全等三角形,请按要求填空:
D
C
A
D
O
A
BB
C
图1中,AD的对应边是____,∠D的对应角是____. 图2中,BO的对应边是____,∠A的对应角是____.
活动一:找出下列图形中形状、大小相同的图形。
①
F ②
③
a
F d e
解后思:
位置不同,
b
c
但形状、
大小相同
f
g
h
1.什么叫全等形? 2.什么叫全等三角形?
3.什么叫全等三角形的对应顶点、 对应边、对应角?
4.如何表示两个三角形全等?
5.表示两个三角形全等时应注意什么? 6.全等三角形有什么性质?
请欣赏图片1
全等三角形性质:
A
D
B
CE
F
全等三角形的对应边相等,对应角相等
∵ △ABC≌△DEF ∴ AB=DE、BC=EF、CA=FD
∠A=∠D、 ∠B=∠E、 ∠C=∠F
典型例题
例 如图,若ΔOAD≌ΔOBC, 且 ∠O=65°,∠C=20°,则∠OAD=
95 °.
O
B
A
E
D
C
3、识别全等三角形的对应边、对应角的关键是 正确识别它们的对应顶点。
4、注意在数学中常常通过平移、旋转或翻折 这三种图形变换方式,识别全等三角形。
2.判断题:
①全等三角形的对应边相等,
对应角相等. ( √ )
②全等三角形的周长相等.
( √)
③全等三角形的面积相等.
(√)
④面积相等的三角形是全等三角形. ( × )
3.下面2幅图是三对全等三角形,请按要求填空:
D
C
A
D
O
A
BB
C
图1中,AD的对应边是____,∠D的对应角是____. 图2中,BO的对应边是____,∠A的对应角是____.
活动一:找出下列图形中形状、大小相同的图形。
①
F ②
③
a
F d e
解后思:
位置不同,
b
c
但形状、
大小相同
f
g
h
1.什么叫全等形? 2.什么叫全等三角形?
3.什么叫全等三角形的对应顶点、 对应边、对应角?
4.如何表示两个三角形全等?
5.表示两个三角形全等时应注意什么? 6.全等三角形有什么性质?
请欣赏图片1
全等三角形性质:
A
D
B
CE
F
全等三角形的对应边相等,对应角相等
∵ △ABC≌△DEF ∴ AB=DE、BC=EF、CA=FD
∠A=∠D、 ∠B=∠E、 ∠C=∠F
典型例题
例 如图,若ΔOAD≌ΔOBC, 且 ∠O=65°,∠C=20°,则∠OAD=
95 °.
O
B
A
E
D
C
部编北师大版七年级数学下册优质课件 2 图形的全等 (2)

做一做
如图所示,一个等边三角形,你能把它分成两 个全等的三角形吗?三个呢?四个呢?
随堂演练
1.下列说法正确的是( C ) ①用一张相纸冲洗出来的10张1寸相片是全等图 形; ②我国国旗上的4颗小五角星是全等图形; ③所有的正方形是全等图形; ④全等图形的面积一定相等.
2.对于两个图形,给出下列结论:①两个 图形的周长相等;②两个图形的面积相等;③ 两个图形的周长和面积都相等;④两个图形的 形状相同,面积也相同.其中能获得这两个图形 全等的结论共A有( ) A.1个 B.2个 C.3个 D.4个
➢ ∠A 与 ∠D 重合,它们是对应角.
A
D
A(D)
B
CE
F B(E)
C(F)
△ABC 与 △DEF 全等,记作△ABC ≌ △DEF . 注意:记两个三角形全等时,通常把表示
对应顶点的字母写在对应的位置上.
全等三角形的对应边相等,对应角相等.
议一议
(1)全等三角形对应边的高相等吗?对应
边的中线呢?还有哪些相等的线段?举例说明.
A F
B C
E
课堂小结
能够完全重合的两个图形称为全等图形. 全等图形的形状和大小都相同. 全等三角形的对应边相等,对应角相等.
课后作业
1.从教材习题中选取; 2.完成练习册本课时的习题.
2 图形的全等
北师大版七年级数学下册
新课导入
同一张底片洗出来的两张大小相同的照片有什 么关系?
新课探究
这些图形中,有些是完全一样的,如果把它们叠在 一起,它们就能重合. 你能分别从图中找出这样的图形吗?
能够完全重合的两个图形称为全等图形.
议一议
(1)你能说出生活中全等图形的例子吗? (2)观察下面三组图形,们是不是全等图形? 为什么?
几何证明北师大版七年级数学下册习题PPT课件

(2)解:成立,理由如下: ∵∠BDA=∠BAC=α, ∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α, ∴∠CAE=∠ABD, ABD=CAE, 在△ADB和△CEA中, BDA=CEA
AB AC, ∴△ADB≌△CEA(AAS), ∴AE=BD,AD=CE, ∴DE=AE+AD=BD+CE.
∴Rt△BDF≌Rt△ADC(SAS), 如图,直线a和b被直线c所截,下列条件中不能判断a∥b的是( ) C.∠2+∠4=180°
∴BE⊥AE; ∵E是CD的中点,∴DE=EC.
12.如图,在△ABC中,∠ACB=90°,CE⊥AB于点E, AD=AC,AF平分∠CAB交CE于点F,DF的延长线交AC于 点G. 求证:(1)DF∥BC;
7.如图,BE=FC,∠A=∠D,∠B=∠F.
求证:△ABC≌△DFE. 证明:∵BE=CF,
∴BE+EC=CF+EC,即BC=EF,
在△ABC和△DFE中,
A D B F BC FE ∴△ABC≌△DFE(AAS).
8.如图,BD⊥AC于点D,CE⊥AB于点E,BD与CE相交于点 O,连接线段AO,AO恰好平分∠BAC.求证:OB=OC. 证明:∵BD⊥AC,CE⊥AB,AO平分∠BAC,
(1)证明:∵∠ACB=∠DCE, ∴∠ACD=∠BCE, AB=BC, 在△ACD和△BCE中,ACD BCE
CD CE, ∴△ACD≌△BCE(SAS);
(2)解:由(1)知:△ACD≌△BCE, ∴AD=BE=5,∴AB=AD+BD=5+2=7.
10.如图,在△ABC中,AD⊥BC于点D,E为AC上一点,连 接BE交AD于F,且AD=BD,DC=DF.求证:BE⊥AC. 证明:∵AD⊥BC,∴∠BDF=∠ADC=90°,
数学北师大版七年级下册图形的全等精品PPT课件 (2)

3 △ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,你能得出△ACE中 哪些角的大小,哪些边的长度吗?为什么 ?
A
E
D
O
B
C
教学过程
我校要修一座等边三角形花池(形状如 下),有这么几种方案:
1、把它分成两个全等的三角形 2、把它分成三个全等的三角形 3、把它分成四个全等的三角形 并在分成的全等三角形中种上不同颜色 的花,你赞成哪种方案?请绘出你的平 面效果图,大家评一评,看谁的方案 最漂亮?
⑶.找出对应角,它们有什么关系? (口答) 对应角:________ _________
A
B
图1
______________
⑷.如果∠A=35°,∠D=75°,那么∠COB=____ A
C
2、如图2,如果△ADE ≌ △CBF,那么AE∥CF吗?
___ (口答“是”或“不是”)
DB
EF
图2
教学过程
三、教学过程
活动1. 生活中的例子:
片出同 。的一
同张 规底 格片 照洗
两张纸重合后的剪纸;
还有……?
教学过程 活动2. 观察:
教学过程
活动3、动手做一做:
同学们,现有一个旧的三角形纸样,
我们怎样在新的纸板上剪出一个一样
的三角形纸板。
比一比:
裁下的纸板和
样板的形状、
大小是否 完
全 一样?能
完全重合吗?
B A
B1
B
C
B1
B
C (C1)
C1 A1
C (B1)
A1
教学过程
全等对应元素的找法 A
D
O
小组活动 方法提练
北师大版初中七年级下册数学课件图形的全等PPT模板

角 ∠B1=AC∠=2∠DAE
角 ∠B= ∠D 角 ∠C= ∠E
填一填
(1)全等三角形对应边上的高相等吗?对应边的中线呢?还 有那些相等的线段? (2)如图3-24,△ABC≌△A'B'C',你如何在△A'B'C' 中画出与线段DE相对应的线段?
延伸拓展
比一比
1 已知:如图1,△OAD与△OBC全等,请用式子表 示出这种关系:________________ 找出对应边,它们有什么关系?(口答) 对应边:________ _________ ________ 找出对应角,它们有什么关系? (口答)
C
F
A
BD
E
点D
能够互相重合的角叫做对应角
边DE
能够互相重合的边叫做对应边
你能找出其他的对应顶点、对应边和对应角吗?
全等三角形的性质:
全等三角形的对应边相等,对应角相等。
A
D
B
CE
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 ) ∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
图形的全等
北师大版初中七年级下册数学课件
汇报人:XXX
图形的全等
北师大版初中七年级下册数学课件
汇报人:XXX
目录
复习巩固
01.
课堂讨论
03.
新课导入
02.
延伸拓展
04.
复习巩固
全等图形的定义
观察图5−14中的两组图:
这些图形中,有些是完全一 样的,如果把它们叠在一起, 它们就能重合.
你能分别从图中找出这样 的图形吗?
角 ∠B= ∠D 角 ∠C= ∠E
填一填
(1)全等三角形对应边上的高相等吗?对应边的中线呢?还 有那些相等的线段? (2)如图3-24,△ABC≌△A'B'C',你如何在△A'B'C' 中画出与线段DE相对应的线段?
延伸拓展
比一比
1 已知:如图1,△OAD与△OBC全等,请用式子表 示出这种关系:________________ 找出对应边,它们有什么关系?(口答) 对应边:________ _________ ________ 找出对应角,它们有什么关系? (口答)
C
F
A
BD
E
点D
能够互相重合的角叫做对应角
边DE
能够互相重合的边叫做对应边
你能找出其他的对应顶点、对应边和对应角吗?
全等三角形的性质:
全等三角形的对应边相等,对应角相等。
A
D
B
CE
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 ) ∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
图形的全等
北师大版初中七年级下册数学课件
汇报人:XXX
图形的全等
北师大版初中七年级下册数学课件
汇报人:XXX
目录
复习巩固
01.
课堂讨论
03.
新课导入
02.
延伸拓展
04.
复习巩固
全等图形的定义
观察图5−14中的两组图:
这些图形中,有些是完全一 样的,如果把它们叠在一起, 它们就能重合.
你能分别从图中找出这样 的图形吗?
数学北师大版七年级下册图形的全等(2)精品PPT课件

解:全等的图形有①和⑧,④和⑥.
2 图形的全等
[归纳总结] 对于形状相同的图形进行比较,可使用圆规、量 角器,测一测对应边是否相等,对应角是否相等,这里的观察 和比较是关键,但要注意,不能只凭观察得结论,眼睛有时会 产生错觉,所以测量是必需的.
2 图形的全等
探究问题二 寻找全等三角形的对应边和对应角 例2如图4-2-6所示,△ABD≌△ACE,AB=AC,写出图中的
2 图形的全等
新知梳理
► 知识点一 全等图形 能够完全重合的两个图形称为___全__等__图__形_____.
2 图形的全等
► 知识点二 全等图形的特征 全等图形的___形__状___和__大__小__都相同.
2 图形的全等
► 知识点三 全等三角形 能够完全重合的两个三角形叫做_____全__等_三__角__形___. 在两个
[归纳总结]寻找对应元素的规律有:(1)有公共;(3)有对顶角 的,对顶角是对应角;(4)两个全等三角形最大的边是对应边, 最小的边是对应边;(5)两个全等三角形最大的角是对应角,最 小的角是对应角;(6)两个全等三角形中对应角所对的边是对应 边,对应边所对的角是对应角.
解: DF⊥AC.理由如下: 因为△ABC≌△DBE,所以∠A=∠D. 已知∠A+∠C=90°,故∠D+∠C=90°. 又因为∠D+∠C+∠DFC=180°, 所以∠DFC=90°,即DF⊥AC.
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
2 图形的全等
探究问题三 全等三角形的性质的运用 例3如图4-2-7所示,△ABC≌△DBE,AB⊥BC,DE的延长线
2 图形的全等
[归纳总结] 对于形状相同的图形进行比较,可使用圆规、量 角器,测一测对应边是否相等,对应角是否相等,这里的观察 和比较是关键,但要注意,不能只凭观察得结论,眼睛有时会 产生错觉,所以测量是必需的.
2 图形的全等
探究问题二 寻找全等三角形的对应边和对应角 例2如图4-2-6所示,△ABD≌△ACE,AB=AC,写出图中的
2 图形的全等
新知梳理
► 知识点一 全等图形 能够完全重合的两个图形称为___全__等__图__形_____.
2 图形的全等
► 知识点二 全等图形的特征 全等图形的___形__状___和__大__小__都相同.
2 图形的全等
► 知识点三 全等三角形 能够完全重合的两个三角形叫做_____全__等_三__角__形___. 在两个
[归纳总结]寻找对应元素的规律有:(1)有公共;(3)有对顶角 的,对顶角是对应角;(4)两个全等三角形最大的边是对应边, 最小的边是对应边;(5)两个全等三角形最大的角是对应角,最 小的角是对应角;(6)两个全等三角形中对应角所对的边是对应 边,对应边所对的角是对应角.
解: DF⊥AC.理由如下: 因为△ABC≌△DBE,所以∠A=∠D. 已知∠A+∠C=90°,故∠D+∠C=90°. 又因为∠D+∠C+∠DFC=180°, 所以∠DFC=90°,即DF⊥AC.
提问与解答环节
Questions And Answers
谢谢聆听
·学习就是为了达到一定目的而努力去干, 是为一个目标去 战胜各种困难的过程,这个过程会充满压力、痛苦和挫折
2 图形的全等
探究问题三 全等三角形的性质的运用 例3如图4-2-7所示,△ABC≌△DBE,AB⊥BC,DE的延长线
北师大版七年级下册数学:全等三角形的判定与性质的复习课件(22张PPT)
A.8 B.7 C.6 D.5
分层练习
自测
4号同学
3、如图,AC=DC,BC=EC,∠ACD=∠BCE,下
列结论错误的是( D )
A.∠A=∠D
B. ∠B=∠E
C. AB=DE
D. CD=CE
分层练习
自测
3号同学
4、如图,已知点B、E、C、F在同一条直线上,AB=DE, AC=DF,BE=CF.试说明AB∥DE.
自测 抢答题规则:异组同号的同学抢答同一题
拾阶而上,快马加鞭 抢答题规则:异组同号的同学抢答同一题
)
2、组长调控, 组内交流,探讨解题的方法,做好展示与点评的准备(时间为5分钟)
抢A.答1题0 规则:异B.组1同2 号的同学C.抢68答号同题D.一1题6
全等三角形的判定与性质的复习
1(、1)你能 在找 图到1中一,对A5三号C与角题B形D的相全等等吗吗??请并说说明明理理4由号由;题
No Image
课后思考
(2)若△COD绕点O顺时针旋转一定角度后,到达图 2的位置,请问AC与BD还相等吗?为什么?
No Image
谢谢同学们的努力!下课
抢答题规则:异组同号的同学抢答同一题
注意:全等三角形的判定方法中没有“AAA”,SSA。
2、已知△ABC2≌号△题A′B′C′,且△ABC的周长为20,3号题
如图,若△ABC≌△DEF,EF=17 BF=5,则FC的长度是( )
请画出图形,并说说上题的结论1是号否题成立? 请画出图形,并说说上题的结论是否成立?
情境引入
如图,某同学把一块三角形的玻璃打碎成了三块,现 在他要到玻璃店去配一块完全一样的玻璃,则他带的 是哪块玻璃去比较合适,请说明理由
分层练习
自测
4号同学
3、如图,AC=DC,BC=EC,∠ACD=∠BCE,下
列结论错误的是( D )
A.∠A=∠D
B. ∠B=∠E
C. AB=DE
D. CD=CE
分层练习
自测
3号同学
4、如图,已知点B、E、C、F在同一条直线上,AB=DE, AC=DF,BE=CF.试说明AB∥DE.
自测 抢答题规则:异组同号的同学抢答同一题
拾阶而上,快马加鞭 抢答题规则:异组同号的同学抢答同一题
)
2、组长调控, 组内交流,探讨解题的方法,做好展示与点评的准备(时间为5分钟)
抢A.答1题0 规则:异B.组1同2 号的同学C.抢68答号同题D.一1题6
全等三角形的判定与性质的复习
1(、1)你能 在找 图到1中一,对A5三号C与角题B形D的相全等等吗吗??请并说说明明理理4由号由;题
No Image
课后思考
(2)若△COD绕点O顺时针旋转一定角度后,到达图 2的位置,请问AC与BD还相等吗?为什么?
No Image
谢谢同学们的努力!下课
抢答题规则:异组同号的同学抢答同一题
注意:全等三角形的判定方法中没有“AAA”,SSA。
2、已知△ABC2≌号△题A′B′C′,且△ABC的周长为20,3号题
如图,若△ABC≌△DEF,EF=17 BF=5,则FC的长度是( )
请画出图形,并说说上题的结论1是号否题成立? 请画出图形,并说说上题的结论是否成立?
情境引入
如图,某同学把一块三角形的玻璃打碎成了三块,现 在他要到玻璃店去配一块完全一样的玻璃,则他带的 是哪块玻璃去比较合适,请说明理由