人教版数学九年级上册23.2中心对称(4)教案

合集下载

人教版数学九年级上册23.2.2 中心对称图形教案

人教版数学九年级上册23.2.2 中心对称图形教案

23.2.2中心对称图形●类比导入(1)欣赏:这些图案有什么共同的特征?(2)回顾:轴对称图形的特点是沿一条直线折叠,直线两旁的部分能够互相重合.(3)操作:你能将下面图形绕其上一点旋转180°,使旋转前后的图形完全重合吗?找出这些图形的共同特征.【教学与建议】教学:类比轴对称图形,中心对称图形,加强新旧知识之间的对比.建议:类比轴对称图形,学习中心对称图形.比较出两种图形的异同.●悬念激趣[魔术大揭秘]将图①中的四张扑克牌中的一张旋转180°后,得到图②,你知道旋转了哪一张扑克牌吗?议一议.图①图②【教学与建议】教学:通过魔术游戏及大家常见的扑克牌引入课题,激发学生学习兴趣.建议:班级先分组,然后实际操作比赛.命题角度1中心对称图形的识别识别中心对称图形,会辨别轴对称图形与中心对称图形.【例1】(1)下列标志既是轴对称图形又是中心对称图形的是(A)A B C D(2)下列关于数字变换的图案中,是中心对称图形但不是轴对称图形的是(A)A B C D命题角度2中心对称图形的开放性作图命题方式:①设计中心对称图形;②将原有图形分割为若干个中心对称图形.【例2】(1)图①和图②中所有的小正方形都全等,将图①的正方形放在图②中①②③④的某一位置,使它与原来7个小正方形组成的图形是中心对称图形,这个位置是__③__.图①图②(2)有一块矩形土地ABCD,其中有一口如图所示的圆形井,现将此土地分给甲、乙两户承包种植蔬菜.若使两家得到的面积一样大,请帮他们分一分.(保留作图痕迹)解:如图,直线l即为所求的痕迹.必胜的下棋游戏要玩这种游戏,需要准备一张正方形纸ABCD(如图所示),再找一些形状、大小相同,而且对称的小东西,例如同样分值的硬币、围棋棋子等等.规则:两人对垒,两个人依次把棋子一个一个放到纸上的任意位置,一直到没有地方再放为止,最后放下棋子的那个人为赢家.必胜法则:假设我们使走第一步棋的人获胜,那他只需把他的第一个棋子放到正方形对角线的交点O处,并使棋子的对称中心和点O重合;以后每一次把自己的棋子放到对手所放棋子的对称位置上(比如如图:对方放在M处,我就放M′处,对手放N处,我就放N′处等等).只要遵守这个规则,那么走第一步的人总会找到安放棋子的位置,最后必然获胜.几何道理:正方形是中心对称图形,对角线的交点是对称中心.经过对称中心的任意直线(如图的EF等)都把图形分成相等的两部分,因此,除掉这个中心O外,任何一点(放下的任一棋子)必然有它对称的另一点(放棋子的位置).由此可知,只要走第一步棋的人占领了图形的中心位置,那么无论他的对手把棋子放到什么位置,必然会找到一个和对手刚刚放下的棋子位置相对称的空位子.又因为棋子位置每次必须由后走的人选择,因此玩到最后,先下的人必胜.高效课堂教学设计1.了解中心对称图形的概念及其性质.2.让学生掌握中心对称图形性质的应用.▲重点中心对称图形的概念、性质及其运用.▲难点中心对称图形性质的应用.◆活动1新课导入剪纸艺术是我国文化宝库中的优秀瑰宝.如右图是一幅剪纸作品,将它绕其中心点旋转180°后能与自身重合.我们把具有这样特征的图形叫做中心对称图形.观察下列图案,它们都具有这样的特征吗?本节课我们就学习中心对称图形的一些知识.◆活动2探究新知1.教材P66思考.提出问题:(1)线段AB绕点O旋转180°后的图形与它本身有什么关系?(2)▱ABCD绕点O旋转180°后,点A的对应点为__点C__,点C的对应点为__点A__,点B的对应点为__点D__,点D的对应点为__点B__,旋转后的图形与它本身有什么关系?学生完成并交流展示.2.(1)除了上面所讲的线段、平行四边形都是中心对称图形外,你还能说出一些其他的中心对称图形吗?(2)说说中心对称图形具有哪些特点?它与中心对称有什么区别和联系?学生完成并交流展示.◆活动3知识归纳1.把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形__重合__,那么这个图形叫做中心对称图形,该点就是__它的对称中心__.2.判断中心对称图形的“两个方法”:①若一个图形上,存在这样的一个点,使整个图形绕着这个点旋转180°后能够与原来的图形重合,则这个图形就是中心对称图形;②若图形中的对应点的连线都经过同一个点,并且被这个点平分,则这个图形就是中心对称图形.3.中心对称图形是指一个图形本身是中心对称的,它反映了一个图形的本质特征.而中心对称是指两个图形关于某一点对称,揭示的是两个全等图形之间的一种位置关系.◆活动4例题与练习例1随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是(A)例2判断下列图形是否为中心对称图形,如果是,请指出它们的对称中心.(1)线段;(2)等腰三角形;(3)平行四边形;(4)矩形;(5)圆;(6)角.解:(1)是中心对称图形,对称中心是线段的中点;(3)(4)是中心对称图形,对称中心是它们对角线的交点;(5)是中心对称图形,对称中心是圆心;(2)(6)不是中心对称图形.例3下列各图是中心对称图形吗?如果是,请画出它们的对称中心.解:三种图形都是中心对称图形,它们的对称中心如图中点A,B,C所示.练习1.教材P67练习第1,2题.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是(C)A B C D3.下列四个图形中,既是轴对称图形又是中心对称图形的是(B)A B C D4.如图,在矩形中挖去一个正方形,并用无刻度的直尺(即直尺只具有连线的功能),准确作出直线l,将剩下图形的面积平分.(保留作图痕迹)解:如图,直线l即为所求.◆活动5课堂小结1.中心对称的定义,会判断某个图形是否为中心对称图形.2.中心对称图形的性质及运用.1.作业布置.(1)教材P69习题23.2第2,8题;(2)对应课时练习.2.教学反思。

人教版九年级数学上册23.2.2《中心对称》教学设计

人教版九年级数学上册23.2.2《中心对称》教学设计

人教版九年级数学上册23.2.2《中心对称》教学设计一. 教材分析人教版九年级数学上册第23.2.2节《中心对称》是中心对称图形部分的内容。

这部分内容是在学生已经掌握了平面几何的基本概念和性质的基础上进行讲解的。

本节内容主要介绍中心对称图形的定义、性质和判定方法,以及如何通过中心对称来解决一些几何问题。

教材通过具体的图形和实例,引导学生探究中心对称图形的性质,培养学生的观察能力、推理能力和解决问题的能力。

二. 学情分析九年级的学生在数学方面已经有了一定的基础,对平面几何的概念和性质有一定的了解。

但是,对于中心对称图形的理解和运用可能还存在一定的困难。

因此,在教学过程中,需要引导学生通过观察、操作、推理等方法,逐步理解中心对称图形的性质和判定方法,提高他们解决问题的能力。

三. 教学目标1.了解中心对称图形的定义和性质。

2.学会判断一个图形是否为中心对称图形。

3.能够运用中心对称图形的性质解决一些几何问题。

4.培养学生的观察能力、推理能力和解决问题的能力。

四. 教学重难点1.中心对称图形的定义和性质。

2.中心对称图形的判定方法。

3.如何运用中心对称图形的性质解决几何问题。

五. 教学方法1.引导法:通过问题引导,让学生主动探究中心对称图形的性质和判定方法。

2.操作法:让学生通过实际操作,观察和分析中心对称图形的性质。

3.讨论法:让学生通过小组讨论,共同解决问题,培养学生的合作能力。

六. 教学准备1.教学课件:制作中心对称图形的课件,包括图片、实例和动画等。

2.教学素材:准备一些中心对称图形的实例,用于讲解和练习。

3.教学工具:准备黑板、粉笔、直尺、圆规等教学工具。

七. 教学过程1.导入(5分钟)通过一个具体的图形,引导学生观察和思考,提出问题:“这个图形有什么特殊性质?”让学生回顾平面几何的知识,为新课的学习做铺垫。

2.呈现(10分钟)讲解中心对称图形的定义和性质,通过具体的实例和动画,让学生直观地理解中心对称图形的概念。

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册

23.2.2中心对称图形教学设计2024-2025学年人教版数学九年级上册
2. 数学抽象:学生能够从具体的图形中抽象出中心对称图形的概念,理解中心对称图形的性质,并能够将这些性质抽象成数学语言进行表达。
3. 数学建模:学生能够将中心对称图形的性质应用到实际问题中,通过建立数学模型来解决问题,培养学生的数学应用能力和解决问题的能力。
教学难点与重点
1. 教学重点:
(1)中心对称图形的概念:本节课的核心是让学生理解并掌握中心对称图形的定义,即图形中心有一个点,称为对称中心,使得图形上的任意一点关于对称中心都有对应的一点,这两点距离对称中心相等,且连线垂直平分。
- 针对学生在自主学习和合作学习中的困难,提供更多的学习资源和指导,帮助学生提高自主学习能力和团队合作能力。
- 定期进行教学反思和评估,及时调整教学策略和方法,以提高教学效果。
教学评价与反馈
2. 小组讨论成果展示:通过小组讨论成果展示,评估学生在合作学习中的参与度和对中心对称图形概念、性质的理解程度。
6. 学生自我评价与反馈:鼓励学生进行自我评价和反馈,让他们认识到自己的优点和不足,并提出改进建议。
7. 家长反馈:通过与家长的沟通,了解学生在家庭中的学习情况,并根据家长反馈给予学生适当的指导和建议。
8. 定期进行教学评价与反馈,及时调整教学策略和方法,以提高教学效果。
课后作业
1. 请学生运用中心对称图形的性质,设计一个简单的几何作图,并说明作图步骤和原理。
4. 已知一个矩形ABCD,点E是CD边上的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。
5. 已知一个正方形ABCD,点E是对角线AC的中点,点F是对称中心,求证:AE=BF。解答:通过中心对称性质,点F是对称中心,因此F是AE和BF的中点,所以AE=BF。

23.2 中心对称(第4课时)教学设计

23.2 中心对称(第4课时)教学设计

23.2 中心对称(4)第四课时教学内容两个点关于原点对称时,它们的坐标符号相反,即点P(x,y),关于原点的对称点为P′(-x,-y)及其运用.教学目标1.知识与技能理解P与点P′点关于原点对称时,它们的横纵坐标的关系,掌握P(x,y)关于原点的对称点为P′(-x,-y)的运用.复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用.2.过程与方法(1)复习中心对称图形和对称中心的有关概念,然后提出问题,让学生观察、•思考,老师归纳得出中心对称图形和对称中心的有关概念,最后用一些例题、练习来巩固这个内容.(2)复习平面直角坐标系的有关概念,•通过实例归纳出两个点关于原点对称时,坐标符号之间的关系,并运用它解决一些实际问题.(3)通过复习平移、轴对称、旋转等有关概念研究如何进行图形设计.3.情感、态度与价值观让学生经历观察、操作等过程,了解图形旋转的概念,从事图形旋转基本性质的探索活动,进一步发展空间观察,培养运动几何的观点,增强审美意识.让学生通过独立思考,自主探究和合作交流进一步体会旋转的数学内涵,获得知识,体验成功,享受学习乐趣.让学生从事应用所学的知识进行图案设计的活动,享受成功的喜悦,激发学重难点、关键1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)•关于原点的对称点P′(-x,-y)及其运用.2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题.教具、学具准备小黑板、三角尺教学过程一、复习引入(学生活动)请同学们完成下面三题.1.已知点A和直线L,如图,请画出点A关于L对称的点A′.lA2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.BAC老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知(学生活动)如图23-74,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、•D (2,2)、E (3,-3)、F (-2,-2),作出A 、B 、C 、D 、E 、F 点关于原点O 的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?老师点评:画法:(1)连结AO 并延长AO (2)在射线AO 上截取OA ′=OA(3)过A 作AD ′⊥x 轴于D ′点,过A ′作A ′D ″⊥x 轴于点D ″. ∵△AD ′O 与△A ′D ″O 全等 ∴AD ′=A ′D ″,OA=OA ′∴A ′(3,-1)同理可得B 、C 、D 、E 、F 这些点关于原点的中心对称点的坐标.(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点? 提问几个同学口述上面的问题.老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P (x ,y )关于原点O 的对称点P ′(-x ,-y ).例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.分析:要作出线段AB 关于原点的对称线段,只要作出点A 、点B 关于原点的对称点A ′、B ′即可.解:点P (x ,y )关于原点的对称点为P ′(-x ,-y ),因此,线段AB 的两个端点A (0,-1),B (3,0)关于原点的对称点分别为A ′(1,0),B (-3,0). 连结A ′B ′.则就可得到与线段AB 关于原点对称的线段A ′B ′.(学生活动)例2.已知△ABC ,A (1,2),B (-1,3),C (-2,4)利用关于原点对称的点的坐标的特点,作出△ABC 关于原点对称的图形.老师点评分析:先在直角坐标系中画出A 、B 、C 三点并连结组成△ABC ,要作出△ABC 关于原点O 的对称三角形,只需作出△ABC 中的A 、B 、C 三点关于原点的对称点,•依次连结,便可得到所求作的△A ′B ′C ′. 三、巩固练习 教材P73 练习.。

人教版数学九年级上册教学设计23.2《中心对称》

人教版数学九年级上册教学设计23.2《中心对称》

人教版数学九年级上册教学设计23.2《中心对称》一. 教材分析人教版数学九年级上册第23.2节《中心对称》是学生在学习了平面几何基本概念和性质的基础上进一步探究中心对称图形的性质和判定。

本节内容通过具体例子让学生理解中心对称的概念,探索中心对称图形的性质,以及学会判断一个图形是否为中心对称图形。

教材通过丰富的例题和练习题,帮助学生巩固知识,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有了一定的了解。

但学生在学习过程中可能会对中心对称图形的判断和性质的理解存在一定的困难。

因此,在教学过程中,教师需要关注学生的认知水平,引导学生通过观察、操作、思考、交流等活动,逐步理解中心对称的概念和性质。

三. 教学目标1.理解中心对称的概念,掌握中心对称图形的性质和判定方法。

2.能够运用中心对称的知识解决一些实际问题。

3.培养学生的空间想象能力、逻辑思维能力和合作交流能力。

四. 教学重难点1.重点:中心对称的概念,中心对称图形的性质和判定方法。

2.难点:中心对称图形的性质的理解和运用。

五. 教学方法1.采用问题驱动法,引导学生通过观察、操作、思考、交流等活动,自主探究中心对称的概念和性质。

2.运用多媒体辅助教学,展示中心对称图形的动态变化,增强学生的直观感受。

3.结合具体例子,让学生通过实践操作,加深对中心对称图形的性质的理解。

4.采用小组讨论法,培养学生的合作交流能力和解决问题的能力。

六. 教学准备1.多媒体教学设备。

2.中心对称图形的课件和练习题。

3.剪刀、彩笔等学具。

七. 教学过程1.导入(5分钟)教师通过展示一些图片,如天安门、蜜蜂等,引导学生观察这些图片,并提出问题:“你们认为这些图片有什么共同特征?”学生在观察和思考的过程中,发现这些图片都是中心对称的。

教师进而引导学生总结中心对称的概念。

2.呈现(10分钟)教师通过多媒体展示中心对称图形的动态变化,让学生直观地感受中心对称的过程。

人教版九年级数学上册23.2.2.1《中心对称》教案

人教版九年级数学上册23.2.2.1《中心对称》教案

人教版九年级数学上册23.2.2.1《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何相关知识的基础上,进一步引导学生探索中心对称的性质和运用。

本节内容通过具体的实例,让学生了解中心对称的定义,掌握中心对称图形的性质,并能够运用中心对称解决实际问题。

教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生动手操作和观察分析的能力。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的了解。

但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习和操作来巩固。

此外,学生对实际问题的解决能力有待提高,需要通过具体的例子来引导和培养。

三. 教学目标1.了解中心对称的定义,掌握中心对称图形的性质。

2.能够运用中心对称解决实际问题,提高学生的应用能力。

3.培养学生的动手操作和观察分析能力,激发学生学习几何的兴趣。

四. 教学重难点1.中心对称的定义和性质。

2.中心对称在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过具体的实例和问题,引导学生探索中心对称的性质,培养学生的动手操作和观察分析能力。

同时,学生进行小组合作学习,鼓励学生发表自己的观点和思考,提高学生的合作能力和沟通能力。

六. 教学准备1.准备相关的图片和实例,用于引导学生探索中心对称的性质。

2.准备一些实际问题,用于巩固学生对中心对称的应用。

3.准备黑板和粉笔,用于板书重要的概念和性质。

七. 教学过程1.导入(5分钟)通过展示一些图片,如天安门、蝴蝶等,引导学生观察这些图片的共同特点,引发学生对中心对称的思考。

让学生发表自己的观点,教师总结并引入中心对称的概念。

2.呈现(10分钟)教师通过展示一些实例,如将一张纸折叠后,对折线两侧的图形完全重合,引导学生探索中心对称的性质。

教师引导学生动手操作,观察分析中心对称图形的性质,如对称轴的性质、对称点的性质等。

九年级数学人教版上册23.2中心对称与中心对称图形教学设计

学生在教师的引导下,通过观察、思考、讨论,自主探究中心对称的定义和性质。教师在此过程中,给予学生适当的提示和指导,帮助学生建立正确的概念。
3.实践操作,巩固知识
安排丰富的实践操作活动,如绘制中心对称图形、制作中心对称模型等,让学生在实际操作中加深对中心对称性质的理解,提高动手能力。
4.例题讲解,突破难点
3.教师对学生的练习情况进行总结,强调解题技巧和注意事项。
"在完成练习题的过程中,我发现有些同学在运用中心对称性质时还存在一些误区。这里,我要提醒大家,要注意区分中心对称与轴对称的区别,避免混淆。"
(五)总结归纳,500字
1.教师引导学生对中心对称的概念、性质和应用进行归纳总结。
"通过这节课的学习,我们深入了解了中心对称的定义、性质以及在几何问题中的应用。现在,请同学们回顾一下,我们今天都学到了哪些内容?"
3.教师结合课本例题,讲解中心对称性质在几何问题中的应用,帮助学生掌握解题方法。
"下面,我们来看一个例题,通过这个题目,我们来学习如何运用中心对称性质解决实际问题。"
(三)学生小组讨论,500字
1.教师布置小组讨论任务,让学生围绕中心对称的性质和应用展开讨论。
"现在,请同学们分成小组,结合我们刚刚学到的知识,讨论一下中心对称在生活中的应用,以及它在解决几何问题时的作用。"
7.课后作业,分层设计
根据学生的认知水平和学习需求,设计分层作业。基础题旨在巩固概念和性质,提高题旨在培养学生的综合运用能力和创新思维。
8.教学评价,关注个体差异
在教学过程中,关注学生的个体差异,采用多元化的评价方式,如口头提问、作业批改、小组评价等,全面了解学生的学习状况,及时给予指导和鼓励。

人教版数学九年级上册23.2.1《中心对称》教案

人教版数学九年级上册23.2.1《中心对称》教案一. 教材分析人教版数学九年级上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。

本节内容主要让学生了解中心对称的定义,掌握中心对称的性质和运用,能运用中心对称解决一些简单的几何问题。

二. 学情分析九年级的学生已经具备了一定的几何知识基础,对平面几何图形有一定的认识。

但学生在学习过程中,可能对中心对称的概念和性质理解不够深入,需要通过大量的练习来巩固。

三. 教学目标1.知识与技能:让学生理解中心对称的概念,掌握中心对称的性质,能运用中心对称解决一些简单的几何问题。

2.过程与方法:通过观察、操作、交流等活动,培养学生的空间想象能力和思维能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生团结协作、积极探究的精神。

四. 教学重难点1.重点:中心对称的概念和性质。

2.难点:中心对称在实际问题中的应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生主动探究,合作交流,培养学生的几何思维能力。

六. 教学准备1.教具准备:多媒体课件、几何画板、黑板、粉笔。

2.学具准备:学生自带直尺、圆规、三角板。

七. 教学过程1. 导入(5分钟)利用多媒体课件展示一些生活中的中心对称图形,如天安门、蝴蝶、脸谱等,引导学生观察并思考:这些图形有什么共同特点?你想到了什么几何概念?2. 呈现(10分钟)教师通过讲解和示范,给出中心对称的定义,并用几何画板展示中心对称的性质。

同时,让学生尝试解释中心对称的概念,并找出生活中的中心对称现象。

3. 操练(15分钟)学生分组进行练习,运用中心对称的性质解决一些简单的几何问题。

教师巡回指导,及时纠正错误,帮助学生巩固知识。

4. 巩固(10分钟)教师选取一些典型的练习题,让学生在课堂上独立完成,检验学生对中心对称知识的掌握程度。

同时,教师对学生的解答进行点评,指出不足之处,巩固所学知识。

5. 拓展(10分钟)教师提出一些拓展问题,如中心对称与轴对称的关系,让学生进行思考和讨论。

人教版九年级数学上册23.2.2《中心对称图形》教学设计

2.学生分享自己在学习中心对称图形过程中的收获和感悟。
3.教师布置作业:结合生活实际,寻找身边的中心对称现象,并思考如何运用中心对称性质解决问题。
4.教师总结本节课的学习成果,鼓励学生在今后的学习中,继续探索几何图形的奥秘。
五、作业布置
1.必做题:
(1)课后习题第1、2、3题,巩固中心对称图形的性质及运用。
3.创新实践:
(1)利用中心对称性质,设计一个简单的游戏规则,要求具有趣味性和挑战性。
(2)与同学合作,制作一个中心对称的实物模型,如剪纸、折纸等,展示中心对称的美。
4.作业要求:
(1)作业需独立完成,确保解题过程的正确性和书写的规范性。
(2)创新实践作业可以与家长、同学共同完成,培养合作精神和创新能力。
2.培养学生的合作精神:在小组合作中,学会倾听、表达、沟通,培养团队协作能力。
3.培养学生的创新意识:鼓励学生大胆尝试,勇于探索,激发创新思维。
在此基础上,本节课的教学设计将围绕以上三个目标展开,注重理论与实践相结合,让学生在轻松愉快的氛围中掌握中心对称图形的知识。
二、学情分析
九年级学生已具备了一定的几何基础和空间想象力,对轴对称图形有了深入的理解。在此基础上,引入中心对称图形的概念,学生能够更容易地接受并掌握相关知识。然而,由于中心对称与轴对称在性质和表现上有一定的相似性,学生在区分和运用时可能会产生混淆。因此,在教学过程中,应注重引导学生发现两者的联系与区别,帮助他们建立清晰的知识体系。此外,九年级学生正处于青春期,思维活跃,求知欲强,对新鲜事物充满好奇心。教师应充分调动学生的积极性,设计富有启发性和趣味性的教学活动,激发学生的学习兴趣和探究欲望。
三、教学重难点和教学设想
(一)教学重难点

人教版九年级数学上册23.2.3《中心对称》教案

人教版九年级数学上册23.2.3《中心对称》教案一. 教材分析人教版九年级数学上册第23章《中心对称》是学生在学习了平面几何基本概念和性质的基础上进行的一节内容。

本节内容主要让学生了解中心对称的定义,掌握中心对称的性质,并能够运用中心对称解决一些几何问题。

本节课的内容对于学生来说比较抽象,需要通过大量的实例和练习来帮助学生理解和掌握。

二. 学情分析九年级的学生已经具备了一定的几何基础,对于平面几何的基本概念和性质有一定的了解。

但是,由于中心对称是一个比较抽象的概念,学生可能难以理解和接受。

因此,在教学过程中,需要通过生动的实例和实际操作来帮助学生理解和掌握中心对称的概念和性质。

三. 教学目标1.了解中心对称的定义,掌握中心对称的性质。

2.能够运用中心对称解决一些几何问题。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.中心对称的定义和性质。

2.运用中心对称解决几何问题。

五. 教学方法采用问题驱动法和案例教学法,通过引导学生自主探究和合作交流,让学生在实际操作中理解和掌握中心对称的概念和性质。

六. 教学准备1.准备一些中心对称的图形,如圆、正方形、矩形等。

2.准备一些与中心对称相关的练习题。

七. 教学过程1.导入(5分钟)通过向学生展示一些中心对称的图形,如圆、正方形、矩形等,引导学生观察和思考:这些图形有什么共同的特点?从而引出中心对称的概念。

2.呈现(10分钟)向学生介绍中心对称的定义和性质,并通过具体的例子来解释和展示中心对称的性质。

3.操练(10分钟)让学生分组进行合作交流,每组选择一个中心对称的图形,探讨并总结出该图形的中心对称性质。

然后,让学生在黑板上展示并解释他们的发现。

4.巩固(10分钟)让学生运用中心对称的性质解决一些几何问题,如证明两个三角形全等、求解一些几何图形的面积等。

5.拓展(5分钟)引导学生思考:中心对称与轴对称有什么区别和联系?从而引出轴对称的概念,为后续课程做铺垫。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

l
A 23.2 中心对称(4)
第四课时
教学内容
两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),关于原点的对称点为P ′(-x ,-y )及其运用. 教学目标
理解P 与点P ′点关于原点对称时,它们的横纵坐标的关系,掌握P (x ,y )关于原点的对称点为P ′(-x ,-y )的运用.
复习轴对称、旋转,尤其是中心对称,知识迁移到关于原点对称的点的坐标的关系及其运用. 重难点、关键
1.重点:两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )•关于原点的对称点P ′(-x ,-y )及其运用.
2.难点与关键:运用中心对称的知识导出关于原点对称的点的坐标的性质及其运用它解决实际问题. 教具、学具准备 小黑板、三角尺 教学过程 一、复习引入
(学生活动)请同学们完成下面三题.
1.已知点A 和直线L ,如图,请画出点A 关于L 对称的点A ′.
2.如图,△ABC 是正三角形,以点A 为中心,把△ADC 顺时针旋转60°,画出旋转后的图形.
3.如图△ABO ,绕点O 旋转180°,画出旋转后的图形.
老师点评:老师通过巡查,根据学生解答情况进行点评.(略) 二、探索新知
(学生活动)如图23-74,在直角坐标系中,已知A (-3,1)、B (-4,0)、C (0,3)、•D (2,2)、E (3,-3)、F (-2,-2),作出A 、B 、C 、D 、E 、F 点关于原点O 的中心对称点,并写出它们的坐标,并回答:这些坐标与已知点的坐标有什么关系?
老师点评:画法:(1)连结AO 并延长AO (2)在射线AO 上截取OA ′=OA
(3)过A 作AD ′⊥x 轴于D ′点,过A ′作A ′D ″⊥x 轴于点D ″. ∵△AD ′O 与△A ′D ″O 全等 ∴AD ′=A ′D ″,OA=OA ′
-3
-33
O
B
A C
-2-2
1
-1
y x
3
-4D
42
21
-1
∴A′(3,-1)
同理可得B、C、D、E、F这些点关于原点的中心对称点的坐标.
(学生活动)分组讨论(每四人一组):讨论的内容:关于原点作中心对称时,•①它们的横坐标与横坐标绝对值什么关系?纵坐标与纵坐标的绝对值又有什么关系?②坐标与坐标之间符号又有什么特点?
提问几个同学口述上面的问题.
老师点评:(1)从上可知,横坐标与横坐标的绝对值相等,纵坐标与纵坐标的绝对值相等.(2)坐标符号相反,即设P(x,y)关于原点O的对称点P′(-x,-y).
例1.如图,利用关于原点对称的点的坐标的特点,作出与线段AB•关于原点对称的图形.
分析:要作出线段AB关于原点的对称线段,只要作出点A、点B关于原点的对称点A′、B′即可.
解:点P(x,y)关于原点的对称点为P′(-x,-y),
因此,线段AB的两个端点A(0,-1),B(3,0)关于原点的对称点分别为A′(1,0),B(-3,0).
连结A′B′.
则就可得到与线段AB关于原点对称的线段A′B′.
(学生活动)例2.已知△ABC,A(1,2),B(-1,3),C(-2,4)利用关于原点对称的点的坐标的特点,作出△ABC关于原点对称的图形.
老师点评分析:先在直角坐标系中画出A、B、C三点并连结组成△ABC,要作出△ABC 关于原点O的对称三角形,只需作出△ABC中的A、B、C三点关于原点的对称点,•依次连结,便可得到所求作的△A′B′C′.
三、巩固练习
教材练习.
四、应用拓展
例3.如图,直线AB与x轴、y轴分别相交于A、B两点,将直线AB绕点O顺时针旋转90°得到直线A1B1.
(1)在图中画出直线A1B1.
(2)求出线段A1B1中点的反比例函数解析式.
(3)是否存在另一条与直线AB平行的直线y=kx+b(我们发现
互相平行的两条直线斜率k值相等)它与双曲线只有一个交点,若存在,
求此直线的函数解析式,若不存在,请说明理由.
分析:(1)只需画出A、B两点绕点O顺时针旋转90°得到的点
A1、B1,连结A1B1.
(2)先求出A1B1中点的坐标,设反比例函数解析式为y=k
x
代入
求k.
(3)要回答是否存在,如果你判断存在,只需找出即可;如果不存在,才加予说明.这一条直线是存在的,因此A1B1与双曲线是相切的,只要我们通过A1B1的线段作A1、B1关于原点的对称点A2、B2,连结A2B2的直线就是我们所求的直线.
解:(1)分别作出A、B两点绕点O顺时针旋转90°得到的点A1(1,0),B1(2,0),连结A1B1,那么直线A1B1就是所求的.
(2)∵A1B1的中点坐标是(1,1
2

设所求的反比例函数为y=k
x
则1
2=
1
k
,k=1
2
∴所求的反比例函数解析式为y=1 2 x
(3)存在.
∵设A1B1:y=k′x+b′过点A1(0,1),B1(2,0)

1`
02
b
k b
=


=+


`1
1
`
2
b
k
=



=-
⎪⎩
∴y=-1
2
x+1
把线段A1B1作出与它关于原点对称的图形就是我们所求的直线.
根据点P(x,y)关于原点的对称点P′(-x,-y)得:
A1(0,1),B1(2,0)关于原点的对称点分别为A2(0,-1),B2(-2,0)∵A2B2:y=kx+b

1
02`
b
k b
-=


=-+


1
2
1
k
b

=-


⎪=-

∴A2B2:y=-1
2x-1
下面证明y=-1
2x-1与双曲线y=1
2x 相切
1121
2
y x y x ⎧=--⎪⎪⎨⎪=
⎪⎩
-12x-1=12x ⇒x+2=-1x ⇒ x 2+2x+1=0,b 2-4ac=4-4×1×1=0
∴直线y=-1
2x-1与y=12x
相切
∵A 1B 1与A 2B 2的斜率k 相等 ∴A 2B 2与A 1B 1平行 ∴A 2B 2:y=-
1
2
x-1为所求. 五、归纳小结(学生总结,老师点评) 本节课应掌握:
两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y ),•关于原点的对称点P ′(-x ,-y ),及其利用这些特点解决一些实际问题. 六、布置作业
1.教材 复习巩固3、4.。

相关文档
最新文档