2021年高三10月月考试卷(数学理)

2021年高三10月月考试卷(数学理)
2021年高三10月月考试卷(数学理)

2021年高三10月月考试卷(数学理)

考试说明:本试卷分第I卷(选择题)和第II卷(非选择题)两部分,满分150分,考试时间120分钟.

(1)答题前,考生先将自己的姓名、准考证号码填写清楚;

(2)选择题必须使用2B铅笔填涂, 非选择题必须使用0.5毫米黑色字迹的签字笔书写, 字体工整, 字迹清楚;

(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;

(4)保持卡面清洁,不得折叠、不要弄破、弄皱,不准使用涂改液、刮纸刀.

第I卷(选择题, 共60分)

一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项

中,只有一项是符合题目要求的.)

1. 的值为

A. B. C. D.

2. 下列各数集及对应法则,不能构成映射的是

A. ,,

B.,,

C. ,,

D. ,,

3. 扇形的中心角为,半径为,则此扇形的面积为

A. B. C. D.

4. 已知的三个内角满足:,则的形状为

A. 正三角形

B.直角三角形

C.等腰直角三角形

D. 等腰三角形或直角三角形

5. 在中,已知点为边的靠近点的三等分点,设a , b ,则 A.ab B. ba C. ab D. ba

6. 已知,则 A.

B.

C. D.

7. 已知集合,集合,则与的关系是

A. B. C. D.

8. 已知,且为第三象限角,则的值为

A. B. C. D.

9. 已知函数的最大值为,最小值为,最小正周期为,直线是其图象的一条对称轴,则下面各式中符合条件的解析式是

A. B. C. D.

10. 已知函数的定义域为,值域为,则的值不可能是 A. B. C. D. 11. 现有四个函数① ② ③ ④的部分图象如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是

O

x

y

O

x

y O

x

y

O

x

y

A. ①④②③

B. ①④③②

C. ④①②③

D. ③④②①

12. 下列四个命题中,真命题的个数为 ①若函数,则的周期为; ②若函数,则;

③若角的终边上一点的坐标为,则角的最小正值为; ④函数的图象可由函数的图象向左平移个单位得到.

A. B. C. D.

第Ⅱ卷 (非选择题, 共90分)

二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题后的横线上。) 13. 函数的定义域为________.

14. 在中,分别为角的对边,如果,,那么角等于________.

15. 已知函数的部分图象如右图所示,则的值为

30°

θB

P

O

A

________.

16. 若方程的各个实根所对应的点均在直线的同侧,则实数的取值范围是__________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17. (本小题满分12分)

现有四分之一圆形的纸板(如右下图),,圆半径为,要裁剪成四边形,且满足,,,记此四边形的面积为,求的最大值.

18. (本小题满分12分) 已知

函数

22()3sin 2sin cos 3cos f x x x x x ωωωω=-+?+,其中,且的最小正周期为.

(Ⅰ) 求的单调递增区间;

(Ⅱ) 利用五点法作出在上的图象.

19. (本小题满分12分)

在中,角、、的对边分别、、,已知,, 且.

(Ⅰ) 求角的大小; (Ⅱ) 求的面积.

20. (本小题满分12分)

设动圆:的圆心轨迹为曲线,这些动圆所覆盖的区域记为区域.

(Ⅰ) 求曲线的最高点坐标;

(Ⅱ) 求区域的最高点坐标.

(本小题满分12分)

已知函数(为实数)

(Ⅰ) 当时,求函数的单调递增区间;

(Ⅱ) 若当时,都有成立,求实数的取值范围.

请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.

(本小题满分10分)

选修4-1:几何证明选讲

如图,是⊙的直径,是⊙的切线,与的延长线交于点,为切点.若,,的平分线与和⊙分别交于点、,求的值.

C P

23. (本小题满分10分)

选修4-4:坐标系与参数方程

已知曲线(为参数).

(Ⅰ)将的方程化为普通方程;

(Ⅱ)若点是曲线上的动点,求的取值范围.

24. (本小题满分10分)

选修4-5:不等式选讲

已知不等式.

(Ⅰ)若,求不等式的解集;

(Ⅱ)若已知不等式的解集不是空集,求的取值范围.

.

哈三中xx十月月考理科答案

一.选择题

二.填空题

13. 14. 15. 16.

三.解答题 17.

= ……………………………4分 = =

= …………………………………8分 又∵ ∴ ∴

∴时,面积取最大值 …………………………12分

18. (1)

∵周期为 ∴ ∴ ……………2分 ∴的单调递增区间为,………6分 (2)

………………………………8分

(图略) ………………………………12分 19.(1)∵. ∴

(舍)或 ………………………4分

…………………………………6分 (2)

又∵, ∴ ……………10分 ∴ ……………………12分 20. 曲线 =

令,则 ……………4分 ∴时取最大值 此时,=,

∴最高点坐标为; …… ……………6分 (2)∵=

……………………7分

∴3

sin 2cos 2cos cos sin 4y θθθθθ=-+--+ = …………………………9分 令

则 则得

∴最高点为 ……………12分 21.(Ⅰ)当时,令得

的增区间为 ………………4分 (Ⅱ)设

若使有意义,则或

得或 ……………… 6分 ① 当时,, 若,则恒成立,,而,故成立 若,令, ,,递减;,,递增,又,,而,故成立 ……………………… 8分

② 当时,令

若,则,而

∴,此时成立 …………………………10分 若,设,令 ,由知

即,∴,又 ∴, ,

∴先增后减,而,必存在使,不成立

综上, ………………………12分 22. 证明:连结,,,,

,. ……………………2分

与⊙相切于点,,

∽,. 为⊙的直径,,

可解得,. ……………………6分 又平分,, 又,∽,

. ……………10分

23. 解:(Ⅰ).………………………………………4分 (Ⅱ),.

.……………………………………10分

C

E

P

24.解:(Ⅰ),

①若,则,,舍去.

②若,则,.

③若,则,.

综上,不等式的解集为.……………5分

(Ⅱ)设,则

,.…………………………10分Q31715 7BE3 篣S23147 5A6B 婫24486 5FA6 徦36542 8EBE 躾30737 7811 砑!22700 58AC 墬P36626 8F12 輒/20914 51B2 冲i27165 6A1D 樝

福建省最新2021届高三数学10月月考试题

福建省罗源第一中学2021届高三数学10月月考试题 一、单选题(每小题5分) 1.复数 1 1i i -+(i 为虚数单位)的虚部是( ) A. -1 B. 1 C. i - D. i 2.αβ≠是cos cos αβ≠的( )条件. A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 3.已知sin(π+θ)=-3cos(2π-θ),|θ|<π 2 ,则θ等于( ) A .-π6 B .-π3 C.π6 D.π3 4.函数1ln sin 1x y x x +=?-的图象大致为( ) 5.已知a >0且a ≠1,函数f (x )=? ????a x ,x ≥1 ax +a -2,x <1在R 上单调递增,那么实数a 的取值范围是( ) A .(1,+∞) B .(0,1) C .(1,2) D .(1,2] 6.已知△ABC 中,AB =2,B =π4,C =π6 ,点P 是边BC 的中点,则AP →·BC → 等于( ) A .1 B .2 C .3 D .4 7.若函数f (x )=sin ? ????ωx -π6(ω>0)在[0,π]上的值域为???? ??-12,1,则ω的最小值为( ) A.23 B .34 C.43 D .3 2 8.在ABC ?中,已知点P 在线段BC 上,点Q 是AC 的中点, AQ y AB x AP +=,0,0>>y x ,则 y x 11+的最小值为( )

A .2 3 B .4 C. 22 3 + D. 223+ 二、多选题(每小题5分,部分选对得3分) 9.在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,则下列结论中正确的是( ) A .若a b >,则sin sin A B > B .若sin 2sin 2A B =,则AB C 是等腰三角形 C .若cos cos a B b A c -=,则ABC 是直角三角形 D .若2220a b c +->,则ABC 是锐角三角形 10.设点M 是ABC 所在平面内一点,则下列说法正确的是( ) A .若11 22 AM AB AC = +,则点M 是边BC 的中点 B .2AM AB AC =-若,则点M 在边BC 的延长线上 C .若AM BM CM =--,则点M 是ABC 的重心 D .若AM x AB y AC =+,且1 2x y +=,则MBC △的面积是的ABC 面积的12 11.要得到函数x y cos =的图像,只需将函数)3 2sin(π +=x y 的图像上所有的点( ) A .先向右平移 6π个单位长度,再将横坐标伸长到原来的2 1 (纵坐标不变) B .先向左平移个 12 π 单位长度,再将横坐标伸长到原来的2倍(纵坐标不变) C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移 6 π 个单位长度 D .横坐标伸长到原来的 21(纵坐标不变),再向右平移3 π 个单位长度 12.设函数f (x )=sin ? ????ωx +π5(ω>0),已知f (x )在[0,2π]有且仅有5个零点.下述四个结论: A .f (x )在(0,2π)上有且仅有3个极大值点 B .f (x )在(0,2π)上有且仅有2个极小值点 C .f (x )在? ????0,π10上单调递增 D .ω的取值范围是???? ??125,2910 其中所有正确结论是( ) 三、填空题(每小题5分)

2021-2022年高三10月月考理科数学试题

一.选择题(本题共10小题,每小题3分,共30分;在每小题给出的四个选项中, 只有一项是符合题目要求的。) 1.集合,,则() A. B. C. D. 2.已知,那么等于() A. B. C. D. 3.函数的单调递减区间是() A.B. C.D. 4.以下有关命题的说法错误的是() A.命题“若,则”的逆否命题为“若,则” B.“”是“”的充分不必要条件 C.若为假命题,则均为假命题 D.对于命题使得,则,均有 5.已知函数,则下列四个命题中错误的是() A.该函数图象关于点(1,1)对称; B.该函数的图象关于直线y=2-x对称; C.该函数在定义域内单调递减;

D .将该函数图象向左平移一个单位长度,再向下平移一个单位长度后与函数 的图象重合 6.函数的图象的大致形状是( ) 7.若函数分别是R 上的奇函数、偶函数,且满足,则有( ) A . B . C . D . 8.已知,不等式的解集是,则满足的关系是( ) A . B . C . D .的关系不能确定 9.已知函数2()24(03),f x ax ax a =++<<若则 A . B . C . D .与的大小不能确定 10.若命题“,使“为真命题。则实数的取值范围( ) A . B . C . D . B . A C . D .

二.填空题(本题共5小题,每题4分,共20分) 11.当且时,函数的图象必过定点 . 12.幂函数3 222 )14(--+-=m m x m m y 的图像过原点,则实数的值等于 13、若函数,则= . 14、若函数的定义域为,则的取值范围为_______. 15.设函数的定义域为D ,如果存在正实数,使对任意,都有,且恒成立,则称函数为D 上的“型增函数”.已知是定义在R 上的奇函数,且当时,,若为R 上的“xx 型增函数”,则实数的取值范围是 . 三.解答题(本题共5小题,每题10分,共50分) 16.已知,若且)10()(log 2≠>=a a k a f 且。 ⑴确定k 的值; ⑵求的最小值及对应的值。 17.已知函数,(为正常数),且函数与的图象在轴上的截距相等。 ⑴求的值; ⑵求函数的单调递增区间。 18、已知函数)()14(log )(4R k kx x f x ∈++=为偶函数. (1)求的值; (2)若方程有且只有一个根, 求实数的取值范围.

2021-2022年高三数学上学期10月月考试题 文

2021年高三数学上学期10月月考试题文 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的. 1. 设集合 B A. B. C. D. 2. 若复数Z,是虚数单位)是纯虚数,则在复平面内Z对应点的坐标为 C A.(0,2) B.(0,3i ) C.(0,3) D.(0,) 3. 下列命题正确的是 D A.已知 ; B.存在实数,使成立; C.命题:对任意的,则:对任意的; D.若或为假命题,则,均为假命题 4. 把函数图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为 D A. B. C. D. 5.下列函数中,既不是奇函数,也不是偶函数的是A A. B. C. D. 6. 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534

石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 B A.134石 B.169石 C.338石 D.1365石 7.已知向量m=(λ+1,1), n=(λ+2,2),若(m+n)⊥(m-n),则 B λ=( ) A.-4 B.-3 C.-2 D.-1 8.阅读如图所示的程序框图,运行相应的程序,输出S的值为B A.15 B.105 C.245 D.945 9. 已知,,则 B A. B. C. D. 10.设是等差数列的前项和,若,则 A A. B. C. D. 11.已知定义在R上的奇函数f(x)满足f(x+2)=﹣f(x),若f(﹣1)>﹣2,f(﹣7)=,则实数a的取值范围为 D

北京市人大附中2021届高三上学期10月月考数学试题含答案

人大附中2021届高三第一学期10月月考 数学试卷 一、选择题共10小题,每小题4分,共40分,在每小题列出的四个选项中,选出符合题目 要求的一项。 01.已知集合 {} {1,0,1},1 A B x N x =-=∈< ,则A B= A. {-1,0} B. {0,1} C. {0} D. Φ 02.已知命题 :(0,),ln0 P x x x ?∈+∞+<,则P?为 A. (0,),ln0 x x x ?∈+∞+< B. (0,),ln0 x x x ??+∞+≥ C. (0,),ln0 x x x ?∈+∞+≥ D. (0,),ln0 x x x ??+∞+≥ 03.已知点 5 (2cos1) 6 P π , 是角α终边上一点,则sinα= A.1 2 B. 2 C. 1 2 - D. 2 2 - 04.已知向量a=(1,1),b(2,-1),若(λa+2b)∥(a-b),则实数λ= A. 8 B. -8 C. 2 D. -2 05.以下选项中,满足log2log2 a b > 的是 A. a=2,b=4 B. a=8,b=4

C.1 ,8 4a b == D. 11 ,24a b == 06.下列函数中,既是奇函数又在区间(-1,1)内是增函数的是 A. ()33f x x x =- B. f (x )=sin x C. 1()ln 1x f x x -=+ D. ()x x f x e e -=+ 07.已知方程2 10x ax +-=在区间[0,1]上有解,则实数a 的取值范围是 A. [0,+∞) B.(-∞,0] C. (-∞,-2] D. [-2,0] 08.已知a 是非零向量,m 为实数,则“ a m =”是“22 a m =”的 A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 09.已知a >0,若函数 31 ,1()1,1x ax x x f x a x -?-≤?=?->??有最小值,则实数a 的取值范围是 A. (1,+∞) B. [1,+∞) C. (1 2,+∞) D. [1 2,+∞) 10.定义在[1,+∞)上的函数f (x )满足,当0≤x ≤π时,f (x )=sin x ;当x ≥π时,f (x )=2f (x -π)若方程f (x )-x +m =0在区间[0,5π]上恰有3个不同的实根,则m 的所有可能取值集合是 A. 4[0, 3π B. 4(0, 3π C. 4[0, [343π ππ,) D. 4[0, (343π ππ,) 二、填空题共5小题每小题5分,共25分。请将答案全部填写在答题卡上。

2019-2020年高三10月月考数学理试卷缺答案

2019-2020年高三10月月考数学理试卷缺答案 一、选择题(本大题共有12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一项是符合题目要求的。) 1、() 2、已知集合,则是的() 充要条件充分不必要条件必要不充分条件既不充分也不必要条件 3、在直角坐标系中,角以轴非负半轴为始边,终边上有一点,则( )4、函数的定义域为() 5、在中,,,2AB a AC b BD DC ,用表示的结果为() 6、在下列函数中,函数的一部分图像如图所示的是( ) A . B . C . D .7、求函数图像上一点到直线的最小距离( ) 8、函数的单调递增区间为() Z k k k ,323 2 ,3231 Z k k k ,32,3231Z k k k ,3132,3231 9、偶函数(为自然对数的底数)在上() 有最大值有最小值单调递增不单调

10、设向量满足,,的夹角为,则() 大小不确定恒等于最小值为最大值为 2 11、在中,若B A b a B A b a sin sin 2222,则为() 等腰直角三角形等腰三角形直角三角形等腰三角形或直角三角形 12、函数x x x x x x f cos 24sin 2222的最大值与最小值的和为() 二、填空题(本大题共有4个小题,每小题5分,共20分) 13、已知,. 14、已知,则= . 15、函数21 log sin 42f x x x 的零点个数为个. 16、若对于任意恒有成立,则实数的取值范围是. 三、解答题(本大题共有6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17、(10分)已知为正实数,求证: 18、(10分)已知曲线的参数方程为:,曲线的极坐标方程为: (1)把化成普通方程;化成直角坐标方程; (2)、相交两点,求、两点的直角坐标. 19、(12分)向量cos ,2cos ,2cos ,sin a x x b x x ,若 (1)求函数的解析式; (2)求函数的对称轴方程; (3)若,求的最大值和最小值. 20、(12分)已知函数 (1)讨论的单调性;

2021届101中学高三第一次月考数学试题

2021届101中学高三第一学期10月月考 数学试卷 一、选择题共10小题。在每小题列出的四个选项中,选出符合题目要求的一项。 01.已知集合}{{} 22(,)1,(,)2x y x y B x y y x +==,则A B 中元素的个数是 A.3 B.2 C.1 D.0 02.已知数列{}n a 为等差数列,若26102 a a a π ++= 则()39tan a a +的值为 A.0 B. 3 C.1 03.在△ABC 中,内角A ,B ,C 所对的边为a ,b ,c ,若22 cos sin sin cos a A B b A B =,则△ABC 的形状为 A.等腰直角三角形 B.直角三角形 C.等边三角形 D.等腰三角形或直角三角形 04.函数4 2 2y x x =-++的图象大致为 A. B. C. D.

05.已知定义在R 上的奇函数f (x )在(-∞,0)上单调递减且f (-1)=0,若 ()()32log 8log 4a f b f =-=-,, 2 3 (2)c f =,则a ,b ,c 的大小关系是 A. c B. ()10ln y x -+< C. 0ln xy > D. 0ln xy < 09已知函数f (x )(x ∈R)满足f (-x )=2-f (x )若函数1 x y x += 与y =f (x )图象的交点为1122()()x y x y ,,,,···,()m m x y ,则1 ()m i i i x y =+=∑ A.0 B. m C.2m D.4m 10.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了猜想: 2()21n Fn n N =+∈是素数。直到1732年才被善于计算的数学家欧拉算出 56416700471F =?,不是素数。()*21()n n n a log F n N S =-∈,,表示数列{}n a 的前 n 项和,则使不等式21223122222020 n n n n S S S S S S +++???+< 成立的最小整数n 的值是

高三月考理科数学试卷

黄州区一中高三理科数学综合测试题(十二) 命题:杨安胜 审题:高三数学组 考试时间:-11-20 第I 卷(选择题 共50分) 一、选择题(本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设,且, ,,设,则( ) A. B. C. D. 以上均不对 2.已知函数()f x 是奇函数,当0,()(01)x x f x a a a >=>≠时且,且12 (log 4)3,f =- 则a 的值为( ) A .3 B .3 C .9 D . 3 2 3.如右图,在ABC ?中,||||BA BC =,延长CB 到D ,使 ,AC AD AD AB AC λμ⊥=+若,则λμ-的值是( ) A .1 B .3 C .-1 D .2 4.若0a 2≠=b ,,且,则向量与的夹角为( ) A 30° B 60° C 120° D 150° 5.等差数列{}n a 中,386,16,n a a S ==是数列{}n a 的前n 项和,若12 11 1n n T S S S = +++ ,则952 T 最接近的整数是 ( ) A .5 B .4 C .2 D .1 6.已知函数3 2 2 ()23f x x ax ax a =+-+,且在()f x 图象上点(1,(1))f 处的切线在y 轴上的截距小于0,则a 的取值范围是 ( ) A .(-1,1) B .2 (,1)3 C .2(,1)3 - D .2(1,)3 - 7.将函数2()1cos 22sin ()6 f x x x π =+--的图象向左平移(0)m m >个单位后所得的图象 关于y 轴对称,则m 的最小值为 ( ) A . 6 π B . 12π C . 3 π D . 2 π 8.已知定义域为R 的函数满足,且的导函数,则的解集为( ) {}{}{} Z n n x x P Z n n x x N Z n n x x M ∈-==∈+==∈==,13,,13,,3M a ∈N b ∈P c ∈c b a d +-=M d ∈N d ∈P d ∈b a c +=a c ⊥a b )(x f 1)1(=f )(x f ()2 1 < 'x f 2 1 2)(+< x x f

高三数学10月月考试题 文7

山东省武城县第二中学2017届高三数学10月月考试题 文 第I 卷(共50分) 一、选择题(本大题共10小题,每小题5分,共50分) 1.已知集合2{|450}A x x x =--<,{|24}B x x =<<,则A B =( ) A.(1,3) B.(1,4) C.(2,3) D.(2,4) 2.已知向量(1,2),(0,1),(2,)a b c k ===-,若(2)//a b c +,则k =( ) A.-8 B. 12- C.12 D.8 3.若10sin 10α=- ,且α为第四象限角,则tan α的值等于( ) A.1 3 B.13 - C.3 D.-3 4.下列说法正确的是( ) A.命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠” B.若命题2:,10p x R x x ?∈-+<,则命题2:,10p x R x x ??∈-+> C.命题“若x y =,则sin sin x y =”的逆否命题为真命题 D.“2560x x --=”的必要不充分条件是“1x =-” 4.已知指数函数()y f x =的图象过点12(,)2,则2log (2)f 的值为( ) A.12 B.1 2- C.-2 D.2 5.曲线2 x y x =-在点(1,-1)处的切线方程为( ) A.2y x =- B.23y x =-+ C.23y x =- D.21y x =-+ 6.已知n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A.52 B.5 C.7 D.9 7.函数ln |||| x x y x =的图象是( )

广东省2021年数学高三上学期理数10月月考试卷(I)卷

广东省2021年数学高三上学期理数10月月考试卷(I)卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分)(2017·广州模拟) 已知集合A={1,3},,则A∩B=() A . {1} B . {1,3} C . {1,2,3} D . {1,3,4} 2. (2分)(2017·黑龙江模拟) 如果复数(a∈R)为纯虚数,则a=() A . ﹣2 B . 0 C . 1 D . 2 3. (2分)若,设函数的零点为m,函数的零点为n,则的最小值为() A . 1 B . 2 C . 4 D . 8 4. (2分)已知均为锐角,若,则p是q的() A . 充分不必要条件

B . 必要不充分条件 C . 充要条件 D . 既不充分又不必要条件 5. (2分) (2020高一下·易县期中) 已知函数,若方程有四个不同的实数根,,,,则的取值范围是() A . B . C . D . 6. (2分)已知集合M={(x,y)|y=f(x)},若对于任意(x1 ,y1)∈M,存在(x2 ,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“垂直对点集”.给出下列四个集合: ①M={(x,y)|y=};②M={(x,y)|y=sinx+1}; ③M={(x,y)|y=log2x};④.M={(x,y)|y=ex-2} 其中是“垂直对点集”的序号是() A . ①② B . ②③ C . ①④ D . ②④ 7. (2分) (2019高三上·乐山月考) 已知,为图象的顶点,O,B,C,D为 与x轴的交点,线段上有五个不同的点.记,则的

2020年高一上学期数学10月月考试卷

2020年高一上学期数学10月月考试卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分)已知集合U={0,1,2,3,4},集合A={1,2,3},B={2,4},则为() A . {1,2,4} B . {2,3,4} C . {0,2,4} D . {0,2,3,4} 2. (2分) (2019高一上·包头月考) 如图所示,是全集,是它的子集,则阴影部分所表示的集合是() A . B . C . D . 3. (2分) (2016高一上·绵阳期末) 函数f(x)= 的定义域是() A . (﹣∞,) B . (﹣∞,0] C . (0,+∞) D . (﹣∞,0)

4. (2分)已知函数(其中)的部分图象如图所示,为了得到g(x)=sin2x 的图象,则只需将f(x0的图象() A . 向右平移个长度单位 B . 向右平移个长度单位 C . 向左平移个长度单位 D . 向左平移个长度单位 5. (2分) (2018高一上·舒兰月考) 下列函数中与函数相等的函数是() A . B . C . D . 6. (2分) (2018高二下·扶余期末) 下列函数中,即是奇函数,又在上单调递增的是() A . B . C . D .

7. (2分) (2015高三上·平邑期末) 若函数f(x)= 在区间(﹣∞,2)上为单调递增函数,则实数a的取值范围是() A . [0,+∞) B . (0,e] C . (﹣∞,﹣1] D . (﹣∞,﹣e) 8. (2分) (2018高一上·台州月考) 已知函数,若对任意,总存在 ,使得,则的取值范围是() A . B . C . D . 9. (2分)已知偶函数f(x)在区间[0,+∞)单调递增,则满足的x取值范围是() A . (2,+∞) B . (﹣∞,﹣1) C . [﹣2,﹣1)∪(2,+∞) D . (﹣1,2) 10. (2分) (2019高一上·武功月考) 已知集合A={x|-2≤x≤7},B={x|m+1

高三数学10月月考试题 理 (3)

四川省绵阳南山中学2017届高三数学10月月考试题 理 1、试题说明:本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,满分150分,考试时间 120分钟.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.第II 卷的22、23、24小题是选考内容,务必先选后做.考试范围:绵阳一诊考试内容. 第Ⅰ卷(选择题,共60分) 注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是 符合题目要求的. 1.若集合{ }Z x x y y M ∈==,|2 ,{} R x x x N ∈≥-=,63|,全集R U =,P 是N 的补集,则 P M 的真子集个数是( ) .A 15 .B 7 .C 16 .D 8 2.已知()3sin f x x x π=-,命题:(0,),()02 p x f x π ?∈<,则( ) .A p 是假命题;:(0, ),()02p x f x π ??∈≥ .B p 是真命题; 00:(0,),()02 p x f x π ??∈≥ .C p 是真命题; :(0,),()02p x f x π??∈> .D p 是假命题; 00:(0,),()02 p x f x π ??∈≥ 3.“0>x ” 是“ 11 1 <+x ”的( )条件 .A 充分不必要 .B 必要不充分 .C 充要条件 .D 既不充分也不必要 4. ABC ?中,AB 边的高为CD ,若CB a =,CA b =,0a b ?=,1,2a b ==,则AD =( ) 11.33A a b - 22.33B a b - 33.55C a b - 44.55 D a b - 5.函数2 || ()2x f x x =-的图像为( ) 6.函数的图象如下图所示,为了得到 的图像,可以将

山东省德州市某中学2015届高三上10月月考数学理科试题及答案

高三月考数学试题(理) 2014.10 注意事项: 1.本试题分为第Ⅰ卷和第Ⅱ卷两部分,满分150分,考试时间为120分钟. 2.禁止使用计算器. 3.答卷之前将姓名、班级等信息填写在答题卡与答题纸的相应位置. 4.答卷必须使用黑色0.5毫米中性笔,使用其它类笔不给分. 画图题可先用铅笔轻轻画出,确定答案后,用中性笔重描. 禁止使用透明胶带,涂改液,修正带. 5.选择题填涂在答题卡上,填空题的答案抄写在答题纸纸上. 解答题必须写出详细的解题步骤,必须写在答题纸相应位置,否则不予计分. 第Ⅰ卷(选择题 共50分) 一、选择题:每小题5分,共10题,50分. 1.已知集合 A ={0,1, 2,3} ,集合 {|||2}B x N x =∈≤ ,则A B =( ) A .{ 3 } B .{0,1,2} C .{ 1,2} D .{0,1,2,3} 2.若0()3f x '=-,则000()()lim h f x h f x h h →+--=( ) A .3- B .6- C .9- D .12- 3.函数)ln()(2x x x f -=的定义域为( ) A.)1,0( B. ]1,0[ C. ),1()0,(+∞-∞ D. ),1[]0,(+∞-∞ 4.已知函数||5)(x x f =,)()(2R a x ax x g ∈-=,若1)]1([=g f ,则=a ( ) A.1 B. 2 C. 3 D. -1 5.已知)(),(x g x f 分别是定义在R 上的偶函数和奇函数,且1)()(23++=-x x x g x f ,则 =+)1()1(g f ( ) A. 3- B. 1- C. 1 D. 3 6.已知集合A ={2,0,1,4},B ={k |k R ∈,22k A -∈,2k A -?},则集合B 中所

2019-2020学年高三上学期10月月考数学试题

江苏省泰州中学、江都中学、宜兴中学2019-2020学年高三 上学期10月月考数学试题 xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 第II 卷(非选择题) 请点击修改第II 卷的文字说明 一、填空题 1.已知集合{}1|0A x x =-<<,{}|B x x a =≤,若A B ?,则a 的取值范围为:_______. 2.若幂函数()k f x x =的图像过点()4,2,则()9f =____. 3.函数()sin cos f x x x =?的最小正周期是_________. 4.已知角α的顶点在原点,始边为x 轴非负半轴,则“α的终边在第一象限”是 “sin 0α>”的_________________条件.(从“充分不必要、必要不充分、充要、既不充分又不必要”中选填) 5.已知向量a 、b 的夹角为60,2a =,1b =,则a b -=____. 6.已知P(?√3,a)为角θ的终边上的一点,且sinθ=1 2,则实数a 的值为____. 7.曲线()1e x y ax =+在点()01,处的切线的斜率为2-,则a =________. 8.已知函数2,02()28,2x x x f x x x ?+<<=?-+≥?,若()(2)f a f a =+,则 1f a ?? ??? 的值是_____. 9.平行四边形ABCD 中,已知6,5,2AB AD CP PD ===,12AP CP ?=-,则AB AD ?=________.

10.已知函数()y f x =是定义在R 上的奇函数,且满足()()2f x f x +=-,当 []2,0x ∈-时,()22f x x x =--,则当[]4,6x ∈时,()y f x =的最小值为_________. 11.如图,在四边形ABCD 中,90BAC ∠=?,4BC =,1CD =,2AB AD =,AC 是BCD ∠的角平分线,则BD =_____. 12.已知函数()ln ,111,12 2x x f x x x >??=?+≤??,若m n <,且()()f m f n =,则n m -的最小值是_____. 13.在ABC ? sin sin A B C +的最大值为:____________. 二、解答题 14.已知函数()2π2cos 214f x x x ? ?=-++ ??? . (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间ππ,64??-?? ?? 上的取值范围. 15.在ABC ?中,内角A ,B ,C 的对边分别为a ,b ,c .已知sin 3sin B C =,tan A =ABC ?的面积为(1)求cos2A 的值; (2)求ABC ?的周长. 16.已知函数()161x f x a a +=-+(0,1)a a >≠是定义在R 上的奇函数. (1)求实数a 的值及函数()f x 的值域; (2)若不等式()33x tf x ≥-在[1,2]x ∈上恒成立,求实数t 的取值范围. 17.某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x 万件,需另投入流动成本()C x 万元,当年

2019届高三数学10月月考试题理无答案

2019届高三数学10月月考试题理无答案 一、选择题:本卷共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项 是符合题目要求的。 1.已知全集=U R ,{|1},{|2},M x x P x x =≤=≥ 则()U M P = A.{|12}x x << B.{|1}x x ≥ C.{|2}x x ≤ D.{|12}x x x ≤≥或 2.计算: 55sin 175cos 55cos 5sin -的结果是( ) A. 21- B. 21 C. 23- D. 23 3.等差数列{}n a 的前n 项和为n S ,若12a =,312S =,则7S 等于( ) A .14 B .28 C .56 D .112 4.已知命题p :(,0)x ?∈-∞使23x x <;命题q :(0, )2x π?∈,都有tan sin x x >,下列命 题为真命题的是 A p q ∧ B ()p q ?∨ C ()p q ?∧ D ()p q ?∧ 5. 下列函数中为偶函数且在(0,)+∞上是增函数的是( ) A. 12x y ??= ??? B. ln y x = C. 22x y x =+ D. 2x y -= 6. 已知函数2,4()(1),4 x x f x f x x ?≥=?+的图象如图所示,则函数log ()a y x b =+的图象可能是

A B C D 8.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程,下图描述了甲、乙、丙三辆汽 车在不同速度下的燃油效率情况. 下列叙述中正确的是 A .消耗1升汽油,乙车最多可行驶5千米 C .甲车以80千米/小时的速度行驶1小时,消耗10升汽油 D .某市机动车最高限速80千米/小时.相同条件下在该市用丙车比用乙车更省油 二、填空题:本大题共6小题,每小题5分,共30分. 9. 2 1i =+_____ . 10.在ABC ?中,1a =,2b =,1cos 4 C = ,则c = sin A = . 11.已知不等式||1x m -<成立的充分不必要条件是1132x <<,则实数m 的取值范围是 12.将函数sin 2y x =的图象上所有的点向右平行移动10π 个单位长度,再把所得各点的横坐 标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是 13.设向量)cos 3,1(),1,(cos θθ==b a ,且b a //,则θ2cos = . 14.定义一种运算 12341423(,)(,)a a a a a a a a ?=- , 将函数()(3,2sin )(cos ,cos 2)f x x x x =?的图象向左平移n(n>0)个单位长度,所得图象对应的函数为偶函数,则n 的最小值为_______. 三、解答题:本大题共6小题,共80分。解答应写出文字说明,演算步骤或证明过

江西省抚州市数学高三上学期理数10月月考试卷

江西省抚州市数学高三上学期理数10月月考试卷 姓名:________ 班级:________ 成绩:________ 一、单选题 (共12题;共24分) 1. (2分) (2019高一上·双鸭山期末) 已知集合 , ,则集合 () A . B . C . D . 2. (2分) (2020高二下·邢台期中) 已知复数的实部为1,虚部的绝对值为3,则下列说法错误的是() A . 是实数 B . C . D . 在复平面中所对应的点不可能在第三象限 3. (2分) (2017高三下·河北开学考) 已知条件p:关于x的不等式|x﹣1|+|x﹣3|<m有解;条件q:f(x)=(7﹣3m)x为减函数,则p成立是q成立的() A . 充分不必要条件 B . 必要不充分条件 C . 充要条件 D . 既不充分也不必要条件

4. (2分)设,f(2)=4,并且对于任意,成立. 猜想f(n)的表达式为 A . B . C . D . 5. (2分) (2015高一下·仁怀开学考) 已知函数f(x)是定义在[a﹣1,2a]上的偶函数,则a=() A . B . C . 1 D . 0 6. (2分)若,是非零向量且满足(),(),则与的夹角是() A . B . C . D . 7. (2分)函数y=sin(﹣2x)的单调递增区间是() A . [ , ](k∈Z) B . [ +kπ,+kπ](k∈Z)

C . [π+2kπ,3π+2kπ](k∈Z) D . [﹣, ](k∈Z) 8. (2分) (2019高三上·汉中月考) 已知定义在R上的函数f(x)是奇函数,且满足f(3-x)=f(x),f (-1)=3,数列{an}满足a1=1且an=n(an+1-an)(n∈N*),则f(a36)+f(a37)=() A . B . C . 2 D . 3 9. (2分)要得到y=3cos(2x+)的图象,只需将y=3cos2x的图象() A . 向左平移个单位长度 B . 向右平移个单位长度 C . 向左平移个单位长度 D . 向右平移个单位长度 10. (2分)在一个数列中,如果对任意,都有(k为常数),那么这个数列叫做等积数列,k叫做这个数列的公积.已知数列是等积数列,且,公积为8,则() A . 24 B . 28 C . 32 D . 36 11. (2分) (2018高二上·湖滨月考) 已知为数列的前项和,,,若关于正整数的不等式的解集中的整数解有两个,则正实数的取值范围为()

2020年10月高一月考数学试卷及答案

郑州市回民高级中学2023届高一年级上期第一次月考 数学试卷 一、选择题:本题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 不等式01x ≤-的解集为( ) A. ), 1(+∞ B. )1,(-∞ C. {}1 D. R 2.已知集合A 是由20,32m m m -+,三个元素构成的集合,且A ∈2,则实数m 的值为 ( ) A. 0或3 B.0或 2或3 C.2 D.3 3.已知集合{}Z m 12m x x ∈==,-A ,{}Z n 2x x ∈==,n B ,且B A A ∈∈∈321x x x ,,,则下列判断不正确的是( ) A. A ∈?21x x B. A ∈++321x x x C. B ∈+21x x D. B ∈?32x x 4.不等式1x 1>的解集为( ) A. )1,0( B. ),1(+∞ C. )0,1-( D. (-1)∞, 5.已知集合{}R y x y x M ∈==,22和集合{} R y x y y x P ∈==,2),(2,则两个集合间的关系是( ) A. φ=?M P B. M P ? C. M P = D.P M ? 6.如图,王老师早上出门锻炼,一段时间内沿以M 为圆心的半圆 形M A C B M →→→→路径匀速慢跑,那么王老师离出发 点M 的距离y 与时间x 之间的函数关系的大致图像是( )

.A .B .C .D 7.设全集为R,集合{}20<<= x x A ,{} 1≥=x x B ,则=)(B C A R ( ) A. {}21<≤x x B. {}20<

成都七中2020高三10月月考数学(理)试卷及答案

成都七中高2020届数学(理科)10月阶段考 试(一) 命题人:魏华 本试卷分第I卷(选择题)和第II卷(非选择题)两部分,共150分, 考试时间120分钟. 第I卷 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中, 只有一项是符合题目要求的) 1.设x∈R,则“l

A. 3 B. 6 C. 9 D. 12 9.设函数f ’(x)是奇函数f(x) (x ∈R)的导函数,f (-1)=0,当x>0时,xf ’(x)-f (x )<0,则使得f(x)>0成立的x 的取值范围是( ) A .(一∞,一1)(0,1) B .(一1,0)(1,+∞) C .(一∞,一1)(一1,0) D .(0,1) (1,+∞) 10.设函数 若互不相等的实数x 1,x 2,x 3满足 123()()()f x f x f x ==,则x 1+x 2+x 3的取值范围是( ) 11.己知f(x)是定义在R 上的增函数,函数y=f (x-l )的图象关于点(1,0)对称,若 对任意的x ,y ∈R ,不等式f(x 2-6x+21)+f(y 2-8y)<0恒成立,则当x>3时, x 2+y 2的取值范围是( ) A. (3,7) B. (9,25) C. (13,49] D. (9,49) 12.设函数 则使得 成立的x 的取值范围是 第II 卷 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.若函数f(x)= (a>0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是 14.在区间[0,2]上随机地取一个数x ,则事件“-1≤发生的概率 为 15.己知函数f(x)-2 sin ωx(ω>0)在区间上的最小值是-2,则ω的最小 值为 16.己知函数f(x)= 则不等式f(x)≥log 2(x+1)的解集是 三、解答题(解答应写出文字说明,证明过程或演算步骤)

高三数学10月月考试题 文 (4)

大石桥2016-2017学年度上学期10月月考 高三数学(文科)试卷 时间:120分钟 满分:150分 一、选择题(每题5分,共60分) 1.设{}{}2,,x y y B x x y x A R U -=====,则=)(B C A U ( ) A .? B .R C .{}0>x x D .{}0 2.若复数z 满足(33+i )z=3i (i 为虚数单位),则z 的共轭复数为( ) A .i 2323- B .i 2323+ C .i 4 343- D .i 4343+ 3.“(,)2π θπ∈”是“sin cos 0θθ->”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 4.若函数())32(log 2 4++=x mx x f 的最小值为0,则m 的值为 ( ) A .31 B .2 1 C .3 D . 2 5.设3log 6a =,5log 10b =,7log 14c =,则( ) A .a b c >> B .b c a >> C .a c b >> D .c b a >> 6.已知幂函数()y f x =的图象经过点1(4,)2 ,且(1)(102)f a f a +<-,则实数a 的取值范围是( ) A .(1,5)- B .(,3)-∞ C .(3,)+∞ D .(3,5) 7.在数列{}n a 中,1112,1n n n a a a a ++=-= -,则2016a =( ) A .-2 B .13- C.12 D .3 8.为了得到函数)32sin(π+ =x y 的图象,只需把函数x y 2sin =的图象上所有的点( ) A .向左平行移动3π个单位长度 B .向右平行移动3 π个单位长度 C .向左平行移动6π个单位长度 D .向右平行移动6 π个单位长度

相关文档
最新文档