《结构力学习题集》6-位移法
结构力学——6位移法和力矩分配法

△ △
4、5、6 三个固定端都是不动的点,结点1 、2、3均无竖向位移。又因两根横梁其长 度不变,故三个结点均有相同的水平位移 FP △ 。
1
2
3
4
5
6
(a)
事实上,图(a)所示结构的独立线位移数 将结构的刚结点(包括固定支座)都变成 目,与图(b)所示铰结体系的线位移数目 铰结点(成为铰结体系),则使其成为几何 是相同的。因此,实用上为了能简捷地确 不变添加的最少链杆数,即为原结构的独 定出结构的独立线位移数目,可以 立线位移数目(见图b)。
4
5
6
(a)
共有四个刚结点,结点线位移数目为二 ,基本未知量为六个。基本结构如图所 示。
7
10 返回
5
6
(b)
例:确定图a所示连续梁的基本结构。 D B A C D B A C
(图a)
A A
B B
基本结构 基本结构
C C
D (图b) D
在确定基本结构的同时,也就确定了基本未知量及其数目。
EI
第六章
位移法和力矩分配法
§6—1 位移法的基本概念 §6—2 位移法基本未知量的确定 §6—3 位移法典型方程计算步骤和示例 §6—4 力矩分配法的基本概念 §6—5 用力矩分配法计算连续梁 §6—6 用力矩分配法计算无接点线位移刚架
1
§6—1
位移法的基本概念
一、位移法的提出(Displacement Method)
M
A
B
0
2i
r11 4i 4i 0
8EI r11 8i l
2i
M1
得
15
求自由项R1P,作出基本结构在荷载作用时的弯矩 图(MP图)。 取结点B为隔离体
第6章 位移法

1
60kN 1
21kN/m
1
150kN.m 2
1.5
1
3
弯矩,作弯矩图。
已知各杆线刚度:梁 为1,柱为1.5。 (2)固端弯矩为
F 01
2m 2m 4
1.5
5m
5
8m (a)荷载图
4m
2m
2。 解:(1)基本未知量为 1 、
3 1 F M Pl 90kN m M Pl 30kN m 10 8 8 1 F F M 12 21 64 112kN m M 21 112kN m 12 F M 23 50kN m
上式称为等截面直杆的转角位移方程,反映杆端力与杆 端位移间的关系。其中固端弯矩和剪力与跨间荷载有关,称 为载常数。常用荷载下的载常数见表 6.1。
6.2 等截面直杆的转角位移方程
6.2.2 转角位移方程的简化
转角位移方程 (6.2) 适用于两端均为刚结点的一般形式, 对
于下列两种特殊情况,方程形式可以简化。
6.3 连续梁和无侧移刚架的计算
(3)建立位移法方程
结点1: F M12 4i21 2i22 M12 41 22 112 M14 4 1.51 61
F M10 i11 M10 1 90
(e) (f)
结点 1 的力矩平衡方程:
0 2m
30kN
7.2kN/m 1 2 2m
20kN
3 2m
2 4m (a)荷载图
1.5
3
3m
6.3 连续梁和无侧移刚架的计算
(3) 利用转角位移方程(6.2),写出结点 1 和结点 2 相关 杆件的近端弯矩,并按力矩平衡条件建立基本方程。
位移法习题

结构力学-位移法习题1.确定用位移法计算下图所示结构的基本未知量数目,并绘出基本结构。
2.判断题1)位移法基本未知量的个数与结构的超静定次数无关。
()2)位移法可用于求解静定结构的内力。
()3)用位移法计算结构由于支座移动引起的内力时,采用与荷载作用时相同的基本结构。
()4)位移法只能用于求解连续梁和钢梁,不能用于求解桁架。
()3.已知下图所示钢架的结点B产生转角,试用位移法概念求解所作用外力偶M。
4.若下图所示结构结点B向右产生单位位移,试用位移法概念求解应施加的力。
5.已知钢架的弯矩图如下图所示,各杆常数,杆长,试用位移法概念直接计算结点B的转角。
6.用位移法计算下图所示的连续梁,作弯矩图和剪力图。
EI=常数。
7.用位移法计算下图所示结构,作弯矩图。
常数。
8.用位移法计算下图所示各结构,并作弯矩图。
常数。
9.利用对称性计算下图所示结构,作弯矩图。
常数。
10.下图所示等截面连续梁,,已知支座C下沉,用位移法求作弯矩图。
11.下图所示的刚架支座A下沉,支座B下沉,求结点D的转角。
已知各杆。
12.试用位移法计算下图所示结构,并绘出其内力图。
13.试用位移法计算下图所示结构,并绘出其内力图。
14.试用位移法计算图示结构,并绘出M图。
15.试用位移法计算图示结构,并绘出M图。
16.试利用对称性计算图示刚架,并绘出M图。
6m 6m9ml lq(a)4m 4m4m(b)10kN/m6m6m 6m 6m6m(a)8m 4m 4m 4m 4m20kN/m17. 试计算图示结构在支座位移作用下的弯矩,并绘出M 图。
18. 试用位移法计算下图所示结构,并绘出其内力图。
19. 试用位移法求作下列结构由于温度变化产生的M 图。
已知杆件截面高度h =0.4m ,EI =2×104kN ·m 2,α=1×10-5。
20.试计算图示具有牵连位移关系的结构,并绘出M 图。
3EI lA D CB l EI EIϕl Δ=ϕa 2aa 2aaF P6m 4m A B C +20℃0℃ +20℃0℃ 20kN8m 8m 6m 3m A C D EB F G EI 1=∞EI 1=∞ 3EI3EI 3EI EI。
结构力学6-位移法

7i 1 6 0
解得
(4)将结点位移代回杆端弯矩表达式。
6 M AB 2i 15 16.72kN m 7i 6 M BA 4i 15 11.57 kN m 7i 6 M BC 3i 9 11.57kN m 7i
M图(kNm)
§7-4
位移法Ⅱ——典型方程法
一、超静定结构计算的总原则:
欲求超静定结构先取一个基本结构,然 后让基本结构在受力方面和变形方面与原 结构完全一样。
力法的特点: 基本未知量——多余未知力; 基本结构——静定结构; 基本方程——位移条件 (变形协调条件)
位移法的特点: 基本未知量—— 独立结点位移 一组单跨超静定梁 基本结构—— ? 基本方程—— 平衡条件
2
F FQ AB 5ql / 8 F FQ BA 3ql / 8
FP A l/2 l/2 B
3FP l/16 A B A
11FP/16 B 5FP/16
M
F AB
3FP l / 16
F FQ AB 11FP l / 16 F FQ BA 5FP l / 16
A
t1 t2 l
A
B
F FQ AB ql F FQ BA 0
FP
A
l/2 l/2
B
3FPl/8
A FP l/8
F M AB 3 FP l / 8 F M BA FP l / 8
FP
B
A
B
F FQ AB FP F FQ BA 0
FP A l B
FPl/2 A FPl/2
F M AB FP l / 2 F M BA FP l / 2
结构力学(5.1.2)--位移法习题及参考答案

习 题6-1 试确定图示结构位移法基本未知量的个数。
6-2~6-6作图示刚架的M 图。
(a)(f)习题6-1图(d)习题6-2图习题6-5图习题6-3图(BC 杆件为刚性杆件)习题6-4图6-6 试用位移法计算图示结构,并作内力图。
6-7 试用位移法计算图示结构,并作内力图。
6-8 试用位移法计算图示结构,并作内力图。
EI 为常数。
6-9试用位移法计算图示结构,并作弯矩图。
EI 为常数。
6-10 试用位移法计算图示结构,并作弯矩图(提示:结构对称)。
习题6-9图习题6-7图6-11作图示刚架的体系内力图。
6-12 设支座 B 下沉0.5cm B D =,试作图示刚架的M 图。
6-13如图所示连续梁,设支座C 下沉淀1cm ,试作M 图。
6-14图示等截面正方形刚架,内部温度升高+t°C ,杆截面厚度h ,温度膨胀系数为 ,试作M 图。
10 kN/m( a )( b)40 kN习题6-10图BGH习题6-11图(a )(b )q6-15试作图示有弹性支座的梁的弯矩图,332EIk l=,EI =常数。
6-16 试用弯矩分配法计算图示连续梁,并作M 图。
6-176-18 用力矩分配法计算图示结构,并作M 图。
6-19 已知图示结构的力矩分配系数1238/13,2/13,3/13,A A A m m m ===作M 图。
6-20 求图示结构的力矩分配系数和固端弯矩。
已知q=20kN/m,各杆EI 相同。
习题6-17图习题6-13图习题6-14图6-21~6-22 用力矩分配法计算图示连续梁,作M 图,并计算支座反力。
EI=常数。
6-23~6-25用力矩分配法计算图示刚架,作M 图。
EI=常数。
参考答案6.1 (a) 2 (b) 1 (c) 2 (d) 3 (e) 6 (f) 26.2 15BD M =kN·m (右侧受拉)20kN/m 40kN习题6-22图习题6-21图15kN/m习题6-23图F P =10kN 习题6-24图习题6-25图6.321112AB M ql =(上侧受拉)6.4P 0.4AD M F l =(上侧受拉)6.5150AC M =kN·m (左侧受拉)6.651.3AB M =kN·m (左侧受拉)6.780AB M =kN·m (上侧受拉)6.816.9AB M =kN·m (左侧受拉)6.9 (a) 10.43CA M =kN·m (左侧受拉) (b) 56.84CE M =kN·m (下侧受拉)6.10 (a) 8.5AB M =kN·m (上侧受拉) (b) 34.3AC M =kN·m (左侧受拉)6.11 (a) 20.794DC M ql =(右侧受拉) (b) 6.14GD M q =(右侧受拉)6.1223.68AC M =kN·m (右侧受拉)6.1359.3310BA M =ᅲkN·m (上侧受拉)6.142/M EIt h a =(外侧受拉)6.152/32BA M ql =(下侧受拉)6.1617.5CB M =kN·m (下侧受拉)6.1778.75CD M =kN·m (上侧受拉)6.1827/12AB M ql =(上侧受拉)6.191117.95A M =kN·m (上侧受拉)6.200.34AD m =,13.33AD M =kN·m 6.2142.3BA M =kN·m (上侧受拉)6.2217.35BA M =kN·m (上侧受拉)6.2357.4BA M =kN·m (上侧受拉)6.2428.5BA M =kN·m (上侧受拉)6.2573.8BD M =kN·m (左侧受拉)。
结构力学6位移法和力矩分配法

△
4、5、6 三个固定端都是不动的点,结点 1
2△
3△
1、2、3均无竖向位移。又因两根横梁其
长度不变,故三个结点均有相同的水平位 移△ 。Biblioteka FP456
(a)
事将实结上构,的图刚(a结)所点示(包结括构固的定独支立座线)都位变移成数
铰目结,点与(图成(为b)铰所结示体铰系结)体,则系使的其线成位为移几数何目不 变是添相加同的的最。少因链此杆,数实,用即上为为原了结能构简的捷独地立确
线定位出移结数构目的(独见立图线b)位。移数目,可以
7
(b)
返回
ZZ1 1
Z 1Z 1
FF11
CC
DD
CC
DD
FF22
BB
BB ZZ2 2
EE Z2Z2
EE
AA
FF
AA
FF
结构有四个刚结点——四个结点角位移。
需增加两根链杆, 2个独立的线位移。
位移法的基本未知量的数目为6个。
需注意:对于曲杆及需考虑轴向变形的杆件, 变形后两端之间的距离不能看作是不变的。
D l
l
1
FC
B
B
F
C
B B
l/ 2 l/2
A
l/ 2 l/ 2
三次超静定图示刚架
力 法:三个未知约束力。 位移法:一个未知位移(θB)。
l
力法与位移法必须满足的条件:
1.力的平衡; 2. 位移的协调; 3. 力与位移的物理关系。
位移法的基本假定:
(1)对于受弯杆件,只考虑弯曲变形,忽略轴向变形和剪切变形的影响。
例如 ( 见图a) 基本未知量三个。
2
3
5
位移法习题答案
位移法习题答案位移法的基本步骤包括:1. 选择位移函数:根据结构的边界条件和对称性,选择合适的位移函数。
2. 建立位移矩阵:将位移函数表示为位移矩阵的形式。
3. 应用位移边界条件:根据结构的固定边界条件,确定位移矩阵中的未知数。
4. 计算内力:利用位移矩阵和结构的几何关系,计算出结构的内力。
5. 验证位移法结果:通过比较位移法的结果与其他方法(如力法)的结果,验证位移法的准确性。
例题:考虑一个简支梁,长度为L,受集中力P作用于中点。
使用位移法求解梁的弯矩和剪力分布。
解答:首先,我们假设梁的位移函数为:\[ w(x) = \frac{Px(L-x)}{2EI} \]其中,\( w(x) \) 是梁在x位置的位移,\( E \) 是材料的弹性模量,\( I \) 是截面惯性矩。
接下来,根据位移函数,我们可以计算梁的弯矩和剪力:\[ M(x) = -EI \frac{d^2w}{dx^2} \]\[ V(x) = -EI \frac{dw}{dx} \]应用位移边界条件,我们可以确定位移函数中的未知数。
对于简支梁,位移在支点处为零,即:\[ w(0) = w(L) = 0 \]将位移函数代入上述条件,我们可以验证假设的位移函数满足边界条件。
最后,代入位移函数到弯矩和剪力的表达式中,我们可以得到:\[ M(x) = -\frac{P}{2} \left( \frac{L^2}{4} - x^2 \right) \]\[ V(x) = -\frac{P}{2} \left( L - 2x \right) \]通过上述计算,我们得到了梁在任意位置的弯矩和剪力分布。
结论:位移法是一种有效的结构分析方法,它通过位移函数来求解结构的内力和位移。
通过本题的解答,我们可以看到位移法在求解简支梁问题中的应用。
请注意,上述内容是一个示例答案,具体的习题答案会根据具体的题目而有所不同。
在实际应用中,需要根据具体的结构和受力情况来选择合适的位移函数和计算方法。
《结构力学习题集》(含答案)
第三章 静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取:A.;;B.D.C.=1=15、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。
M kM p21y 1y 2**ωω( a )M =17、图a 、b 两种状态中,粱的转角ϕ与竖向位移δ间的关系为:δ=ϕ 。
8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。
aa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰A 两侧截面的相对转角ϕA ,EI = 常数。
qlll /211、求图示静定梁D 端的竖向位移 ∆DV 。
EI = 常数 ,a = 2m 。
a a a10kN/m12、求图示结构E 点的竖向位移。
EI = 常数 。
ll l /32 /3/3q13、图示结构,EI=常数 ,M =⋅90kN m , P = 30kN 。
求D 点的竖向位移。
P 3m3m3m14、求图示刚架B 端的竖向位移。
q15、求图示刚架结点C 的转角和水平位移,EI = 常数 。
q16、求图示刚架中D点的竖向位移。
EI =常数。
l ll/217、求图示刚架横梁中D点的竖向位移。
EI=常数。
18、求图示刚架中D点的竖向位移。
E I = 常数。
qll l/2219、求图示结构A、B两截面的相对转角,EI=常数。
l/23l/320、求图示结构A、B两点的相对水平位移,E I = 常数。
ll21、求图示结构B点的竖向位移,EI = 常数。
结构力学_位移法
D C
例7. A
EA=∞
B
C 例8. A EA=∞ D E F B
D
排架结构,有两个铰结点A、B, 由于忽略轴向变形,A、B两点的竖 向位移为零,A、B两点的水平位移 相等,因此该结构的未知量为: AB 两跨排架结构,有四个结点 A、B、C、D,同理A与B点、D与 C点的水平位移相同,各结点的 竖向位移为零,但D结点有一转 角,因此该结构的未知量为: AB DC D
M BE 4 0.75 B 3 B =3.4 M EB 2 0.75 B 1.5 B =1.7
3、列位移法方程
M M
B
M 0 2 1.7 0 10 BA B M BCC M BE M 9 41 CD M M.CF 2 7 0 CB B C
变换式上式可得杆端内力的刚度方程(转角位移方程): M AB 4i A 2i B 6i l M BA 2i A 4i B 6i l
由平衡条件得杆端剪力:见图(d)
M A B A
M B A B
(d)
F Q A B
M AB M BA FQAB FQBA l 6i 6i 12i A B 2 l l l
MBA
A
φ2
图(2)
Δ
其中i=EI/l,称为杆件的线刚度
φ2B
1)求图(1) 中的φA1,φB1
M A B A
B
M B A
M A B
(a)
M = 1 A
(b)
1
1 A M = 1 B
(c)
2)求图(2)中 φA2和φB2
3)叠加得到
l l A M AB M BA 3EI 6 EI l l i B M AB M BA 6 EI 3EI l
(整理)位移法习题.
位移法一、判断题1.位移法与力法的主要区别是,位移法以结点位移为基本未知量,而力法则以多余未知为基本未知量。
()2. 位移法的基本未知量包括结点转角和独立结点线位移,其中结点转角数等于结构中所有刚结点的数目。
()3.位移法中杆端弯矩正负号的规定与作弯矩图时的规定相同。
()4.利用结点或横梁的平衡条件建立的平衡方程式称作位移法的基本方程。
()5.独立结点线位移的数目,对于多层刚架(无侧向约束)等于刚架的层数,对于复杂刚架等于为使铰化结点后体系成为几何不变体系所需增加的链杆数目。
()6.位移法的基本未知量是结构的多余约束力。
()7.杆端弯矩与结点转角、在垂直杆轴线方向的相对线位移及固端弯矩之间的关系式,称为转角位移方程。
()8.位移法的基本未知量是结构的多余约束力()。
9.用位移法计算图1所示结构时,其基本未知量有3个()。
图 110.位移法只能用来解超静定结构。
()二、选择题1.试确定下面结构的位移法基本未知量的个数:()A.θ=1,Δ=1B.θ=2,Δ=2C.θ=2,Δ=1D.θ=1,Δ=2三、填空题1.力法和位移法是解超静定结构的两种基本方法。
它们的主要区别在于力法是以____________为基本未知量,而位移法则以____________作为基本未知量。
2.位移法基本未知量包括____________和____________。
结点转角未知量的数目等于该结构的____________。
独立结点线位移的数目,对于多层刚架等于刚架的____________ ,对于复杂刚架等于为使铰化结点后体系成为几何不变体所需增加的____________。
3.杆端弯矩与____________及 ____________间的关系式称为转角位移方程。
4.结构的刚结点被固定后,各杆在荷载作用下的杆端弯矩和杆端剪力称为____________和____________。
5.图2所示刚架用力法计算时的基本未知量为____________,用位移法计算时的基本未知量为____________,为了使计算简化应选用____________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 位移法
一、是非题
1、位移法未知量的数目与结构的超静定次数有关。
2、位移法的基本结构可以是静定的,也可以是超静定的。
3、位移法典型方程的物理意义反映了原结构的位移协调条件。
4、结 构 按 位 移 法 计 算 时 , 其 典 型 方 程 的 数 目 与 结 点 位 移 数 目 相 等 。
5、位移法求解结构内力时如果P M 图为零,则自由项1P R 一定为零。
6、超 静 定 结 构 中 杆 端 弯 矩 只 取 决 于 杆 端 位 移 。
7、位 移 法 可 解 超 静 定 结 构 ,也 可 解 静 定 结 构 。
8、图示梁之 EI =常数,当两端发生图示角位移时引起梁中点C 之竖直位移为(/)38l θ(向下)。
2θ
θ
C
9、图示梁之EI =常数,固定端A 发生顺
时针方向之角位移θ,由此引起铰支端B 之转角(以顺时针方向为正)是 -θ/2 。
10、用位移法可求得图示梁B 端的竖向位移为ql EI 324/。
q
11、图 示 超 静 定 结 构 , ϕD 为 D 点 转 角 (顺 时 针 为 正), 杆 长 均 为 l , i 为 常 数 。
此 结 构 可 写 出 位 移 法 方 程
111202i ql D ϕ+=/。
二、选择题
1、位 移 法 中 ,将 铰 接 端 的 角 位 移 、滑 动 支 承 端 的 线 位 移 作 为 基 本 未 知 量 : A. 绝 对 不 可 ; B. 必 须 ;
C. 可 以 ,但 不 必 ;
D. 一 定 条 件 下 可 以 。
2、AB 杆 变 形 如 图 中 虚 线 所 示 , 则 A 端 的 杆 端 弯 矩 为 :
A.M i i i l AB A B AB =--426ϕϕ∆/ ;
B.M i i i l AB A B AB =++426ϕϕ∆/ ;
C.M i i i l AB A B AB =-+-426ϕϕ∆/ ;
D.M i i i l AB A B AB =--+426ϕϕ∆/。
∆A B
3、图 示 连 续 梁 , 已 知 P , l ,
ϕB , ϕC , 则 : A. M i i BC B C =+44ϕϕ ; B. M i i BC B C =+42ϕϕ ;
C. M i Pl BC B =+48ϕ/ ;
D. M i Pl BC
B =-48ϕ/ 。
4、图 示 刚 架 , 各 杆 线 刚 度 i 相 同 , 则 结 点 A 的 转 角 大 小 为 :
A. m o /(9i ) ;
B. m o /(8i ) ;
C. m o /(11i ) ;
D. m o /(4i ) 。
5、图 示 结 构 , 其 弯 矩 大 小 为 : A. M AC =Ph /4, M BD =Ph /4 ; B. M AC =Ph /2, M BD =Ph /4 ;
C. M AC =Ph /4, M BD =Ph /2 ;
D. M AC =Ph /2, M BD =Ph /2 。
2
6、图 示 两 端 固 定 梁 , 设 AB 线 刚 度 为 i , 当 A 、B 两 端 截 面 同 时 发 生 图 示 单 位 转 角 时 , 则 杆 件 A 端 的 杆 端 弯 矩 为 : A. I ; B. 2i ; C. 4i ; D. 6i
( )i
A
B
A =1ϕ
B =1
ϕ
7、图 示 刚 架 用 位 移 法 计 算 时 , 自 由 项 R P 1 的 值 是 :
A. 10 ;
B. 26 ;
C. -10 ;
D. 14 。
4m
6kN/m
8、用 位 移 法 求 解 图 示 结 构 时 , 独 立 的 结 点 角 位 移 和 线 位 移 未 知 数 数 目 分 别 为 :
A . 3 , 3 ;
B . 4 , 3 ;
C . 4 , 2 ;
D . 3 , 2 。
三、填充题
1、判断下列结构用位移法计算时基本未知量的数目。
(1)(2)(3)(4)(5)(6)
EI EI
EI EI
2EI EI
EI EI
EA
EA
a
b
EI=
EI=
EI=
2
444
2
2、图b 为图a 用位移法求解时的基本
体系和基本未知量Z Z
12
,,其位移法
典型方程中的自由项, R 1P= ,
R 2P= 。
a b
( )( )
3、图示刚架,各杆线刚度i相同,不计
轴向变形,用位移法求得
M
AD =⎽⎽⎽⎽⎽⎽⎽⎽,M
BA
=___________ 。
4、图示刚架,欲使ϕ
A
=π/180,则M0须等于。
5、图示刚架,已求得 B点转角ϕ
B
= 0.717/ i ( 顺时针) , C 点水平位移
∆
C
= 7.579/ i(→) , 则M AB
= , M
DC
= ___________ 。
6、图示排架,Q BA=_______ ,
Q
DC
=_______ , Q
FE
=_________ 。
EA=EA=
四、计算题
1、用位移法计算图示结构并作M图,各杆线刚度均为i,各杆长均为l 。
2、用位移法计算图示结构并作M图,各杆长均为l ,线刚度均为i 。
3、用位移法计算图示结构并作M图。
EI =常数。
4、用位移法计算图示结构并作M图。
EI =常数。
2m
2m 5、用位移法计算图示结构并作M图。
EI =常数。
6、用位移法计算图示结构并作M图,横梁刚度EA →∞,两柱线刚度i相同。
2
7、求对应的荷载集度q。
图示结构横梁刚度无限大。
已知柱顶的水平位移为
()
5123
/()
EI→。
8m
q
8、用位移法计算图示结构,求出未知量,各杆EI相同。
10、用位移法计算图示结构并作M图。
11、用位移法计算图示结构并作M图。
q
l l
12、用位移法计算图示结构并作M图。
各杆EI =常数,q = 20kN/m。
13、用位移法计算图示结构并作M图。
EI =常数。
l
14、用位移法计算图示结构并作M图,
E = 常数。
m
m
15、用位移法计算图示结构并作M图。
EI =常数。
2
16、用位移法计算图示结构并作M图。
EI =常数。
q
17、用位移法计算图示结构并作M 图。
l = 4m 。
kN/
m
18、用位移法计算图示刚架并作M 图。
已知各横梁EI 1=∞,各柱EI =常数。
P
P
h
19、用位移法计算图示结构并作M 图。
30kN/m
EI =
20、用位移法计算图示结构并作M 图,EI =常数。
21、用位移法计算图示结构并作M 图。
设各杆的EI 相同。
q
q
22、用位移法作图示结构M 图。
并求A B 杆的轴力, E I =常数。
l
23、用位移法作图示结构M 图。
EI =常数。
l
/2
24、用位移法作图示结构M 图。
E I =常数。
l l
l l
25、用位移法计算图示结构并作出M图。
30KN/m
26、用位移法计算图示结构并作M图,
E =常数。
27、用位移法计算图示结构并作M图。
E I =常数。
q
28、用位移法计算图示对称刚架并作M
图。
各杆EI =常数。
l
l
29、用位移法计算图示结构并作M图。
EI =常数。
l
l/2l l/2
30、用位移法计算图示结构并作M图。
EI =常数。
q
l l l l
31、用位移法计算图示结构并作M图。
EI =常数。
q
l
32、用位移法计算图示结构并作M图。
设各柱相对线刚度为2,其余各杆为1。
3m
3m
33、用位移法计算图示结构并作M图。
q q
34、用位移法计算图示结构,作M图。
各柱线刚度为i ,横梁EI =。
h
35、用位移法计算图示结构并作M图。
EI =常数。
l
ql
36、用位移法计算图示结构并作M图。
q
37、用位移法计算图示刚架,作M图。
除注明者外各杆EI =常数。
38、用位移法计算图示刚架,作M图。
除注明者外各杆EI =常数。
39、用位移法计算图示刚架作M图。
除注明者外各杆EI =常数,EI1=∞。
q
l/2l
l l/2
40、求图示结构B, C两截面的相对角
位移,各杆E I为常数。
3m3m
2m
2m。