新课标普通高中2014届高三数学(理)二轮专题
2014届高三下学期第四次二轮复习综合验收卷数学(理)(附答案)

2013-2014学年度下学期高三二轮复习数学(理)验收试题(4)【新课标】第Ⅰ卷(选择题,共60分)⑴ 选择题(本题共12小题,每小题5分,共60分。在下列各题的四个选项中,只有一项是最符合题意的)1. 定义}|{B x A x x B A ∉∈=-且,已知}4,3,1{},3,2{==B A 。则=-B A ( ) A. {1,4} B. {2} C. {1,2} D. {1,2,3}2.已知,x y R ∈,为虚数单位,且(2)1x i y i --=-+,则(1)x yi ++的值为 ( )A.4B.i 44+C.4-D.i 23. 设n S 是等差数列}{n a 的前n 项和,若3184=S S ,则168S S 等于 ( )A.91B.81 C. 31 D. 103 4.已知,,,a b c d 是实数,则“a b >且c d >”是“a c b d b c a d ⋅+⋅>⋅+⋅”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 5.设函数na x x f )()(+=,其中⎰+=πππ2)sin(3dx x n ,3)0()0(-='f f ,则)(x f 的展开式中2x 的系数为( )A.240-B.60-C.60D.2406. 过原点的直线与圆03422=+-+x y x 有公共点,则直线的倾斜角的取值范围是 ( ) A. ]6,6[ππ-B. ]65,6[ππC. ),65[]6,0[πππ D. ]65,2()2,6[ππππ7.一个几何体的三视图如右图所示,则该几何体的表面积为( )A.312+B. 310+C. 3210+D. 311+8. 执行如图的程序框图,若输出的5=n ,则输入整数p 的最小值...是 ( )A. 15B. 14C. 7D. 89.已知]2,2[,ππβα-∈,且0sin sin >-ββαα,则下列不等式一定成立的是( ) A. βα> B. βα<12n S S -=+C. 0>+βαD.22βα>10.将5名同学分到甲、乙、丙3个小组,若甲组至少两人,乙、丙组至少各一人,则不同的分配方案的种数为( ) A.80 B.120 C.140 D.18011. 中心在原点,焦点在x 轴上的双曲线C 的离心率为e ,直线与双曲线C 交于B A ,两点,线段AB 中点M 在第一象限,并且在抛物线()022>=p px y 上,且M 到抛物线焦点的距离为p ,则直线的斜率为( )A. 12+e B. 12-e C. 212+e D. 212-e12.已知向量α ,β ,γ满足||1α= ,||||αββ-= ,()()0αγβγ-⋅-= .若对每一确定的β ,||γ 的最大值和最小值分别为,m n ,则对任意β,m n -的最小值是( )A.41 B.21 C.43D. 第Ⅱ卷(非选择题,共90分)二、填空题(本题共4小题,每小题5分,共20分)13.函数⎪⎩⎪⎨⎧>+-≤-=1,341,22)(2x x x x x x f 的图象与函数()()ln 1g x x =-的图象的公共点个数是 个。14.已知y x ,满足约束条件221x y x y x +≤⎧⎪-≤⎨⎪≥⎩,且2x y a +≥恒成立,则a 的取值范围为 。15. 已知数列}{n a 的首项21=a ,且对任意的*∈N n 都有nnn a a a -+=+111, 则=⋅⋅201321a a a 。16. 下列说法正确的是 。(1)从匀速传递的产品生产流水线上,质检人员每20分钟从中抽取一件产品进行检测, 这样的抽样方法为分层抽样;(2)两个随机变量相关性越强,相关系数r 的绝对值越接近1,若1r =或1r =-时,则x 与y 的关系完全对应(即有函数关系),在散点图上各个散点均在一条直线上;(3)在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高;(4)对于回归直线方程122.0^+=x y ,当x 每增加一个单位时,^y 平均增加12个单位; (5)已知随机变量X 服从正态分布N 2(1,)σ,若72.0)2(=≤x P ,则28.0)0(=≤x P 。 三、解答题(本题共6小题, 17-21题每题12分,选做题10分,共70分)17.(本小题共12分)在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若b A b B a =+cos cos 。 (1)求证C B =;(2)若ABC ∠的平分线交AC 于D ,且534sin =A ,求DC BD 的值。18.(本小题共12分)哈尔滨市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析, 规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的22⨯列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀 的概率为311。(1)请完成上面的列联表;(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。参考公式与临界值表:))()()(()(22d b c ad c b a bc ad n K ++++-=。19.(本小题共12分)如图,在四棱锥P ABCD -中,顶点P 在底面ABCD 内的射影恰好落在AB 的中点O 上, 又90oBAD ∠=,//BC AD 且::1:2:2BC AB AD = (1)求证:PD AC ⊥;(2)若PO BC =,求直线PD 与AB 所成角的余弦值; (3)若平面APB 与平面PCD 所成的角为60o,求POBC的值。P AB CD20.(本小题共12分)已知抛物线的顶点在坐标原点,焦点为)0,1(F ,点P 是点F 关于y 轴的对称点, 过点P 的直线交抛物线于B A ,两点。(1)试问在x 轴上是否存在不同于点P 的一点T ,使得TB TA ,与x 轴所在的直线所成 的锐角相等,若存在,求出定点T 的坐标,若不存在说明理由。 (2)若AOB ∆的面积为25,求向量,的夹角;21. (本小题共12分)设函数()ln f x x x =(0)x >。 (1)求函数()f x 的最小值;(2)设2()()F x ax f x '=+()a ∈R ,讨论函数()F x 的单调性;(3)斜率为k 的直线与曲线()y f x '=交于11(,)A x y ,22(,)B x y 12()x x <两点, 求证:121x x k<<。请考生在第22、23题中任选一题做答,如果多做,则按所做的第一题记分,做答时请写清题号。 22. (本小题共10分)如图所示,已知AB 是圆O 的直径,AC 是弦,CE AD ⊥,垂足为D , AC 平分BAD ∠。(1)求证:直线CE 与圆O 的相切; (2)求证:AD AB AC ⋅=2。23. (本小题共10分)在平面直角坐标系xOy 中,曲线1C 为cos (16,sin x a a y ϕϕϕ=⎧<<⎨=⎩为参数)。在以O 为原点,x 轴正半轴为极轴的极坐标系中,曲线2C 的极坐标方程为θρcos 6=,射线为θα=,与1C 的交点为A ,与2C 除极点外的一个交点为B 。当0α=时,4||=AB 。 (1)求1C ,2C 的直角坐标方程;(2)设1C 与y 轴正半轴交点为D ,当4πα=时,设直线BD 与曲线1C 的另一个交点为E ,求||||BE BD +。24.(本小题满分10分)选修4—5:不等式证明选讲 已知函数||)(a x x f -=。(1)若m x f ≤)(的解集为}51|{≤≤-x x ,求实数m a ,的值。 (2)当2=a 且0≥t 时,解关于x 的不等式)2()(t x f t x f +≥+。参考答案一、选择题:BCDAD CACDA DB二、填空题:2个-1a 2 (2)(3)(5)17解:(1)∵acosB+bcosA=b,由正弦定理可得sinAcosB+cosAsinB=sinB,∴sin(A+B)=sinB, --------3分即sinC=sinB,∴b=c,∴C=B. --------------6分(2)△BCD中,用正弦定理可得=,由第一问知道C=B,而BD是角平分线,∴=2cos. ---------8分由于三角形内角和为180°,设A=x,B=2α=C,那么4α+x=180°,故α+=45°.--9分∵sin=,∴cos=,∴cosα=cos(45°﹣)=cos45°cos+sin45°sin=.∴=2cos=2cosα=.---------------12分18.(1) -------4分(2)根据列联表中的数据,得到K2= ≈7.487<10.828.因此按99.9%的可靠性要求,不能认为“成绩与班级有关系” -------8分(3)设“抽到9或10号”为事件A,先后两次抛掷一枚均匀的骰子,出现的点数为(x,y).所有的基本事件有:(1,1)、(1,2)、(1,3)、…、(6,6)共36个.事件A包含的基本事件有:(3,6)、(4,5)、(5,4)、(6,3)、(5,5)、(4,6)(6,4)共7个.所以P(A)= 736,即抽到9号或10号的概率为736. -------12分19 解:因为AB 中点O 为点P 在平面ABCD 内的射影,所以PO ⊥底面ABCD.以O 为坐标原点,AB 所在直线为x 轴,OP 所在直线为z 轴,建立空间直角坐标系o ﹣xyz(如图).(1)设BC=a,OP=h 则依题意得:B(a,0,0),A(﹣a,0,0),P(0,0,h),C(a,a,0),D(﹣a,2a,0). ∴=(2a,a,0),=(﹣a,2a,﹣h),于是•=﹣2a 2+2a 2=0,∴PD ⊥AC;--------4分(2)由PO=BC,得h=a,于是P(0,0,a),——5分 ∵=(2a, 0,0),=(﹣a,2a,﹣a),∴•=﹣2a 2,cos<,>==,∴直线PD 与AB 所成的角的余弦值为;-----------8分(3)设平面PAB 的法向量为m,可得m=(0,1,0), 设平面PCD 的法向量为n=(x,y,z), 由=(a,a,﹣h),=(﹣a,2a,﹣h),∴,解得n=(1,2,),∴m•n=2,cos<m,n>=,∵二面角为60°,∴=4,解得=,即=.----------------12分20.(1)由题意知:抛物线方程为:x y 42=且()0,1-P -------1分设),(),,(2211y x B y x A设直线1:-=my x l 代入x y 42=得0442=+-my y10161622>⇒>-=∆m m⎩⎨⎧==+442121y y my y -------- 2分 假设存在),(o a T 满足题意,则))(()()(2112212211a x a x a x y a x y a x y a x y k k BT AT ---+-=-+-=+ ))(())(1(2))(()1()1(212121211221a x a x y y a y my a x a x a my y a my y --++-=----+--=))(()1(4821=--+-=a x a x a m m0)1(48=+-∴a m m ----- ------5分21=+∴a 1=∴a ∴存在T(1,0)----------------6分(2)(法一)2521212121=-=-=∆y y y y OF S ABC 521=-∴y y ----------------7分设直线OA,OB 的倾斜角分别为θβα=∠AOB ,,αtan 44121111====y y y x y k OA ,βtan 44222222====y y y x y k OA --------9分 设βαθ-=1541416144tan tan 1tan tan )tan(tan 2121122121=-=+⋅-⋅=+-=⋅+-=-=∴y y y y y y y y y y βαβαβαθ------11分4πθ=∴ ----------------------12分法二:25==∆θS ABCθsin 5=-----------------------7分 ()541644164422212122212121=+=+=+⋅=+=⋅y y y y y y y y x x OB OA ---------9分AOBAOBAOB∠=∠==∠∴sinsin55cos1tan=∠∴AOB-------11分4π=∠∴AOB--------------------12分21.(1)解:f'(x)=lnx+1(x>0),令f'(x)=0,得.∵当时,f'(x)<0;当时,f'(x)>0,∴当时,.----------------- 4分(2)F(x)=ax2+lnx+1(x>0),.①当a≥0时,恒有F'(x)>0,F(x)在(0,+∞)上是增函数;②当a<0时,令F'(x)>0,得2ax2+1>0,解得;令F'(x)<0,得2ax2+1<0,解得.综上,当a≥0时,F(x)在(0,+∞)上是增函数;当a<0时,F(x)在上单调递增,在上单调递减.------------------------------------8分(3)证:.要证,即证,等价于证,令, 则只要证,由t>1知lnt>0,故等价于证lnt<t﹣1<tlnt(t>1)(*).①设g(t)=t﹣1﹣lnt(t≥1),则,故g(t)在[1,+∞)上是增函数,∴当t>1时,g(t)=t﹣1﹣lnt>g(1)=0,即t﹣1>lnt(t>1).②设h(t)=tlnt ﹣(t ﹣1)(t ≥1),则h'(t)=lnt ≥0(t ≥1),故h(t)在[1,+∞)上是增函数, ∴当t>1时,h(t)=tlnt ﹣(t ﹣1)>h(1)=0,即t ﹣1<tlnt(t>1).由①②知(*)成立,得证.---------------------------------12分22. 证明:(Ⅰ)连接OC ,因为OA OC =,所以OCA OAC ∠=∠. 2分又因为AD CE ⊥,所以090ACD CAD ∠+∠=,又因为AC 平分BAD ∠,所以OAC CAD ∠=∠, 4分所以90OCA ACD ∠+∠=o ,即OC CE ⊥,所以CE 是O e 的切线. 5分(Ⅱ)连接BC ,因为AB 是圆O 的直径,所以090BCA ADC ∠=∠=,因为OAC CAD ∠=∠, 8分 所以△ABC ∽△ACD ,所以AC AD ABAC =,即2AC AB AD =⋅. 10分23.(1)由6cos ρϕ=得26cos ρρϕ=,所以2C 的直角坐标方程是2260x y x +-=--2分由已知得1C 的直角坐标方程是2221x y a+=, 当0α=时射线与曲线12,C C 交点的直角坐标为()(),0,6,0a ,-----------3分4,2AB a =∴= 1C ∴的直角坐标方程是2214x y +=.①-----------5分 (2)联立2260x y x +-=与y x =得()3,3B 或()0,0B ,B 不是极点()3,3B ∴.---6分 又可得()1,0D , 32BD K ∴=BD ∴的参数方程为()33x t y ⎧=⎪⎪⎨⎪=⎪⎩为参数② -------8分将②带入①得22541013t +=,设,D E 点的参数是1,2t t ,则121253325t t t t +==12BD BE t t ∴+=+=-------10分24解:(Ⅰ)由|x﹣a|≤m得a﹣m≤x≤a+m,所以解之得为所求.----------------4分(Ⅱ)当a=2时,f(x)=|x﹣2|,所以f(x)+t≥f(x+2t)⇔|x﹣2+2t|﹣|x﹣2|≤t,①当t=0时,不等式①恒成立,即x∈R;当t>0时,不等式解得x<2﹣2t或或x∈ϕ,即; 综上,当t=0时,原不等式的解集为R,当t>0时,原不等式的解集为.-----------10分。
2014年高考理数全国2卷(完美版)

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b |a-b a ⋅b = ( )A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,,则AC=( ) A. 5B. C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a =( )A. 0B. 1C. 2D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A. B.C. 6332D. 94 11.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.D. 12.设函数()x f x π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),44,-∞-⋃∞C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:1231112n a a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为: ()()()121ni ii n i i t t y y b tt ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆()222210y x a b a b+=>>的左右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .已知函数()f x =2x x e e x ---(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)22.(本小题满分10)选修4—1:几何证明选讲如图,P 是 O 外一点,PA 是切线,A 为切点,割线PBC 与 O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交 O 于点E.证明:(Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦. (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲设函数()f x =1(0)x x a a a++-> (Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.。
新课标普通高中2014届高三数学(理)二轮专题学生版(word版另附)

直通车2014届高三数学(理)2014年3月专题1集合、基本初等函的图象与性质1.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是().A.f(x)=-x|x|B.f(x)=x3C.f(x)=sin x D.f(x)=ln xx2.(2012湖北)函数在区间上的零点个数为().A.4B.5C.6D.73.函数f(x)=log2|x|,g(x)=-x2+2,则f(x)·g(x)的图象只可能是().4.(2013浙江)已知为正实数,则().A. B.C. D.5.(2012山东)定义在上的函数满足.当时,,当时,。
则()A335B338C1678D20126.(2011湖北)已知定义在R上的奇函数和偶函数满足,若,则().A. B. C. D.7.(2011湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象成为衰变,假设在放射性同位素铯137的衰变过程中,其含量(单位:太贝克)与时间(单位:年)满足函数关系:,其中为时铯137的含量,已知时,铯137的含量的变化率是(太贝克/年),则().A.5太贝克B.太贝克C.太贝克D.150太贝克8.(2013重庆)已知全集,集合,,则()A. B. C. D.9.(2013湖北)已知全集为,集合,,则()A. B.C. D.0.(2013重庆)命题“对任意,都有”的否定为()A.对任意,都有B.不存在,都有C.存在,使得D.存在,使得11.(2013四川)设,集合是奇数集,是偶数集.若命题,则()A.B.C.D.12.(2013湖北)在一次跳伞训练中,甲.乙两位学员各跳一次,设命题是“甲降落在指定范围”,是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为()A.B.C.D.13.已知f(x)=ln(1+x)的定义域为集合M,g(x)=2x+1的值域为集合N,则M∩N=________.14.已知函数f(x)=x3+x,对任意的m∈[-2,2],f(mx-2)+f(x)<0恒成立,则x的取值范围是________.15.已知函数y=f(x)是R上的偶函数,对∀x∈R都有f(x+4)=f(x)+f(2)成立.当x1,x2∈[0,2],且x1≠x2时,都有f x1-f x2x1-x2<0,给出下列命题:①f(2)=0;②直线x=-4是函数y=f(x)图象的一条对称轴;③函数y=f(x)在[-4,4]上有四个零点;④f(2014)=0.其中所有正确命题的序号为________.16.(2013江苏)已知是定义在上的奇函数.当时,,则不等式的解集用区间表示为___________.17.(2011四川)计算_______.18.已知函数f(x)=log a(x+1)(a>1),若函数y=g(x)的图象上任意一点P关于原点对称的点Q 的轨迹恰好是函数f(x)的图象.(1)写出函数g(x)的解析式;(2)当x∈[0,1)时总有f (x)+g(x)≥m成立,求m的取值范围.专题2函数与方程及函数的应用1.“a>3”是“函数f(x)=ax+3在(-1,2)上存在零点”的().A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.(2012天津)函数在区间(0,1)内的零点个数是().A0B1C2D33.(2013天津)函数的零点个数为()A1B2C3D44.已知[x]表示不超过实数x的最大整数,如[1.8]=1,[-1.2]=-2.x0是函数f(x)=ln x-2x 的零点,则[x0]=________.5.(2011福建)某商场销售某种商品的经验表明,该商品每日的销售量(单位:千克)与销售价格(单位:元/千克)满足关系式,其中,为常数,已知销售价格为5元/千克时,每日可售出该商品11千克.(Ⅰ)求的值;(Ⅱ)若该商品的成品为3元/千克,试确定销售价格的值,使商场每日销售该商品所获得的利润最大.6.(2011湖北)提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度(单位:千米/小时)是车流密度(单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当时,车流速度是车流密度的一次函数.(Ⅰ)当时,求函数的表达式;(Ⅱ)当车流密度为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)可以达到最大,并求出最大值.(精确到1辆/小时)专题3不等式及线性规划问题1.已知a>0,b>0,且2a+b=4,则1ab的最小值为().A.14B.4 C.12D.22.小王从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则().A.a<v<ab B.v=abC.ab<v<a+b2D.v=a+b23.(2012重庆)不等式的解集为()A. B. C. D.对4.(2012四川)某公司生产甲、乙两种桶装产品。
2014届高三二轮专题 带电粒子在复合场中的运动

易失分案例 (2012· 重庆高考)有人设计了一种带电颗粒的速率分选装置, 其原理如图所示.两带电金属板间有匀强电场,方向竖直向 上, 其中 PQNM 矩形区域内还有方向垂直纸面向外的匀强磁 1 场.一束比荷(电荷量与质量之比)均为k的带正电颗粒,以不 同的速率沿着磁场区域的水平中心线 O′O 进入两金属板之 间,其中速率为 v0 的颗粒刚好从 Q 点处离开磁场,然后做 匀速直线运动到达收集板.重力加速度为 g,PQ=3d,NQ =2d,收集板与 NQ 的距离为 l,不计颗粒间相互作用.求:
电场力做功与路径无关 W=qU 电场力做功改变电荷的电势能 洛伦兹力不做功,不改变带电 粒子的动能
2.两种模型 (1)组合场模型: 电场、磁场、重力场 (或其中 两种场 ) 并存,但各位于一定区域,并且互不 重叠的情况. (2)复合场模型: 电场、磁场、重力场 (或其中 两种场 ) 并存(或者说叠加)于同一区域的情 况.
2.抓住物理过程的“三性” (1) 阶段性.将题目涉及的整个过程合理划 分为若干个阶段.在审题过程中,该分则 分,宜合则合,并将物理过程的分析与研 究对象及规律的选用加以统筹考虑,以求 最佳的解题思路. (2) 联系性.找出各个阶段之间是由什么物 理量联系起来的,各量之间的关系如何, 在临界点或极值点处有何特殊性质. (3) 规律性.明确每个阶段遵循什么规律, 可利用哪些物理公式进行求解.
角度1
2013·安徽卷,23)
以电磁技术的应用为背景材料,联系实际考查学以 角度2 致用的能力(2012·天津理综,12;2013·重庆卷,5; 2013·北京卷,22)
【典例1】
(2013·安徽卷, 23)如图所示的平面直角坐标系 xOy,在第Ⅰ象限内 有平行于y轴的匀强电场,方向沿y轴正方向;在第Ⅳ象限的正三角形abc 区域内有匀强磁场,方向垂直于 xOy平面向里,正三角形边长为 L,且ab 边与y轴平行.一质量为m、电荷量为q的粒子,从y轴上的P(0,h)点,以 大小为 v0 的 速度沿 x 轴正向射入电场,通过电场后从 x 轴上的 a(2h,0) 点 进入第Ⅳ象限,又经过磁场从 y轴上的某点进入第Ⅲ象限,且速率与 y轴 负方向成45 °角,不计粒子所受的重力.求: • (1)电场强度E的大小; • (2)粒子到达a点时速度的大小和方向; • (3)abc区域内磁场的磁感应强度B的最小值.
2014年普通高等学校招生考试课标二理数

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中, 只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( )A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( )A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b|a-b,则a ⋅b = ( )A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是1,AB=1,,则AC=( ) A. 5 B. C. 2 D. 15.某地区空气质量监测资料表明,一天的空气质量为优良 的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a =A. 0B. 1C. 2D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x=的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为()A. B. C. 6332 D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.D. 12.设函数()x f x m π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A.()(),66,-∞-⋃∞ B. ()(),44,-∞-⋃∞ C. ()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题, 每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答.二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+. (Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式; (Ⅱ)证明:123111n ++<…+. 18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,E-ACD 的体积.19. (本小题满分12分)(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121ni ii n i i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N.(Ⅰ)若直线MN 的斜率为34,求C 的离心率; (Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分)已知函数()f x =2x x e e x ---zxxk(Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做, 同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明:(Ⅰ)BE=EC ;(Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲设函数()f x =1(0)x x a a a++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的 取值范围.。
2014年高考数学新课标2卷(理科)答案word版

2014年普通高等学校招生全国统一考试(新课标II卷)理科数学试题答案与解析1. 解析 由已知得{}12N x x=剟,因为{}0,1,2M =,所以{}1,2MN =,故选D.2. 解析 由题意得22z i =-+,()()12225z z i i =+--=-,故选A.3. 解析 由a b +22210a b a b ++⋅=, ①由a b -=2226a b a b +-⋅=, ②-①②得44a b ⋅=,所以1a b ⋅=,故选A.4. 解析 111s i n 2s i n 222ABC S AB BC B B =⋅=⨯=△,所以sin B =,若45B ∠=,则由余弦定理得1AC =,所以ABC △为直角三角形,不符合题意,因此0135B ∠=,由余弦定理得2222cos 12215AC AB BC AB BC B ⎛=+-⋅=+-⨯= ⎝⎭,所以AC = B.5. 解析 由条件概率可得所求概率为0.60.80.75=,故选A. 6. 解析 由三视图知该零件是两个圆柱的组合体.一个圆柱的底面半径为2cm ,高是4cm ;另一个圆柱的底面半径为3cm ,高为2cm .设零件的体积()2231π24π3234πV cm =⨯⨯+⨯⨯=.而毛坯的体积()23π3654πV cm =⨯⨯=,因此切削掉部分的体积()32154π34π20πV V V cm =-=-=,所以220π1054π27V V ==.故选C. 评注 本题考查了三视图和圆柱的体积,考查了空间想象能力和运算求解能力,正确得到零件的直观图是求解的关键.7. 解析 1k =,1222351M S =⋅==+=;2k =,2222572M S =⋅==+=;3,k = 3t >,所以7S =,故选D. 8. 解析 11y a x '=-+,0x =时,12y a '=-=, 所以3a =,故选D.9. 解析 由约束条件得可行域如图阴影部分所示.由70,310x y x y +-=⎧⎨-+=⎩得,()5,2A .当直线2x y z -=过点A 时,2z x y =-取最大值.其最大值为2528⨯-=.故选B.10. 解析 易知直线AB的方程为34y x ⎫=-⎪⎝⎭,与23y x =联立并消去x得2490y --=.设()11,A x y ,()22,B x y,则12y y +=1294y y =-.12119224AB S OF y y =⋅-==△O .故选D.评注 本题考查了直线与抛物线的位置关系,考查了数形结合和运算求解的能力.利用根与系数的关系进行整体运算是求解的关键.11. 解析 解法一:取BC 的中点Q ,连接QN ,AQ ,易知//BM QN ,则ANQ ∠即为所求,设12BC CA CC ===,则AQ AN QN所以222cos 2AN NQ AQ ANQ AN NQ +-∠===⋅,故选C.解法二:以1C 为坐标原点,建立如图所示的空间直角坐标系,设12BC CA CC ===,则C 1B 1A 1QN MCBA()2,0,2A ,()1,0,0N ,()1,1,0M ,()0,2,2B ,所以()1,0,2AN =--,()1,1,2BM =--,所以cos ,5AN BM AN BM AN BM⋅====,故选C.12. 解析 ()πx fx m'=,所以()f x 得极值点为0x ,所以()0f x '=,所以 0π0x m =,所以0πππ,2x k k m =+∈Z ,所以0m,2x mk k =+∈Z ,又因为 ()02220x f x m +⎡⎤<⎣⎦,所以222m ππ22mk k m ⎤⎛⎫⎛⎫+++< ⎪ ⎪⎥⎝⎭⎝⎭⎦ ,k ∈Z ,即222132m k m ⎛⎫++< ⎪⎝⎭,k ∈Z ,因为0m ≠,所以222132m k m -⎛⎫+< ⎪⎝⎭,k ∈Z ,又因为存在0x 满足()02220x f x m +⎡⎤<⎣⎦,即存在k ∈Z 满足上式,所以222min312m k m ⎡⎤-⎛⎫>+⎢⎥⎪⎝⎭⎢⎥⎣⎦,所以222312m m -⎛⎫> ⎪⎝⎭,所以2234m m ->,所以24m >,所以2m >或2m <-,故选C. 评注 本题考查了函数的极值问题,三角函数求值、恒成立等问题.考查分析问题、解决问题的能力.13. 解析 10110C r r r r T x a -+=,令107r -=,得3r =,所以3310C 15a =,即3109815321a ⨯⨯=⨯⨯,所以318a =,所以12a =. 14. 解析 ()()()s i n 2s i nc o s fx x x ϕϕϕϕ=⎡++⎤-+⎣⎦= ()()()sin cos cos sin 2sin cos x x x ϕϕϕϕϕϕ+++-+=()()sin cossin cos x x ϕϕϕϕ+-+=()sin sin x x ϕϕ+-=,所以()f x 的最大值为1.15. 解析 因为()20f =,()10f x ->,所以()()12f x f ->,又因为()f x 是偶函数且在[)0,+∞上单调递减,所以()()12f x f ->,所以12x -<,所以212x -<-<,所以13x -<<,所以()1,3x ∈-.评注 本题考查了偶函数的性质,利用()()f x f x =是求解的关键.16. 解析 解法一:当00x =时,()0,1M ,由圆的几何性质得在圆上存在点()1,0N -或()1,0N ,使045OMN ∠=.当00x ≠时,过M 作圆的两条切线,切点为A ,B .若在圆上存在N ,使得045OMN ∠=,应有045OMB OMN ∠∠=…,所以090AMB ∠…,所以010x -<…或001x <….综上,011x -剟.解法二:过O 作OP MN ⊥,P 为垂足,0sin 451OP OM =⋅…,所以01sin 45OM …,所以22OM …,所以2012x +…,所以201x …,所以011x -剟.评注 本题考查了数形结合思想及分析问题、解决问题的能力.17. 解析 (I )由131n n a a +=+得111322n n a a +⎛⎫+=+ ⎪⎝⎭.又11322a +=,所以12n a ⎧⎫+⎨⎬⎩⎭是首项为32,公比为3的等比数列. 1322n n a +=,因此{}n a 的通项公式为312n n a -=.(II )由(I )知1231n n a =-.因为当1n …时,13123n n --⨯…,所以1113123n n --⨯….于是112111113131133232n n n a a a -⎛⎫++⋅⋅⋅+++⋅⋅⋅+=-< ⎪⎝⎭….所以1211132na a a ++⋅⋅⋅+<. 评注 本题考查了等比数列的定义、数列求和等问题,放缩求和是本题的难点.18. 解析 (I )连接BD 交AC 于点O ,连接EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以//EO PB .又EO ⊂ //PB ,PB ⊄平面AEC ,所以 //PB 平面AEC .(II )因为PA ⊥平面ABCD ,ABCD 为矩形,所以AB ,AD ,AP 两两垂直.如图,以A 为坐标原点,AB 的方向为x 轴的正方向,AP 为单位长,建立空间直角坐标系A xyz -,则()D,12E ⎛⎫ ⎪ ⎪⎝⎭,12AE ⎛⎫= ⎪ ⎪⎝⎭.设()(),0,00B m m >,则()C m,()AC m =.设()1,,x y z =n 为平面ACE 的法向量,则110,0,AC AE ⎧=⎪⎨=⎪⎩n n即0,10,2mx y z ⎧+=+=可取1=-⎝n .又()21,0,0=n 为平面DAE的法向量,由题设121cos ,2=n n ,12,解得32m =.因为E 为PD 的中点,所以三角锥E ACD -的高为12.三角锥E ACD -的体积11313222V =⨯⨯=.评注 本题考查线面平行的判定,利用空间向量解二面角问题,考查了学生的空间想象能力. 19. 解析 (I )由所给数据计算得()1123456747t =⨯++++++=,()12.93.3 3.64.4 4.85.2 5.9 4.37y =⨯++++++=,()271941014928i i t t =-=++++++=∑,()()()()()()()()71=3 1.42110.7+00.1+10.5+20.9+3 1.6ii i tty y =---⨯-+-⨯-+--⨯⨯⨯⨯∑=14,()()()7127114ˆ0.528ii i ii tt y y btt ==--===-∑∑,ˆˆ 4.30.54 2.3ay bt =-=-⨯=,所求回归方程为ˆ0.5 2.3yt =+. (II )由(I )知,ˆ0.50b=>,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号9t =代入(I )中的回归方程,得ˆ0.59 2.3 6.8y=⨯+=千元,故预测该地区2015年农村居民家庭人均纯收入为6.8千元. 评注 本题考查了回归直线方程的求解,注意回归直线恒过点(),t y 是关键,考查了回归系数ˆb的几何意义.考查了学生的计算求解能力.20. 解析 (I)根据c 2,b M c a ⎛⎫⎪⎝⎭,223b ac =.将222b a c =-代入223b ac =,解得12c a =或c a =2-(舍去).故C 的离心率为12. (II )由题意,得原点O 为12F F 的中点,2//MF y 轴,所以直线1MF 与y 轴的交点()0,2D 是线段1MF 的中点,故24b a=,即24b a =. ① 由15MN F N =得112DF F N =.设()11,N x y ,由题意知10y <,则()112,22,c x c y ⎧--=⎪⎨-=⎪⎩即113,21.x c y ⎧=-⎪⎨⎪=-⎩代入C 的方程,得2229114c a b +=. ②将①及c 代入②得()22941144a a a a-+=. 解得7a =,2428b a ==,故7a =,b =评注 本题考查了椭圆的几何性质,考查用代数方法研究圆锥曲线问题及向量的运算等基础知识.21. 解析 (I )()e e 20x x f x -'=+-…,等号仅当0x =时成立.所以()f x 在(),-∞+∞上单调递增.(II )(()()()()()2224e -e 4e -e 84x x x x g x f x bf x b b x --=-=-+-,()()()222e +e 2e +e 42x x x xg x b b --⎡⎤'=-+-⎣⎦()()2e +e 2e +e 22x x x x b --=--+. (i )当2b …时,()0g x '…,等号仅当0x =时成立.所以()g x 在(),-∞+∞上单调递增. 而()g x =0,所以对任意0x >,()0g x >.(ii )当2b >时,若x 满足2e +e 22x xb -<<-,即(0ln 1x b <<-+时,()0g x '<.而()00g =,因此当(0ln 1x b <<-时,()0g x <. 综上,b 的最大值为2. (III )由(ii)知,(()3221ln 22g b =-+-.当2b =时,(36ln202g =->,ln 20.6928>>;当1b =+时,(ln 1b -=(()32ln202g =--<,n 20.6934<<.所以ln2的近似值为0.693.评注 本题考查了导数的应用,同时考查了分类讨论思想和运算能力. 22. 解析 (I )连接AB ,AC ,由题设知PA PD =,故PAD PDA ∠=∠. 因为PDA DAC DCA ∠=∠+∠,PAD BAD PAB ∠=∠+∠,DCA PAB ∠=∠, 所以DAC BAD ∠=∠,从而BE EC =.因此BE EC =.(ii )由切割线定理得2PA PB PC =⋅.因为PA PD DC ==,所以2DC PB =,BD PB =,由相交弦定理得AD DE BD DC ⋅=⋅,所以AD DE ⋅=22PB .评注 本题考查了圆的切割线定理,相交弦定理,考查了推理论证能力. 23. 解析(I )C 的普通方程为()()221101x y y-+=剟.可得C 的参数方程为1cos ,sin x t y t=+⎧⎨=⎩(t 为参数,)0πt 剟.(II )设()1c o s ,s i n D t t +.由(I )知C 是以C ()1,0为圆心,1为半径的上半圆.因为C 在点D处的切线与l 垂直,所以直线GD 与l的斜率相同,tan t =π3t =.故D 的直角坐标为ππ1cos ,sin 33⎛⎫+ ⎪⎝⎭,即32⎛ ⎝⎭. 评注 本题考查了极坐标化平面直角坐标,普通方程化参数方程的方法,考查了数形结合思想.24. 解析(I )由0a >,得()()1112f x x x a x x a a a a a=++-+--=+厖.EP所以()2f x ….(II )()1333f a a =++-.当3a >时,()13f a a=+,由()35f <得3a <<当03a <…时()136f a a=-+,由()35f <3a <….综上,a 的取值范围是⎝⎭.评注 本题考查了含绝对值不等式的解法,考查了分类讨论思想.。
精编2014年全国高考新课标ⅱ高中数学理科试卷和答案

2014年普通高等学校招生全国统一考试 理科(新课标卷二Ⅱ)第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=( ) A. {1}B. {2}C. {0,1}D. {1,2}2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,zxxk 12z i =+,则12z z =( ) A. - 5B. 5C. - 4+ iD. - 4 - i3.设向量a,b 满足|a+b |a-b a ⋅b = ( ) A. 1B. 2C. 3D. 54.钝角三角形ABC 的面积是12,AB=1,,则AC=( )A. 5B.C. 2D. 15.某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是( )A. 0.8B. 0.75C. 0.6D. 0.456.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A. 1727B. 59C. 1027D. 137.执行右图程序框图,如果输入的x,t 均为2,则输出的S= ( ) A. 4 B. 5 C. 6 D. 78.设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = A. 0 B. 1 C. 2 D. 39.设x,y 满足约束条件70310350x y x y x y +-⎧⎪-+⎨⎪--⎩≤≤≥,则2z x y =-的最大值为( )A. 10B. 8C. 3D. 210.设F 为抛物线C:23y x =的焦点,过F 且倾斜角为30°的直线交C 于A,B 两点,O 为坐标原点,则△OAB 的面积为( )A. B.C. 6332D. 9411.直三棱柱ABC-A 1B 1C 1中,∠BCA=90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC=CA=CC 1,则BM 与AN 所成的角的余弦值为( )A. 110B. 25C.D. 12.设函数()x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( ) A.()(),66,-∞-⋃∞ B.()(),44,-∞-⋃∞ C.()(),22,-∞-⋃∞D.()(),14,-∞-⋃∞ 第Ⅱ卷本卷包括必考题和选考题两部分.第13题~第21题为必考题,每个试题考生必须做答.第22题~第24题为选考题,考生根据要求做答. 二.填空题13.()10x a +的展开式中,7x 的系数为15,则a =________.(用数字填写答案)14.函数()()()sin 22sin cos f x x x ϕϕϕ=+-+的最大值为_________.15.已知偶函数()f x 在[)0,+∞单调递减,()20f =.若()10f x ->,则x 的取值范围是__________.16.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得zxxk ∠OMN=45°,则0x 的取值范围是________.三.解答题:解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知数列{}n a 满足1a =1,131n n a a +=+.(Ⅰ)证明{}12n a +是等比数列,并求{}n a 的通项公式;(Ⅱ)证明:1231112n a a a ++<…+.18. (本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为矩形,PA ⊥平面ABCD ,E 为PD 的中点.(Ⅰ)证明:PB ∥平面AEC ;(Ⅱ)设二面角D-AE-C 为60°,AP=1,AD=E-ACD 的体积.19. (本小题满分12分)某地区2007年至2013年农村居民家庭纯收入y(单位:千元)的数据如下表:(Ⅰ)求y关于t的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:()()()121niii ni i t t y y b t t ∧==--=-∑∑,ˆˆay bt =-20. (本小题满分12分)设1F ,2F 分别是椭圆C:()222210y x a b a b+=>>的左,右焦点,M 是C 上一点且2MF 与x 轴垂直,直线1MF 与C 的另一个交点为N. (Ⅰ)若直线MN 的斜率为34,求C 的离心率;(Ⅱ)若直线MN 在y 轴上的截距为2,且15MN F N =,求a,b .21. (本小题满分12分) 已知函数()f x =2x x e e x ---zxxk (Ⅰ)讨论()f x 的单调性;(Ⅱ)设()()()24g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;(Ⅲ)已知1.4142 1.4143<<,估计ln2的近似值(精确到0.001)请考生在第22、23、24题中任选一题做答,如果多做,同按所做的第一题计分,做答时请写清题号.22.(本小题满分10)选修4—1:几何证明选讲如图,P 是O 外一点,PA 是切线,A 为切点,割线PBC 与O 相交于点B ,C ,PC=2PA ,D 为PC 的中点,AD 的延长线交O 于点E.证明:(Ⅰ)BE=EC ; (Ⅱ)AD ⋅DE=22PB23. (本小题满分10)选修4-4:坐标系与参数方程 在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴 为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.zxxk (Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.24. (本小题满分10)选修4-5:不等式选讲 设函数()f x =1(0)x x a a a ++->(Ⅰ)证明:()f x ≥2;(Ⅱ)若()35f <,求a 的取值范围.2014年普通高等学校招生全国统一考试理科数学试题参考答案一、选择题(1)D (2)A (3)A (4)B (5)A (6)C(7)D (8)D (9)B (10)D (11)C (12)C 二、 填空题(13)12(14)1 (15)(1,3-) (16)[]1,1- 三、解答题 (17)解:(I )由131n n a a +=+得1113()22n n a a ++=+。
2014年高考真题——理科数学(新课标Ⅱ)解析版

2014年全国统一高考数学试卷(理科)(新课标Ⅱ)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一个选项符合题目要求.1.(5分)设集合M={0,1,2},N={x|x2﹣3x+2≤0},则M∩N=()A.{1} B.{2} C.{0,1} D.{1,2}考点:交集及其运算.专题:集合.分析:求出集合N的元素,利用集合的基本运算即可得到结论.解答:解:∵N={x|x2﹣3x+2≤0}={x|1≤x≤2},∴M∩N={1,2},故选:D.点评:本题主要考查集合的基本运算,比较基础.2.(5分)设复数z1,z2在复平面内的对应点关于虚轴对称,z1=2+i,则z1z2=()A.﹣5 B.5C.﹣4+i D.﹣4﹣i考点:复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的几何意义求出z2,即可得到结论.解答:解:z1=2+i对应的点的坐标为(2,1),∵复数z1,z2在复平面内的对应点关于虚轴对称,∴(2,1)关于虚轴对称的点的坐标为(﹣2,1),则对应的复数,z2=﹣2+i,则z1z2=(2+i)(﹣2+i)=i2﹣4=﹣1﹣4=﹣5,故选:A点评:本题主要考查复数的基本运算,利用复数的几何意义是解决本题的关键,比较基础.3.(5分)设向量,满足|+|=,|﹣|=,则•=()A.1B.2C.3D.5考点:平面向量数量积的运算.专题:平面向量及应用.分析:将等式进行平方,相加即可得到结论.解答:解:∵|+|=,|﹣|=,∴分别平方得+2•+=10,﹣2•+=6,两式相减得4•=10﹣6=4,即•=1,故选:A.点评:本题主要考查向量的基本运算,利用平方进行相加是解决本题的关键,比较基础.4.(5分)钝角三角形ABC的面积是,AB=1,BC=,则AC=()A.5B.C.2D.1考点:余弦定理.专题:三角函数的求值.分析:利用三角形面积公式列出关系式,将已知面积,AB,BC的值代入求出sinB的值,分两种情况考虑:当B 为钝角时;当B为锐角时,利用同角三角函数间的基本关系求出cosB的值,利用余弦定理求出AC的值即可.解答:解:∵钝角三角形ABC的面积是,AB=c=1,BC=a=,∴S=acsinB=,即sinB=,当B为钝角时,cosB=﹣=﹣,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2+2=5,即AC=,当B为锐角时,cosB==,利用余弦定理得:AC2=AB2+BC2﹣2AB•BC•cosB=1+2﹣2=1,即AC=1,此时AB2+AC2=BC2,即△ABC为直角三角形,不合题意,舍去,则AC=.故选:B.点评:此题考查了余弦定理,三角形面积公式,以及同角三角函数间的基本关系,熟练掌握余弦定理是解本题的关键.5.(5分)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是()A.0.8 B.0.75 C.0.6 D.0.45考点:相互独立事件的概率乘法公式.专题:概率与统计.分析:设随后一天的空气质量为优良的概率为p,则由题意可得0.75×p=0.6,由此解得p的值.解答:解:设随后一天的空气质量为优良的概率为p,则有题意可得0.75×p=0.6,解得p=0.8,故选:A.点评:本题主要考查相互独立事件的概率乘法公式的应用,属于基础题.6.(5分)如图,网格纸上正方形小格的边长为1(表示1cm),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm,高为6cm的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A.B.C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:由三视图判断几何体的形状,通过三视图的数据求解几何体的体积即可.解答:解:几何体是由两个圆柱组成,一个是底面半径为3高为2,一个是底面半径为2,高为4,组合体体积是:32π•2+22π•4=34π.底面半径为3cm,高为6cm的圆柱体毛坯的体积为:32π×6=54π.切削掉部分的体积与原来毛坯体积的比值为:=.故选:C.点评:本题考查三视图与几何体的关系,几何体的体积的求法,考查空间想象能力以及计算能力.7.(5分)执行如图所示的程序框图,若输入的x,t均为2,则输出的S=()A.4B.5C.6D.7考点:程序框图.专题:算法和程序框图.分析:根据条件,依次运行程序,即可得到结论.解答:解:若x=t=2,则第一次循环,1≤2成立,则M=,S=2+3=5,k=2,第二次循环,2≤2成立,则M=,S=2+5=7,k=3,此时3≤2不成立,输出S=7,故选:D.点评:本题主要考查程序框图的识别和判断,比较基础.8.(5分)设曲线y=ax﹣ln(x+1)在点(0,0)处的切线方程为y=2x,则a=()A.0B.1C.2D.3考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:根据导数的几何意义,即f′(x0)表示曲线f(x)在x=x0处的切线斜率,再代入计算.解答:解:,∴y′(0)=a﹣1=2,∴a=3.故答案选D.点评:本题是基础题,考查的是导数的几何意义,这个知识点在高考中是经常考查的内容,一般只要求导正确,就能够求解该题.在高考中,导数作为一个非常好的研究工具,经常会被考查到,特别是用导数研究最值,证明不等式,研究零点问题等等经常以大题的形式出现,学生在复习时要引起重视.9.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为()A.10 B.8C.3D.2考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用目标函数的几何意义,利用数形结合确定z的最大值.解答:解:作出不等式组对应的平面区域如图:(阴影部分ABC).由z=2x﹣y得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z经过点C时,直线y=2x﹣z的截距最小,此时z最大.由,解得,即C(5,2)代入目标函数z=2x﹣y,得z=2×5﹣2=8.故选:B.点评:本题主要考查线性规划的应用,结合目标函数的几何意义,利用数形结合的数学思想是解决此类问题的基本方法.10.(5分)设F为抛物线C:y2=3x的焦点,过F且倾斜角为30°的直线交C于A,B两点,O为坐标原点,则△OAB 的面积为()A.B.C.D.考点:抛物线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:由抛物线方程求出焦点坐标,由直线的倾斜角求出斜率,写出过A,B两点的直线方程,和抛物线方程联立后化为关于y的一元二次方程,由根与系数关系得到A,B两点纵坐标的和与积,把△OAB的面积表示为两个小三角形AOF与BOF的面积和得答案.解答:解:由y2=3x,得2p=3,p=,则F().∴过A,B的直线方程为y=,即.联立,得.设A(x1,y1),B(x2,y2),则,.∴==.故选:D.点评:本题考查直线与圆锥曲线的关系,考查数学转化思想方法,涉及直线和圆锥曲线关系问题,常采用联立直线和圆锥曲线,然后利用一元二次方程的根与系数关系解题,是中档题.11.(5分)直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.考点:异面直线及其所成的角.专题:空间位置关系与距离.分析:画出图形,找出BM与AN所成角的平面角,利用解三角形求出BM与AN所成角的余弦值.解答:解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,如图:BC 的中点为O,连结ON,,则MN0B是平行四边形,BM与AN所成角就是∠ANO,∵BC=CA=CC1,设BC=CA=CC1=2,∴CO=1,AO=,AN=,MB===,在△ANO中,由余弦定理可得:cos∠ANO===.故选:C.点评:本题考查异面直线对称角的求法,作出异面直线所成角的平面角是解题的关键,同时考查余弦定理的应用.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)考点:正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:由题意可得,f(x0)=±,且=kπ+,k∈z,再由题意可得当m2最小时,|x0|最小,而|x0|最小为|m|,可得m2 >m2+3,由此求得m的取值范围.解答:解:由题意可得,f(x0)=±,且=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.点评:本题主要正弦函数的图象和性质,函数的零点的定义,体现了转化的数学思想,属于中档题.二、填空题:本大题共4小题,每小题5分.(第13题~第21题为必考题,每个试题考生都必须作答,第22题~第24题为选考题,考生根据要求作答)13.(5分)(x+a)10的展开式中,x7的系数为15,则a=.考点:二项式系数的性质.专题:二项式定理.分析:在二项展开式的通项公式中,令x的幂指数等于3,求出r的值,即可求得x7的系数,再根据x7的系数为15,求得a的值.解答:解:(x+a)10的展开式的通项公式为T r+1=•x10﹣r•a r,令10﹣r=7,求得r=3,可得x7的系数为a3•=120a3=15,∴a=,故答案为:.点评:本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数的性质,属于中档题.14.(5分)函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.考点:三角函数的最值;两角和与差的余弦函数;两角和与差的正弦函数.专题:三角函数的求值.分析:由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.解答:解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.点评:本题主要考查两角和差的正弦公式、余弦公式的应用,正弦函数的最值,属于中档题.15.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).考点:函数奇偶性的性质;函数单调性的性质.专题:函数的性质及应用.分析:根据函数奇偶性和单调性之间的关系将不等式等价转化为f(|x﹣1|)>f(2),即可得到结论.解答:解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)点评:本题主要考查函数奇偶性和单调性之间的关系的应用,将不等式等价转化为f(|x﹣1|)>f(2)是解决本题的关键.16.(5分)设点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,则x0的取值范围是[﹣1,1].考点:直线与圆的位置关系.专题:直线与圆.分析:画出图形即可得到结果.解答:解:由题意画出图形如图:∵点M(x0,1),若在圆O:x2+y2=1上存在点N,使得∠OMN=45°,∴圆心到MN的距离为1,要使MN=1,才能使得∠OMN=45°,图中M′显然不满足题意,当MN垂直x轴时,满足题意,∴x0的取值范围是[﹣1,1].故答案为:[﹣1,1].点评:本题考查直线与圆的位置关系,直线与直线设出角的求法,数形结合是快速解得本题的策略之一.三、解答题:解答应写出文字说明,证明过程或验算步骤.17.(12分)已知数列{a n}满足a1=1,a n+1=3a n+1.(Ⅰ)证明{a n+}是等比数列,并求{a n}的通项公式;(Ⅱ)证明:++…+<.考点:数列的求和;等比数列的性质.专题:证明题;等差数列与等比数列.分析:(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{a n}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.解答:证明(Ⅰ)==3,∵≠0,∴数列{a n+}是以首项为,公比为3的等比数列;∴a n+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,<=,∴当n=1时,成立,当n≥2时,++…+1+…+==<.∴对n∈N+时,++…+<.点评:本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题.18.(12分)如图,四棱柱P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设二面角D﹣AE﹣C为60°,AP=1,AD=,求三棱锥E﹣ACD的体积.考点:二面角的平面角及求法;棱柱、棱锥、棱台的体积;直线与平面平行的判定.专题:空间位置关系与距离.分析:(Ⅰ)连接BD交AC于O点,连接EO,只要证明EO∥PB,即可证明PB∥平面AEC;(Ⅱ)延长AF至M连结DM,使得AM⊥DM,说明∠CMD=60°,是二面角的平面角,求出CD,即可三棱锥E﹣ACD的体积.解答:(Ⅰ)证明:连接BD交AC于O点,连接EO,∵O为BD中点,E为PD中点,∴EO∥PB,(2分)EO⊂平面AEC,PB⊄平面AEC,所以PB∥平面AEC;(6分)(Ⅱ)解:延长AF至M连结DM,使得AM⊥DM,∵四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,∴CD⊥平面AMD,二面角D﹣AE﹣C为60°,∴∠CMD=60°,∵AP=1,AD=,∠ADP=30°,∴PD=2,E为PD的中点.AF=1,∴DM=,CD==.三棱锥E﹣ACD的体积为:==.点评: 本题考查直线与平面平行的判定,几何体的体积的求法,二面角等指数的应用,考查逻辑思维能力,是中档题.19.(12分)某地区2007年至2013年农村居民家庭人均纯收入y (单位:千元)的数据如下表:年份 2007 2008 2009 2010 2011 2012 2013年份代号t 1 2 3 4 5 6 7人均纯收入y 2.9 3.3 3.6 4.4 4.8 5.2 5.9(Ⅰ)求y 关于t 的线性回归方程;(Ⅱ)利用(Ⅰ)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入. 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.考点:线性回归方程.专题:计算题;概率与统计.分析: (Ⅰ)根据所给的数据,利用最小二乘法可得横标和纵标的平均数,横标和纵标的积的和,与横标的平方和,代入公式求出b 的值,再求出a 的值,写出线性回归方程.(Ⅱ)根据上一问做出的线性回归方程,代入所给的t 的值,预测该地区2015年农村居民家庭人均纯收入,这是一个估计值.解答:解:(Ⅰ)由题意,=(1+2+3+4+5+6+7)=4,=(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3, ∴===0.5,=﹣=4.3﹣0.5×4=2.3.∴y 关于t 的线性回归方程为=0.5t+2.3; (Ⅱ)由(Ⅰ)知,b=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入=0.5t+2.3,得: =0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.点评: 本题考查线性回归分析的应用,本题解题的关键是利用最小二乘法认真做出线性回归方程的系数,这是整个题目做对的必备条件,本题是一个基础题.20.(12分)设F 1,F 2分别是C :+=1(a >b >0)的左,右焦点,M 是C 上一点且MF 2与x 轴垂直,直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN|=5|F 1N|,求a ,b .考点: 椭圆的应用.专题: 圆锥曲线中的最值与范围问题.分析: (1)根据条件求出M 的坐标,利用直线MN 的斜率为,建立关于a ,c 的方程即可求C 的离心率; (2)根据直线MN 在y 轴上的截距为2,以及|MN|=5|F 1N|,建立方程组关系,求出N 的坐标,代入椭圆方程即可得到结论.解答: 解:(1)∵M 是C 上一点且MF 2与x 轴垂直,∴M 的横坐标为c ,当x=c 时,y=,即M (c ,),若直线MN 的斜率为, 即tan ∠MF 1F 2=,即b 2==a 2﹣c 2, 即c 2﹣﹣a 2=0, 则, 解得e=. (Ⅱ)由题意,原点O 是F 1F 2的中点,则直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点, 故=4,即b 2=4a ,由|MN|=5|F 1N|,解得|DF 1|=2|F 1N|,设N (x 1,y 1),由题意知y 1<0,则,即代入椭圆方程得,将b2=4a代入得,解得a=7,b=.点评:本题主要考查椭圆的性质,利用条件建立方程组,利用待定系数发是解决本题的关键,综合性较强,运算量较大,有一定的难度.21.(12分)已知函数f(x)=e x﹣e﹣x﹣2x.(Ⅰ)讨论f(x)的单调性;(Ⅱ)设g(x)=f(2x)﹣4bf(x),当x>0时,g(x)>0,求b的最大值;(Ⅲ)已知1.4142<<1.4143,估计ln2的近似值(精确到0.001).考点:利用导数研究函数的单调性.专题:压轴题;导数的综合应用.分析:对第(Ⅰ)问,直接求导后,利用基本不等式可达到目的;对第(Ⅱ)问,先验证g(0)=0,只需说明g(x)在[0+∞)上为增函数即可,从而问题转化为“判断g'(x)>0是否成立”的问题;对第(Ⅲ)问,根据第(Ⅱ)问的结论,设法寻求ln2,于是在b=2及b>2的情况下分别计算,最后可估计ln2的近似值.解答:解:(Ⅰ)由f(x)得f'(x)=e x+e﹣x﹣2,即f'(x)≥0,当且仅当e x=e﹣x即x=0时,f'(x)=0,∴函数f(x)在R上为增函数.(Ⅱ)g(x)=f(2x)﹣4bf(x)=e2x﹣e﹣2x﹣4b(e x﹣e﹣x)+(8b﹣4)x,则g'(x)=2[e2x+e﹣2x﹣2b(e x+e﹣x)+(4b﹣2)]=2[(e x+e﹣x)2﹣2b(e x+e﹣x)+(4b﹣4)]=2(e x+e﹣x﹣2)(e x+e﹣x﹣2b+2).①∵e x+e﹣x≥2,e x+e﹣x+2≥4,∴当2b≤4,即b≤2时,g'(x)≥0,当且仅当x=0时取等号,从而g(x)在R上为增函数,而g(0)=0,∴x>0时,g(x)>0,符合题意.②当b>2时,若x满足2<e x+e﹣x<2b﹣2即时,g'(x)<0,又由g(0)=0知,当时,g(x)<0,不符合题意.综合①、②知,b≤2,得b的最大值为2.(Ⅲ)由(Ⅱ)知,.当b=2时,由,得;当时,有,由,得.所以ln2的近似值为0.693.点评:1.本题三个小题的难度逐步增大,考查了学生对函数单调性深层次的把握能力,对思维的要求较高,属压轴题.2.从求解过程来看,对导函数解析式的合理变形至关重要,因为这直接影响到对导数符号的判断,是解决本题的一个重要突破口.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.【选修4-1:几何证明选讲】22.(10分)如图,P是⊙O外一点,PA是切线,A为切点,割线PBC与⊙O相交于点B,C,PC=2PA,D为PC 的中点,AD的延长线交⊙O于点E,证明:(Ⅰ)BE=EC;(Ⅱ)AD•DE=2PB2.考点:与圆有关的比例线段;相似三角形的判定.专题:选作题;几何证明.分析:(Ⅰ)连接OE,OA,证明OE⊥BC,可得E是的中点,从而BE=EC;(Ⅱ)利用切割线定理证明PD=2PB,PB=BD,结合相交弦定理可得AD•DE=2PB2.解答:证明:(Ⅰ)连接OE,OA,则∠OAE=∠OEA,∠OAP=90°,∵PC=2PA,D为PC的中点,∴PA=PD,∴∠PAD=∠PDA,∵∠PDA=∠CDE,∴∠OEA+∠CDE=∠OAE+∠PAD=90°,∴OE⊥BC,∴E是的中点,∴BE=EC;(Ⅱ)∵PA是切线,A为切点,割线PBC与⊙O相交于点B,C,∴PA2=PB•PC,∵PC=2PA,∴PA=2PB,∴PD=2PB,∴PB=BD,∴BD•DC=PB•2PB,∵AD•DE=BD•DC,∴AD•DE=2PB2.点评:本题考查与圆有关的比例线段,考查切割线定理、相交弦定理,考查学生分析解决问题的能力,属于中档题.【选修4-4:坐标系与参数方程】23.在直角坐标系xOy中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,半圆C的极坐标方程ρ=2cosθ,θ∈[0,].(Ⅰ)求C的参数方程;(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.考点:参数方程化成普通方程;利用导数研究曲线上某点切线方程;圆的参数方程.专题:坐标系和参数方程.分析:(Ⅰ)半圆C的极坐标方程化为直角坐标方程为(x﹣1)2+y2=1,令x﹣1=cosα∈[﹣1,1],y=sinα,可得半圆C的参数方程.(Ⅱ)由题意可得直线CD和直线l平行.设点D的坐标为(1+cosα,sinα),根据直线CD和直线l的斜率相等求得cotα的值,可得α的值,从而得到点D的坐标.解答:解:(Ⅰ)半圆C的极坐标方程ρ=2cosθ,θ∈[0,],即ρ2=2ρcosθ,化为直角坐标方程为(x﹣1)2+y2=1,x∈[0,2]、y∈[0,1].令x﹣1=cosα∈[﹣1,1],y=sinα,α∈[0,π].故半圆C的参数方程为,α∈[0,π].(Ⅱ)设点D在C上,C在D处的切线与直线l:y=x+2垂直,∴直线CD和直线l平行,故直线CD和直线l斜率相等.设点D的坐标为(1+cosα,sinα),∵C(1,0),∴=,解得tanα=,即α=,故点D的坐标为(,).点评:本题主要考查把极坐标方程化为直角坐标方程,把直角坐标方程化为参数方程,注意参数的范围,属于基础题.六、解答题(共1小题,满分0分)24.设函数f(x)=|x+|+|x﹣a|(a>0).(Ⅰ)证明:f(x)≥2;(Ⅱ)若f(3)<5,求a的取值范围.考点:绝对值不等式的解法.专题:不等式的解法及应用.分析:(Ⅰ)由a>0,f(x)=|x+|+|x﹣a|,利用绝对值三角不等式、基本不等式证得f(x)≥2成立.(Ⅱ)由f(3)=|3+|+|3﹣a|<5,分当a>3时和当0<a≤3时两种情况,分别去掉绝对值,求得不等式的解集,再取并集,即得所求.解答:解:(Ⅰ)证明:∵a>0,f(x)=|x+|+|x﹣a|≥|(x+)﹣(x﹣a)|=|a+|=a+≥2=2,故不等式f(x)≥2成立.(Ⅱ)∵f(3)=|3+|+|3﹣a|<5,∴当a>3时,不等式即a+<5,即a2﹣5a+1<0,解得3<a<.当0<a≤3时,不等式即6﹣a+<5,即a2﹣a﹣1>0,求得<≤3.综上可得,a的取值范围(,).点评:本题主要考查绝对值三角不等时,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
, k Z ,又 x 0,4 , k 0,1,2,3,4
).
所以共有 6 个解.选 C. 2 3.函数 f(x)=log2|x|,g(x)=-x +2,则 f(x)²g(x)的图象只可能是(
【解析】因为函数 f(x),g(x)都为偶函数,所以 f(x)²g(x)也为偶函数.所以图象关于 y 轴对 称,排除 A,D.f(x)²g(x)=(-x +2)log2|x|,当 0<x<1 时,f(x)²g(x)<0 排除 B 选 C. 4. (2013 浙江)已知 x, y 为正实数,则( A. 2 C. 2
x x
2
a 0, 且a 1 ,若 g 2 a ,则 f 2 (
A.
).
2
15 B. 4
17 C. 4
2
D. a
2
2
【解析】由条件 f 2 g 2 a a
2 , f 2 g 2 a 2 a 2 2 ,即
f 2 g 2 a 2 a 2 2 ,由此解得 g 2 2 , f 2 a 2 a 2 ,
2
)
4 B. 3,
C.
3
D.
4
1 x 2
则 A I CR B= (
)
-3-
新课标普通高中 2014 年高考数学(理)增分直通车
A. x | x 0 C. B. x | 2 x 4 D. x | 0 x 2或x 4
) 当 3 x 1 时 , 5. ( 2012 山 东 ) 定 义 在 R 上 的 函 数 f ( x ) 满 足 f ( x 6 ) f ( x .
2 ,当 1 x 3 时, f ( x) x 。则 f (1) f (2) f (3) f (2012) ( ) f ( x) ( x 2 )
60 30
600
1 150 4 (太贝克) ,
2 , B = 2, 3 ,则 ðU A B = ( 8. (2013 重庆)已知全集 U 1, 2,3, 4 ,集合 A= 1, 3, 4 A. 1,
【答案】D 9. (2013 湖北)已知全集为 R ,集合 A x 1 , B x | x 6 x 8 0 ,
x | 0 x 2或x 4
)
【答案】C 10 . (2013 重庆)命题“对任意 x R ,都有 x 2 0 ”的否定为( A.对任意 x R ,都有 x 2 0 C.存在 x0 R ,使得 x0 2 0 【答案】D 11. (2013 四川)设 x Z ,集合 A 是奇数集, B 是偶数集.若命题 p : x A, 2 x B ,则( A. p : x A, 2 x B C. p : x A, 2 x B B. p : x A, 2 x B D. p : x A, 2 x B )
所以 a 2 ,
f 2 2 2 2 2
15 4 ,所以选 B.
7.(2011 湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少, 这种现象成为衰变,假设在放射性同位素铯 137 的衰变过程中,其含量 M (单位:太贝克)与 时间 t (单位: 年) 满足函数关系:
ln x D.f(x)=
x
【解析】结合各选项知定义域内是奇函数的函数有选项 A,B,C 中的函数,而这三个函数在定义 域内是减函数的只有选项 A. 2.(2012 湖北)函数 f ( x) x cos x 2 在区间 [0, 4] 上的零点个数为( A.4 C.6 B.5 D.7 ).
2 2 【解析】 f ( x) 0 ,则 x 0 或 cos x 0 , x k
-2-
新课标普通高中 2014 年高考数学(理)增分直通车
所以在一个周期内有 f (1) f (2) L f (6) 1 2 1 0 1 0 1 , 所以 f (1) f (2) L f (2012) f (1) f (2) 335 1 335 3 338 ,选 B. 6.(2011 湖北)已知定义在 R 上的奇函数 f x 和偶函数 g x 满足 f x g x a a
A 335
B 338
C 1678
D 2012
【 解 析 】 由 f ( x 6) f ( x) , 可 知 函 数 的 周 期 为 6 , 所 以 f (3) f (3) 1 ,
f (2) f (4) 0 , f (1) f (5) 1 , f (0) f (6) 0 , f (1) 1 , f (2) 2 ,
30
1 1 M / 30 ln 2 M 0 2 30 10ln 2 M t ln 2 M 0 2 30 30 30 【解析】因为 ,则 ,解得
M 0 600,所以 M t 600 2
所以选 D.
t 30
, 那么
M 60 600 2
M t M 0 2
t 30
, 其中
M 0 为 t 0 时铯 137 的含量, 已知 t 30
).
时,铯 137 的含量的变化率是 10 ln 2 (太贝克/年) ,则 M 60 ( A. 5 太贝克
/
B. 75 ln 2 太贝克
C. 150 ln 2 太贝克
t
D. 150 太贝克
Hale Waihona Puke lg x lg y2). B. 2
lg( x y )
2lg x 2lg y 2lg x 2lg y
lg x
2lg x 2lg y 2lg x 2lg y
lg x lg y
D. 2
lg x+lg y
lg( xy )
解析 2
²2
lg y
=2
=2
lg(xy).
故选 D.
新课标普通高中 2014 年高考数学(理)增分直通车
增 分 直 通 车
2014 届高三数学(理) 2014 年 3 月
新课标普通高中 2014 年高考数学(理)增分直通车
专题 1
A.f(x)=-x|x| C.f(x)=sin x
集合、基本初等函的图象与性质
). B.f(x)=x
3
1.同时满足两个条件:①定义域内是减函数;②定义域内是奇函数的函数是(