第一章 拓扑空间与

合集下载

拓扑空间的基本概念

拓扑空间的基本概念

拓扑空间的基本概念拓扑空间是数学中重要的概念,它是研究点集的开集和收敛性质的一种数学结构。

在现代数学中,拓扑空间理论是非常重要的一个分支,它不仅在纯数学中有着广泛的应用,也在物理学、工程学等其他学科中有着深远的影响。

本文将介绍拓扑空间的基本概念,包括拓扑空间的定义、开集、闭集、邻域、连通性等内容,帮助读者更好地理解和掌握这一重要的数学概念。

1. 拓扑空间的定义在介绍拓扑空间的基本概念之前,首先需要给出拓扑空间的定义。

拓扑空间是一个集合X上的一种拓扑结构,它是X的子集族T的一个元素,满足以下三条性质:(1)X和空集∅都是T的元素;(2)T中任意多个元素的交集仍然是T的元素;(3)T中有限个元素的并集仍然是T的元素。

满足上述性质的集合族T被称为X上的一个拓扑结构,而(X, T)被称为拓扑空间。

在拓扑空间中,集合X的元素被称为点,集合T的元素被称为开集。

2. 开集和闭集在拓扑空间中,开集和闭集是非常重要的概念。

开集是指拓扑空间中的一个子集,对于该子集中的每个点,都存在一个包含该点的开球,使得该开球完全包含在该子集中。

换句话说,开集是指对于其中的每个点,都存在一个邻域完全包含在该集合中。

闭集则是开集的补集。

换句话说,闭集是指包含了其所有极限点的集合。

在拓扑空间中,开集和闭集是相辅相成的概念,它们共同构成了拓扑结构的基础。

3. 邻域邻域是拓扑空间中另一个重要的概念。

给定拓扑空间X中的一个点x,邻域是包含x的一个开集。

换句话说,邻域是指包含了该点附近所有点的一个开集。

邻域的概念是用来描述点与点之间的接近程度,它在分析拓扑空间中点的性质和集合的性质时起着重要作用。

4. 连通性在拓扑空间中,连通性是一个重要的性质。

一个拓扑空间被称为连通的,如果它不可以被表示为两个不相交的非空开集的并。

换句话说,一个拓扑空间是连通的,如果任何两点之间都存在一条连续的曲线。

连通性是描述拓扑空间整体结构的一个重要性质,它反映了空间中点之间的连续性和联系性。

安徽师范大学拓扑学本科教学大纲

安徽师范大学拓扑学本科教学大纲

《数学系(点集拓扑学)》教学大纲
学时:51学时学分:3
适用专业:数学与应用数学专业
大纲执笔人:李伯权大纲审定人:孙国正
一、说明
1、课程的性质、地位和任务
拓扑学是基础性的数学分支,它研究几何图形在连续变形(即拓扑变换)下保持不变的性质,即拓扑性质。

目前,拓扑学的概念、方法和理论已经广泛地渗透到现代数学以及邻近学科的许多领域,并且有了日益重要的应用;又鉴于在今后中学数学的教学改革中有可能渗入某些拓扑知识,因此无论从数学教材的现代化和师范性的要求来看,本课程的设置都是必要的。

点集拓扑学又称一般拓扑学,它是拓扑学的基础,它主要研究拓扑空间的自身结构与其间的连续映射的学科。

本课程主要介绍点集拓扑学的基本概念和基础理论,通过本课程的学习可以使学生从较高观点观察、分析已学过的数学分析、函数论和几何的内容,加深对这些内容的认识与理解,并为进一步学习现代数学提供必要的基础。

2、课程教学的基本要求
(1)通过本课程的学习,学生应掌握点集拓扑的一些基本概念与应用拓扑学解决实际问题的能力。

以便为以后进一步学习、研究
现代数学打好基础;另一方面培养学生理论联系实际和分析问
题解决问题的能力。

(2)系统掌握点集拓扑的基本知识。

其基本内容包括:拓扑空间和连续映射的定义及其基本性质,构造新的拓扑空间的方法,各
种拓扑不变性质,如连通性、分离性、紧性、度量空间的完备
性等以及这些拓扑不变性之间的相互关联,这些拓扑不变性的
可积、可遗传等性质,基本群及其应用。

掌握点集拓扑中的证。

点集拓扑学(第一章1.1)

点集拓扑学(第一章1.1)
Department of Mathematics
1736年欧拉 解决七桥问题
哥尼斯堡 七桥问题 四色问题 Euler示性数
1976年9月四
Mö bius带
色问题得到解决
Department of Mathematics
哥尼斯堡七桥问题
哥尼斯堡是东普鲁士的首都,普莱格尔河横贯其中。 十八世纪在这条河上建有七座桥,将河中间的两个岛和河
岸联结起来。人们闲暇时经常在这上边散步
一天有人提出:能不能每座桥 都只走一遍,最后又回到原来的
位置。
这个问题看起来很简单, 有很有趣的问题吸引了大家. 很多人在尝试各种各样的走法,但谁也没有做到。看
来要得到一个明确理想的答案还不那么容易
Department of Mathematics
1736年,有人带着这个问题找到了当时的大数学家 欧拉,欧拉经过一番思考,很快就用一种独特的方法给出
了解答。
他把两座小岛和河的两岸分别看作四个点, 而把七座桥看 作这四个点之间的连线。那么这个问题就简化成,能不能用一 笔就把这个图形画出来。 经过进一步的分析,欧拉得出结论——不可能每座桥都走一 遍,最后回到原来的位置。并且给出了所有能够一笔画出来的 图形所应具有的条件。这是拓扑学的“先声”。
Department of Mathematics
和数学知识,能对实际问题进行分析、归纳、
提炼和解决,提高他们的数学素养。
Department of Mathematics
教学目标
掌握拓扑空间、度量空间和连续映射的定义、例子、
性质。掌握连通性,可数性,分离性,紧性等拓扑性质。 掌握几个重要的拓扑性质的可积性、可商性和遗传性。
教学要点
拓扑空间、度量空间和连续映射的定义、例子、性 质。连通性,可数性,分离性,紧性等拓扑性质。几个重

拓扑空间的基本概念与性质

拓扑空间的基本概念与性质

拓扑空间的基本概念与性质拓扑空间是数学中的一个重要概念,它在分析、代数、几何等领域中起着重要的作用。

本文将介绍拓扑空间的基本概念及其性质。

一、引言拓扑空间是由集合和集合上的拓扑结构构成的一种数学结构。

它是一种比度量空间更一般的空间,可以用于描述不同度量之间的性质。

拓扑空间的研究为数学领域的许多问题提供了新的解决方法。

二、拓扑空间的定义拓扑空间由以下三条公理定义:首先,给定一个非空集合X,X的全体子集构成的集合Τ称为X上的一个拓扑。

拓扑中的元素称为开集。

其次,空集和整个集合X都是开集。

最后,开集的任意并、有限交以及有限并仍然是开集。

三、开集与闭集拓扑空间中的开集具有以下性质:首先,空集和整个集合X都是开集。

其次,任意两个开集的交集仍然是开集。

最后,开集的任意并仍然是开集。

闭集是指和开集互补的集合。

四、邻域与极限点在拓扑空间中,邻域是指包含某个点的开集。

极限点是指在拓扑空间中,存在序列中的某一点,使得该点的任意邻域都与序列中的无穷个点相交。

五、连续映射拓扑空间中,连续映射是指保持拓扑结构的映射。

即,对于任意开集V,其原像在定义域中是一个开集。

连续映射有以下性质:首先,恒等映射是连续的。

其次,连续映射的复合仍然是连续的。

最后,如果映射的像是开集,那么定义域中的原像也是开集。

六、拓扑空间的性质拓扑空间具有许多重要的性质:首先,有限集在拓扑空间中是闭集。

其次,连续映射保持极限点。

最后,具有有限子覆盖性质的拓扑空间是紧致的。

七、子空间拓扑空间的子集上也可以定义一个拓扑结构,这样的子集称为子空间。

子空间具有许多与原空间相似的性质。

八、紧致性紧致性是拓扑空间中的重要概念之一。

一个拓扑空间是紧致的,当且仅当它的每一个开覆盖都有有限子覆盖。

九、拓扑空间的分类不同的拓扑空间之间可以存在同胚。

同胚是指两个拓扑空间之间存在一个双射,且该双射及其逆映射都是连续映射。

十、总结本文介绍了拓扑空间的基本概念与性质。

拓扑空间是数学中的一个重要研究对象,它可以用于描述不同度量之间的性质。

河北师大点集拓扑优质课件1[1]0

河北师大点集拓扑优质课件1[1]0

河北师大点集拓扑优质课件 1[1]0一、教学内容本节课我们将学习《点集拓扑》教材的第一章“拓扑空间与连续性”的第3节“紧致性”。

具体内容包括:理解紧致性的概念、探讨紧致空间的性质、掌握闭区间上的连续函数的属性以及探讨紧致性与有限覆盖定理之间的关系。

二、教学目标1. 让学生理解并掌握紧致性的定义,能够识别常见的紧致空间。

2. 培养学生运用紧致性解决实际问题的能力,理解紧致性在拓扑空间中的重要性。

3. 让学生掌握闭区间上连续函数的性质,并能运用这些性质解决相关问题。

三、教学难点与重点重点:紧致性的定义及性质,闭区间上连续函数的性质。

难点:理解紧致性与其他拓扑性质之间的关系,运用紧致性解决实际问题。

四、教具与学具准备1. 教具:PPT课件、黑板、粉笔。

2. 学具:教材、笔记本、文具。

五、教学过程1. 实践情景引入:通过展示地球仪上的紧致集合(如大陆),引导学生思考紧致性在实际生活中的应用。

2. 知识讲解:(1) 紧致性的定义:介绍紧致性的概念,通过示例让学生理解并掌握紧致集合的特点。

(2) 紧致空间的性质:讲解紧致空间的性质,如闭集、有限覆盖定理等。

(3) 闭区间上连续函数的性质:介绍闭区间上连续函数的性质,如有界性、最大值最小值定理等。

3. 例题讲解:讲解典型例题,引导学生运用所学知识解决实际问题。

4. 随堂练习:布置相关练习题,让学生巩固所学知识。

六、板书设计1. 紧致性的定义2. 紧致空间的性质3. 闭区间上连续函数的性质4. 典型例题及解题方法七、作业设计1. 作业题目:(2) 设f(x)在闭区间[0,1]上连续,证明f(x)在[0,1]上有界。

2. 答案:(1) A为紧致集合,B不为紧致集合。

(2) 证明:由于闭区间[0,1]为紧致集合,根据闭区间上连续函数的性质,f(x)在[0,1]上有界。

八、课后反思及拓展延伸1. 反思:本节课学生对紧致性的理解程度,以及对闭区间上连续函数性质的掌握情况。

拓扑学基础

拓扑学基础
研究拓扑空间的自身结构与其间的连续映射的学科,称为一般拓 扑学,也称为点集拓扑学,是拓扑学的基础。本部分介绍一般拓扑学 的基本内容,并为进一步学习有关其它课程提供必要的基础知识。
第一章 拓扑空间及其相关概念
拓扑空间的概念产生于对实直线,欧氏空间以及这些空间上的 连续函数的研究,它是欧氏空间的一种推广.本章介绍拓扑空间的概 念,给出与拓扑空间相关的一些重要的拓扑概念的定义,以及它们的 性质.
满足 (1) 对于 x, y ∈ , ( x, y ) ≥0; (2) 对于 x, y ∈ , ( x, y ) =0 当且仅当 x = y ; (3) 对于 x, y ∈ , ( x, y ) = ( y, x ); (4) 对于 x, y , ∈ , ( x, y )+ ( y, z ) ≥ ( , )(称为 三角不等式),
§1.4 一些重要的拓扑概念
1. 邻域,邻域系 定义 设( X ,Τ )是拓扑空间, a ∈ M ⊂ X ,若存在 G ∈Τ ,使得 a ∈G ⊂ M ,
则称集合 M 为点 a 的邻域.对于 x ∈ X ,点 x 的所有邻域构成的集族称 为点 x 的邻域系,记作 N x .一点的邻域不一定是开集,但开集是它的每 一点的邻域,并称开集为它的点的开邻域.
( ,ε). 定理 1 设( , )是度量空间,则集族 B ={ ( , )| ∈ , >0}
是集合 上的一个拓扑的基,称这个拓扑为由集合 上的度量 诱
5
导的拓扑,记作Τ ,也称为度量拓扑. 设( , )是度量空间, Τ 表示由度量 诱导的集合 上的拓
扑,因此( ,Τ )为拓扑空间,并约定:在称度量空间( , )为拓扑 空间时,指的是拓扑空间( ,Τ ).
则称 是集合 上的度量, ( x, y )称为 与 y 之间的距离,( , ) 称为度量空间, 称为度量空间( , )的基础集.在不致引起混淆 时,简称 为度量空间.

第一章、拓扑学基础

第一章、拓扑学基础

第一章、拓扑学基础1.1拓扑空间概念拓扑空间是一个二元组(S, O),这里S是给定集合,O是由S的一些子集构成的集类,其元素称为开集,并满足如下开集公理:T1 ∅, S∈O(即,∅, S是开集);T2 若U1,U2∈O,则U1⋂U2∈O(即,O对有限交封闭);T3 开集的任意并集还是开集(即,O对任意并封闭)。

註记满足上述开集公理的O,也称为集合S上的拓扑,(S, O)为相应的拓扑空间,也记为S。

例子实数集合ℝ上的标准拓扑:开集定义为若干个开区间的并集。

不难验证:这里定义的开集满足开集公理。

只需说明:两个开区间的交集为空集或开区间。

例子离散拓扑与平凡拓扑对给定的集合S,定义下列两个拓扑:(S,O1): O1由S的所有子集构成,它是S上的拓扑(最大拓扑)。

(S,O2): O2={∅,S},它是S上的拓扑(最小拓扑)。

练习给出实数集合ℝ上三种不同的拓扑空间结构。

练习设S是一个集合,O由∅,S及S的某个固定子集A的所有子集构成。

验证O是S上的拓扑。

从而,(S,O)是一个拓扑空间。

概念设(S, O)是拓扑空间,称A⊂S是闭集,如果S\A是开集。

拓扑空间S的所有闭集构成集合,记为C。

命题拓扑空间S中的闭集满足闭集公理C1 ∅, S∈C;C2 若A1,A2∈C,则A1⋃A2∈C(即,C对有限并封闭);C3 闭集的任意交集还是闭集(即,C对任意交封闭)。

证明:利用下列等式可证。

S\(A1⋃A2)=(S\A1)⋂(S\A2),S\(B ii。

i)=(S\B i)註记开集公理与闭集公理是等价的:若S中的某些子集指定为闭集,并满足闭集公理。

则S是拓扑空间,其开集由闭集的余集所构成。

概念对拓扑空间S,点u∈S的开邻域是指包含u的开集U;子集A⊂S的开邻域是指包含A的开子集;一个点(或子集)的邻域是一个子集,它包含该点(或该子集)的一个开邻域。

例子对拓扑空间ℝ,U=(-1,1)是0的开邻域;W=[-1,1]是0的邻域。

拓扑学的拓扑空间

拓扑学的拓扑空间

拓扑学的拓扑空间拓扑学是数学的一个重要分支,研究的对象是拓扑空间及其性质。

拓扑空间是集合论的一个应用领域,它是指任意一个集合及其上的拓扑结构。

本文将介绍拓扑空间的定义、性质以及与其他数学概念的关系。

一、拓扑空间的定义拓扑空间由两个部分组成:一个是集合,另一个是定义在这个集合上的拓扑结构。

集合可以是有限的,也可以是无限的。

拓扑结构则规定了集合中元素之间的接近方式或者邻近关系。

具体地说,拓扑结构包括了开集的概念和满足一定条件的子集之间的关系。

二、拓扑空间的性质1. 开集和闭集:在拓扑空间中,开集是指满足包含于自身内部的集合,闭集则是指包含它所有极限点的集合。

开集和闭集是拓扑空间中的基本概念,它们具有很多重要的性质。

2. 连通性:拓扑空间中的一个重要性质是连通性。

连通性是指拓扑空间中不存在可以将其划分为非空、互不相交且一个集合开,另一个集合闭的两个子集。

连通性在拓扑学和几何学中有广泛的应用,它刻画了空间的固有性质。

3. 同胚和同伦:同胚是指两个拓扑空间之间的一个一一映射,而且这个映射和其逆映射都是连续的。

同胚将一个拓扑空间映射到另一个拓扑空间,保持了拓扑结构的性质。

同伦是拓扑学中的一个关键概念,它刻画了两个空间之间的变形关系。

三、拓扑空间与其他数学概念的关系1. 拓扑空间与度量空间:度量空间是由距离函数所构成的空间,它是拓扑空间的一种特殊情况。

拓扑空间可以通过引入度量而变成度量空间,而度量空间中也能定义拓扑。

2. 拓扑空间与集合论:拓扑空间是集合论的一个应用领域,它运用了集合的概念和理论。

在拓扑学中,集合的元素被看作是拓扑空间中的点,而集合的子集则对应于拓扑空间的开集和闭集。

3. 拓扑空间与几何学:几何学是研究空间形状和性质的学科,而拓扑学则研究了几何学中的一些基本概念和性质。

拓扑空间提供了一种抽象的框架来研究几何学中的问题,使得研究更加一般化和推广。

总结:拓扑学的拓扑空间是集合论的一个重要应用领域,它研究了集合和集合上拓扑结构之间的关系,具有许多有趣的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 拓扑空间与连续映射
第一节 拓扑空间
数学分析中连续概念的刻画
ห้องสมุดไป่ตู้
1.1 拓扑空间的定义
例子
Ex.5 (欧氏拓扑)设R是全体实数 的集合,
拓扑的比较
• 问题1(如何构造具体的拓扑) • (1)若X有一个元素,则X上一共有几个拓 扑?(1个) • (2)若X有两个元素,则X上一共有几个拓 扑?(4个) • (3)若X有三个元素,则X上一共有几个拓 扑?(29个) • (4)若X有n()个元素,则4n≥X上一共 有几个拓扑?(思考题)
• 1.2 由度量诱导的拓扑
• 1.3拓扑空间中的几个基本概念 • 闭集 • Def. 1 拓扑空间X的子集A称为闭集,如果 Ac是开集。 •
• 1.4子空间
第二节 连续映射与同胚映射
• 2.1连续映射的定义
• 2.2连续映射的性质 下列映射一定连续:
• 2.3同胚映射
• 2. 生成的子集族:设Γ是X的一个子集族, 规定新的子集族
类似地,可以给出有限个拓扑空间的 乘积空间。 任意多个集合的笛卡尔积
无限个拓扑空间的乘积空间定义比较麻 烦,一般有两种:
• 3.2 乘积空间的性质
• 3.3 拓扑基 想法:度量空间中的开集是若干个互不相交 的球形邻域的并。度量拓扑由球形邻域生成; 乘积拓扑由一个特定的子集族生成。拓扑基 就是从上述方法中抽象出来的。
下面求f 的逆映射,为此令
第三节 乘积空间与拓扑基
• 在第一节中,我们曾提出过如下问题: • 问题3 设11(,X τ) 和22(,X τ) 都是拓扑空间, 则如何给出1 XX×2 上的拓扑结构τ?(乘 积拓扑) • 3.1 乘积空间
• 1. 投射:
注:τ是满足这两个投射都连续的最小拓扑。 (思考为什么要这样?)
• Pro1. Γ 是集合X 的拓扑基的充分必要条件 是:
• 补充知识:拓扑空间的子基 (可参考熊金 城《点集拓扑讲义》)
相关文档
最新文档