正比例反比例函数复习课

合集下载

正比例函数和反比例函数复习一、二、三

正比例函数和反比例函数复习一、二、三

y =5,求当 x =5 时 y 的值。
3、如图所示,在反比例函数图像上有一的点 A,AB⊥X 轴,三角形 AOB 的 面积为 10,求反比例函数的解析式.
y A B O x
4、 如图所示的双曲线是函数 y= 3)是图象上一点。 (1)求这个函数解析式
k (k 0) 在第一象限内的图像,A(4, x
0
C
A E x B D F y C
5
3、如图,已知:在△ABC 中,∠C= 90

, B 30 , AC 6 ,点 D、E、F 分别在边 BC、AC、AB 上(点 E、
F 与△ABC 顶点不重合) ,AD 平分∠CAB,EF⊥AD,垂足为 H. (3 分)(1)求证:AE=AF; (3 分) (2)设 CE=x,BF=y,求 y 与 x 的函数解析式,并写出定义域; (4 分) (3)当△DEF,是直角三角形时,求出 BF 的长.
A F E
B
D
C
课后练习 1.解方程: x
2
6 x 18 0
2.解方程:
(3 x ) 2 x 2 9
3.解不等式: 2 x
10 > 5 x 2


6
4.已知正比例函数的图像经过点( 2 ,8) ,经过图像上一点 A 作 求: (1)点 A 坐标(2) AOB 的面积。
3. 已知在 y=
8 x
(x>0)反比例函数的图象上有不重合的两点 A、
B,且 A 点的纵坐标是 2,B 点的横坐标为 2,且 AB⊥OB,CD⊥OD, 求(1)双曲线的函数解析式; (2)△OAB 的面积; (3)△OAC 的面积。
4、 上海磁悬浮列车在一次运行中速度 V(千米/小时)关于时间 t(分钟)的函数图像如图,回答下列问 题。 (1) (2) (3) (4) 列车共运行了_______分钟 列车开动后,第 3 分钟的速度是__________千米/小时。 列车的速度从 0 千米/小时加速到 300 千米/小时,共用了_________分钟。 列车从___________分钟开始减速。

反比例函数的图像和性质的复习课(经典)

反比例函数的图像和性质的复习课(经典)

类型四
2 y 2= x
反比例函数与一次函数综合应用
1. 如图一次函数y1=x-1与反比例函数
的图像交于点A(2,1),B(-1,-2),
则使y1 >y2的x的取值范围是 ( B )
A.x>2
B. x>2 或-1<x<0
C. -1<x<2
D. x>2 或x<-1
2. 如图,已知A(-4,2)、B(n,-4)是一次 函数的图象与反比例函数的图象的两个 交点. (1)求此反比例函数和 一次函数的解析式; (2) 根据图象写出使一次 函数的值小于反比例函数 的值的x的取值范围. 解:(1) 一次函数的解析式 y=-x-2 8 反比例函数解析式 y x (2)x的取值范围为 x 2或 4 x 0
已知 y 与 x+2 成反比例,且当 x=2 时 ,y=3 ,当 x=-1时y= 12 。
初中数学资源网
3. 已知函数y=y1+y2,y1与x成正比例,y2
与x成反比例,且当x=1时,y=4)当x=-2时,求函数y的值.
函数
正比例函数 y=kx ( k≠0 )
反比例函数
k y = x ( k是常数,k≠0 ) 双曲线,与坐标轴无交点
填表 分析 正比 例函 数和 反比 例函 数的 区别
关系式
图象形状
直线,经过原点
位 置 增 减 性 位 置 增 减 性
K>0
一三 象限
y随x的增大而增大
一三 象限 在每个象限内y随 x的增大而减小 二四 象限 在每个象限内y随 x的增大而增大
2 y 2 (2) 5 (2)当x=-2时, 2


2 y 2x x
初中数学资源网
k 设P(m, n)是双曲线y (k 0)上任意一点 , x 过P分别作x轴, y轴的垂线, 垂足分别为A, B, 求矩形OAPB 的面积。 面积性质(一)

正比例反比例函数复习

正比例反比例函数复习

正比例函数和反比例函数一、知识要点1.如果变量y是自变量x的函数,对于x在定义域内取定的一个值a ,变量y的对应值叫做当x=a时的函数值。

(为了深入研究函数,我们把“y是x的函数”用记号y=f(x)表示,这里括号里的x表示自变量,括号外的字母f表示y随x变化而变化的规律。

f(a)表示当x=a时的函数值)2.函数的自变量允许取值范围,叫做这个函数的定义域。

3.正、反比例函数的解析式、定义域、图像、性质4.函数的表示法有三种:列表法,图像法,解析法。

二、课堂练习1.油箱中有油60升,油从管道中匀速流出,1小时流完,求油箱中剩余油量Q(升)与流出时间t(分钟)间的函数关系式为__________________,•自变量的范围是_____________.当Q=10升时,t=_______________。

2.在函数xxy+-=12中,自变量x的取值范围是。

3.一棵小树苗长10cm,从发芽起每年长高3cm,则x年后其高度y关于x的函数解析式为_________,y___(填“是”或“不是”)x的正比例函数.4.观察下图中各正方形图案,每条边上有n(n≥2)个圆圈,每个图案中圆圈的总数是s。

按此规律推断出s与n的关系式为。

正比例函数反比例函数解析式y=kx(k≠0)y=xk(k≠0)图像经过(0,0)与(1,k)两点的直线经过(1,k)与(k,1)两点的双曲线经过象限当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。

增减性当k>0时,y随着x的增大而增大;当k<0时,y随着x的增大而减小。

当k>0时,在每个象限内,y随着x的增大而减小;当k<0时,在每个象限内,y随着x的增大而增大。

5. 已知等腰三角形的周长为12,设腰长为x ,底边长为y ,则y 关于x 的函数解析式,及自变量x 的取值范围__________________6. 若点P(3,8)在正比例函数y=kx 的图像上,则此正比例函数解析式是________________。

第十五讲 正比例函数

第十五讲   正比例函数

第十五讲正比例函数、反比例函数、几何证明复习正比例函数:解析式:y=kx(k为常数,k≠0) ,k叫做函数的比例系数;(注意:x的指数为1)图像:过原点的直线;必过点:(0,0)和(1,k);走向:k>o,图像过一三象限,k<0,图像过二四象限;yx倾斜度:|k|越大,倾斜度越大,也就是越靠近y轴,|k|越小,倾斜度越小,也就是越靠近x轴;如图:x增减性:k>0,y随x的增大而增大;k<0,y随x的增大而减小;反比例函数:解析式:y=k/x(k为常数,k≠0)图像:双曲线(图像无限靠近坐标轴,但永不相交。

)所在象限:k>0图像经过一三象限;k<0图像经过二四象限。

kx增减性:k>0,y随x的增大而减小;k<0,y随x的增大而增大;1. 已知:点P (m ,4)在反比例函数xy 12=的图像上,正比例函数的图像经过点P 和点Q (6,n ).(1)求正比例函数的解析式;(2)在x 轴上求一点M ,使△MPQ 的面积等于18. 1.函数12-+x x 的定义域是 2.已知函数53)(-=x xx f ,那么=)(x f . 3. 如果反比例函数的图像经过点(-8,3),那么当0〉x 时y 的值随x 的值的增大而··( ) (A) 增大 (B)不变; (C) 减小 (D)无法确定 4.某人从甲地行走到乙地的路程S (千米)与时间t (时)的函数关系如图所示,那么此人行走3千米,所用的时间 (时)5. 在同一坐标系中,正比例函数y=x 与反比例函数的图象大致是( )A .B .C .D .6. 已知反比例函数y=(k<0)的图象上有两点A(x1,y1)、B(x2,y2),且x1<x2<0,则y1与y2的大小关系是()A. y1<y2B. y1>y2C. y1=y2D.不能确定7. 请写出符合以下条件的一个函数的解析式.①过点(3,1);②当x>0时,y随x的增大而减小.8. 如图,已知点P(x,y)是反比例函数图象上一点,O是坐标原点,PA⊥x轴,S△PAO=4,且图象经过(1,3m﹣1);求:(1)反比例函数解析式.(2)m的值.9. 假定甲乙两人在一次赛跑中,路程S(米)与时间t(秒)的关系式如图所示,那么可以知道:(1)这是一次米赛跑.(2)甲乙两人中,先到达终点的是.(3)乙在这次赛跑中的速度为.10. 如图,直线y=x与双曲线y=(k>0)交于A点,且点A的横坐标为4,双曲线y=(k>0)上有一动点C(m,n),(0<m<4),过点A作x轴垂线,垂足为B,过点C作x轴垂线,垂足为D,连接OC.(1)求k的值.(2)设△COD与△AOB的重合部分的面积为S,求S关于m的函数解析式.(3)连接AC,当第(2)问中S的值为1时,求△OAC的面积.命题和证明1、我们现在学习的证明方式是演绎证明,简称证明2、能界定某个对象含义的句子叫做定义3、判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4、数学命题通常由题设、结论两部分组成5、命题可以写成“如果……那么……”的形式,如果后是题设,那么后市结论证明举例平行的判定,全等三角形的判定逆命题和逆定理1、在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2、如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理线段的垂直平分线1、线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

反比例函数复习课件

反比例函数复习课件
反比例函数单元复习
知识点回顾1 1.什么是反比例函数?
一般地,函数 y k(k是常数, x
k≠0)叫做反比例函数.
2.解析式还有两种常见的表达形式。 y=kx-1(k≠0) xy = k (k≠0)
你一定能找对!
1.下列函数中哪些是反比例函数?
y = 3①x-1
y = 2x2
②y=
1 x
y = 23x③ ④
|k|的一半.
2.设x为一切实数,在下列函数中
,当x增大时,y的值总是减小的函
C
数是( )
(A) y = -5x -1 ( B) y=x2
(C) y=-2x+2; (D) y=4x.
3. 已知k<0,则函数 y1=kx,y2=
k x
在同一坐标系中的图像大致是
D
()
y
y
(A)
0
(B)
x
0
x
y
y
(C)
0
(D)
x
0
x
4. 已知k>0,则函数 y1=kx+k与kxy2=
在同一坐标系中的图像大致是 ( C)
y
y
(A)
(B)
0
x
0
x
y
y
(C)
(D)
0
x
0
x
5.设P(2,3)是反比例函数图像 上的一点,求△POA的面积。
y
P(2,3)
oA
x
y P(m,n)
oA
x
6.在平面直角坐标系内,从反比例函数
y=k/x(k>0)的图象上的一点分别作坐标轴 的垂线段,与坐标轴围成的矩形的面积是12,
8.已知:y=y1+y2,其中y1与x成正 比例,y2与x成反比例,当x=1时 ,y=4,当x=2时,y=5,求函数y 的解析式。

第十八章 正、反比例函数教案(复习课)新

第十八章  正、反比例函数教案(复习课)新

9. 正比例函数和反比例函数(单元复习课)上课班级 八(2)班一、复习目标1.通过本课复习使学生正确区分正比例函数和反比例函数的概念、图像和性质,熟练掌握用待定系数法求它们的解析式.2.理解并会求函数的定义域,明确在实际问题中遇到函数问题应考虑实际问题的自变量的取值范围.3.在利用正、反比例函数的图像分析和解决实际问题的活动中,提高从函数图像中获取信息的能力,体验数形结合的数学思想方法.二、复习重点、难点和关键1.复习重点:正确区分正比例函数和反比例函数的概念、图像和性质,会用待定系数法求它们的解析式.2.复习难点:用函数知识分析和解决有关实际问题.3.复习关键:从函数图像中正确读取信息.三、复习思路四、复习进程 (一)题组引入1.(1) 如果2(2)4=++-y n x n 是正比例函数,那么n =____. (2)如果210(3)-=+m y m x 是反比例函数,那么m =____.(3)如果 (3)(2)=-++y a x b 是正比例函数,那么a ,b . (4)下列函数中是反比例函数的是( ).(A )1=+y x ; (B ) 18-=y x ; (C )2=-y x ; (D ) 22=y x .2. (1)如果正比例函数(1)=-y k x 的图像经过第二、四象限,那么k 的取值范围是 .(2)反比例函数21kyx+=的图像在第象限,在每个象限内,y随x的增大而 .(3)已知反比例函数=kyx 的图像与正比例函数2=y x的图像无交点,那么k的取值范围是 .小结:正比例函数与反比例函数的定义、图像和性质:正、反比例函数定义、图像和性质:3.(1)已知y与x成反比例,并且当x=2时, y=-1,那么函数解析式 .(2)正比例函数3kxy =的图像过点(6,2),那么函数解析式是 .(3)如图所示,反比例函数的解析式为 ____________ ,a 的值 为 .小结:求正比例函数与反比例函数的解析的方法:求函数的解析式主要方法是待定系数法,先设所求函数的解析式,其中系数k 待定,再代入一组对应的变量值,求出k的值.4.求下列函数的定义域 (1) 21y x =-(2) 12y x =- (3) y = (4) 3y x =-小结:常见函数的定义域:(1)函数解析式为整式时,定义域为一切实数.(2)函数解析式为分式时,定义域是使分母不等于0的实数.(3)函数解析式是无理式时,偶次根式的被开方数必须是非负数;奇次根式的定义域为一切实数.(4)实际问题中的函数的定义域,除了使函数解析式有意义外,还必须使实际问题有意义.(二)例题导航例1 如果三角形的三条边长分别为6厘米、9厘米、x 厘米,那么三角形的周长y (厘米)是x (厘米)的函数.写出函数解析式,并指出它的定义域.解 函数解析式是 15y x =+ . 定义域是 315x <<.例 2 已知正比例函数(0)y kx k =>与双曲线 4y x=相交于点(4,)p m -及点Q . 求正比例函数解析式和点Q 的坐标. 解4-4)44,,41.-4-1(4,1)4,11.41.4p m y xx y m m m p p y kx x y x p =∴=-==-=-∴--=∴=-=-∴∴Q Q Q 点(,在的图像上,把代入得解得点坐标为(,).又也在的图像上,把代入得-1=-4k,解得k=正比例函数解析式为y=点和点Q 关于原点中心对称,Q 点坐标为(4,1).(三)提升演练(1)已知长方形的面积为10平方厘米,长和宽分别是x 厘米,y 厘米. 写出y 与x 之间的函数关系式及其定义域. 答: 10(0)y x x=>. (2)汽车油箱中有油40千克,行驶时每小时耗油4千克,耗油y (千克)与行驶时间t (小时)之间函数关系式为 , 函数定义域为 . 答: 4(010)y t t =≤≤ . 思考题:如图,直线4=y x 与反比例函数=ky x(x >0)交于点A (,4)a , 点B (4,)b 在反比例函数的图像上,AD ⊥x 轴,D 为垂足,BC ⊥x 轴, C 为垂足.求:(1) a的值;(2)反比例函数的解析式;(3)梯形ABCD的面积;(4)△AOB的面积.(四)课堂总结1.正、反比例函数定义、图像和性质:2.求正比例函数与反比例函数的解析式:求函数的解析式主要方法是待定系数法,先设所求函数的解析式,其中系数k待定,再代入一组对应的变量值,求出k的值.3.常见函数的定义域:(1)函数解析式为整式时,定义域为一切实数.(2)函数解析式为分式时,定义域是使分母不等于0的实数.(3)函数解析式是无理式时,偶次根式的被开方数必须是非负数;奇次根式的定义域为一切实数.(4)实际问题中的函数的定义域,除了使函数解析式有意义外,还必须使实际问题有意义.五、课外作业校本作业第十八章部分复习题七、教前设想函数是数学中重要的基本概念之一,它是从现实世界中抽象出来的,是从数量关系的角度刻画事物运动变化规律的工具;函数知识渗透在中学数学的许多内容之中,它又与物理、化学等学科的知识密切相关.同时,函数是一个重要的数学思想,运用函数的思想和方法,可以加深对一些代数问题的理解.本章是学习函数知识的开始,中心内容是正比例函数和反比例函数.八、教后反思通过本课的复习使学生正确区分正比例函数与反比例函数的定义、图像和性质.明确在实际问题中遇到函数问题应考虑自变量的取值范围.另外有关函数的问题一定与图形结合起来,通过本课复习渗透数形结合等重要的数学思想方法. 围绕着教学目标以及复习课的教学模式,我确定了三个教学环节.第一环节是题组引入,通过引入正比例和反比例函数的定义、图像和性质这些基本的知识点,并用表格进行罗列,从而进行两者之间的区别. 第二环节就是典型例题,例1是一个实际问题,强调实际问题中考虑自变量取值范围. 例2是有关求解析式和点的坐标的综合题, 要求学生写出完整的解题过程.第三环节为提升演练,既有练习题,又有思考题,立足于培养学生的能力.从环节的设置上,有基本知识点的复习与总结,也有正比例与反比例的综合题,由易到复杂逐步深入,符合学生的认知规律,同时渗透数学思想方法,本课的容量较大,以此来体现复习课的课型.本节课学生积极性很高,师生互动好,学生的思维也得到进一步的升华,这也是复习课所要达到的目的.【专家点评】一节复习课,开门见山,点明复习三个内容:(1)定义、图像和性质;(2)求解析式;(3)求定义域.随后先练后总结,一一道来.这种复习方法给人的感觉是脉络清楚,讲练结合,学生的思维活动不断强化.提升演练的问题的难易度符合本班学生的实际,会使学生的能力得以培养.执教老师具有坚实的专业知识,对教材非常熟悉,而且有较强的总结、概括能力.站在讲台前,语言表达干脆、爽快,做到言简意赅.本节课虽然容量很大,但却能顺畅推进,按时完成教学任务,从中显示出老师的教学经验很丰富.师生关系融洽,互动效果好.总体感觉,这样的课很实惠,相信学生完成课外作业一定很顺利,准确率极高.。

第二十六章 反比例函数(复习课件)-2022-2023学年九年级数学下册同步备课系列(人教版)

第二十六章 反比例函数(复习课件)-2022-2023学年九年级数学下册同步备课系列(人教版)

则1 , 2 , 3 的大小关系是( )
A.1 < 2 < 3
B. 2 < 3 < 1
C. 1 < 3 < 2
8
【详解】将三点坐标分别代入函数解析式 = ,得:
8
2 = ,解得1 = 4;
1
8
−1 = ,解得2 = −8;
2
8
4 = ,解得3 = 2;
8
k
x
M的直线l∥y轴,且直线l分别与反比例函数y = 和y = 的图象交于P、Q两点.若S△POQ=15,
x
则k的值为(
A.38

B.22
C.﹣7
D.﹣22


【详解】解:设点P(a,b),Q(a,),则OM=a,PM=b,MQ=− ,
两者矛盾,故D选项错误;
故选:B.
中考真题

4.(2022·江苏无锡·中考真题)一次函数y=mx+n的图像与反比例函数y= 的图像交于点A、
1
B,其中点A、B的坐标为A(- ,-2m)、B(m,1),则△OAB的面积( )

A.3
B.
13
4
7
2
C.
D.
15
4

1
1
【详解】解:∵A(-,-2m)在反比例函数y= 的图像上,∴m=(-) • ( -2m)=2,
2)反比例函数也写成y=kx-1或k=xy的形式。
基础巩固(反比例函数的图象与性质)


当k>0时,反比例函数y = 的图象:
(1)函数图象分别位于第一、三象限;
(2)在每一个象限内,y随x的增大而减小。

反比例函数复习课课件

反比例函数复习课课件

2023
REPORTING
THANKS
感谢观看
2023
PART 05
反比例函数的易错点与难 点解析
REPORTING
易错点的解析
混淆反比例函数与正比例函数
01
正比例函数是y=kx,而反比例函数是xy=k。学生常常将两者混
淆,导致在解题时出现错误。
忽视反比例函数的定义域
02
反比例函数的定义域是x不为0的实数,学生常常忽视这一点,
导致在解题时出错。
2023
PART 04
反比例函数的综合题解析
REPORTING
反比例函数的综合题解析
01
分析与照顾 into acts' intoic andic. of course, and will,, on the在这
பைடு நூலகம்02
saidcoupled =oman ofic ofic of and ofic and of intoic of and, and other神话 top similar 觉ungais'hipster
描述反比例函数的定义
详细描述
反比例函数是一种数学函数,其定义为 y = k/x,其中 k 是常数且 k ≠ 0。当 x 取任意非零实数时,y 的值都存在。
反比例函数的图像
总结词
描述反比例函数的图像特点
详细描述
反比例函数的图像通常在 x 轴和 y 轴上都有渐近线,即当 x 或 y 趋于无穷大时 ,函数值趋于 0。图像通常位于第一象限和第三象限。
反比例函数的性质
总结词:列举反比例函数 的性质
1. 当 k > 0 时,函数图像 在第一象限和第三象限;
3. 反比例函数是奇函数, 即 f(-x) = -f(x);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

正比例、反比例函数复习课
邹文莉
执教班级:八(1)班
教学目标: (1)通过本课的复习使学生正确区分正比例函数与反比例函数的定义、图象和
性质。

(2)通过例题的探索在同一直角坐标平面内会求正比例函数与反比例函数的交
点。

(3)通过讨论明确在实际问题中遇到函数问题应考虑自变量的取值范围。

(4)通过本课复习渗透数形结合等重要的数学思想方法。

教学重点:正确区分正比例函数与反比例函数的定义、图象和性质。

并用它们解决有关问题。

教学难点:在同一直角坐标平面内会求正比例函数与反比例函数的交点。

教学过程:
一、题组引入:
1、(1)函数x y 3=的图象经过原点且在______象限内,y 随x 的增大而_____.
(2) 函数x y 3-
=的图象的两个分支在第_______象限内,在每个象限内, y 随x 的增大而_____.
2、(1)当k_____时,正比例函数x k y )21(-=的图象过原点且在第二、四象限内。

(2)当k_____时,反比例函数x k y 3-=
的图象在每一个象限内,y 随x 的增大而减少。

(3)反比例函数o x x
y 〈-=当,4时,y 随x 的增大而_____. 3、下列各小题中的两个函数在同一直角坐标平面内有无交点,为什么?若有交点,请求出
交点。

(1)x y x y 21,2=
-= (2)x
y x y 9,31== (3)x y x y 16,4-=-= (4)x y x y 2,21-== 总结:正比例函数与反比例函数的定义、图象、性质。

二、 题型举例:
试一试!
例1:已知正比例函数kx y =与反比例函数x y 4=
交于点),4(m p -及点Q ,求:正比例函数关系式及另一个交点Q 的坐标。

小结;如何求两个函数的交点坐标。

例2:当n 为何值时,函数12)1(+-=n x n y 是正比例函数,并回答此时函数图象在什么象限?
变式:若此函数是反比例函数呢?
小结:正比例函数与反比例函数的结构特点。

讨论!
例3:已知函数19922)158(+-+-=n n x n n y
(1) 当n 为何值时,这个函数是正比例函数?并回答此时函数的性质。

(2) 当n 为何值时,这个函数是正比例函数?并回答此时函数的性质。

通过此题强化正比例函数与反比例函数的结构特点及它们的性质。

试一试:
例4:已知长方形的面积为10平方厘米,长和宽分别是x 厘米,y 厘米。

(1) 写出y 与x 之间的函数关系式。

(2) 画出函数图象。

小结:正比例函数与反比例函数在实际问题中需要考虑自变量的范围。

图象也在自变量的
取值范围内画。

三、 巩固练习:
1、 函数0,,〈==k x
k y kx y 当时,在同一直角坐标平面内的大致图象。

2、 行驶的路程用S 表示,速度用V 表示,时间用t 表示。

(1) 若V 不变,则S 与t 所表示的函数关系式的大致图象。

(2) 若S 不变,则V 与t 所表示的函数关系式的大致图象。

四、总结:根据正比例函数与反比例函数的定义、图象、性质解决有关问题。

在同一直角坐标平面内会求函数的交点坐标。

实际问题用正比例函数和反比例函数知识解决时需要考虑自变量的范围。

教学反思:
本节课是在刚刚学完反比例函数知识后的一节复习课,所以确定的教学目的是
通过本课的复习使学生正确区分正比例函数与反比例函数的定义、图象和性质。

能够知道
在同一直角坐标平面内正比例函数与反比例函数有无交点。

根据对交点的理解,会求交点。

明确在实际问题中遇到函数问题应考虑自变量的取值范围。

另外有关函数的问题一定与图
形结合起来,通过本课复习渗透数形结合等重要的数学思想方法。

围绕着教学目标以及复
习课的教学模式,确定了三个教学环节。

第一环节是题组引入,通过这一组中第(1)小题引入正比例和反比例函数
的定义、图象、性质这些基本的知识点,边讲边进行表格的罗列,从而进行两者之间的区
别,在这基础上反过来再口答(2)小题就比较顺利和合理。

第(3)小题先进行直观的回
答图形的位置,再确定有无交点,通过此题得到交点的概念,如何理解,从而解决它,板
书如何求交点,然后学生再求一题,为第二环节作好铺垫。

第二环节就是典型例题。

例1
就是有关交点的综合题,要求学生写出完整 的解题思路。

例2是根据正比例和反比例函
数的结构特征学生也比较好理解。

例4是一个实际问题中,强调实际问题中考虑自变量取
值范围,图形在此范围内。

由于初步接触,所以第三环节的巩固练习就是类似的两个选择
题。

从环节的设置上,有基本知识点的复习与总结,也有正比例与反比例的综合题,由
易到复杂逐步深入,符合学生的认知规律,同时渗透数学思想方法,本课的容量较大,以此
来体现复习课的课型。

从课堂中学生的思维来看表现在(!)反比例函数o x x
y 〈-=当,4时,y 随x 的增大而_____.此题看似很简单,但学生很容易上当,在探索中引起学生思维的火花,递增性与递减性是有k 决定的,x 表示的是图象的具体位置,与递增性无关。

通过争论相信学生的思维会更深刻,也为后面的例4作铺垫和呼应。

(2)在例1的教学中学生虽然明确交点的含义,但是在综合题的书写过程中出现了一些问题,有的直接解方程组但无法解出来,有的思路正确但计算错误等等,展示各种书写步骤,达成一致共识,强调如何进行合理计算,合理书写。

(3)行驶的路程用S 表示,速度用V 表示,时间用t 表示。

若V 不变,则S 与t 所表示的函数关系式的大致图象。

若S 不变,则V 与t 所表示的函数关系式的大致图象,有机将正比例函数和反比例函数结合在一个综合题中,我认为这样处理比较合理。

学生积极性也很高,激发学生的兴趣,同时使他们的思维得到进一步的升华,也是复习课所要达到的目的。

但在设计和教学中也存在着一些问题,老师的设想能否让每一个学生有更深的理解,如何真正理解每一题的意图,在理解的基础上可以达到举一反三的效果。

整个课堂气氛虽然还可以,但还有个别同学有点困难,没有及时发现,及时给予适当的辅导,老师在讲课过程中有时语言不够规范,特别是对于正比例函数和反比例函数图象的性质的语言没有完全统一起来,加强语言规范,以学生为本,探索适合班级学生的,有实效的复习课是我以后教学需要努力改进的。

20XX 年11月。

相关文档
最新文档