高中集合的基本运算练习题
2024全国高考真题数学汇编:集合的基本运算

2024全国高考真题数学汇编集合的基本运算一、单选题1.(2024北京高考真题)已知集合{|31}M x x ,{|14}N x x ,则M N ()A . 11x x B . 3x x C . |34x x D . 4x x 2.(2024天津高考真题)集合 1,2,3,4A , 2,3,4,5B ,则A B ()A . 1,2,3,4B . 2,3,4C . 2,4D . 13.(2024全国高考真题)若集合 1,2,3,4,5,9A , 1B x x A ,则A B ()A . 1,3,4B . 2,3,4C . 1,2,3,4D . 0,1,2,3,4,94.(2024全国高考真题)已知集合 355,{3,1,0,2,3}A x x B ∣,则A B ()A .{1,0} B .{2,3}C .{3,1,0} D .{1,0,2}5.(2024全国高考真题)已知集合 1,2,3,4,5,9,A B A ,则 A A B ð()A . 1,4,9B . 3,4,9C . 1,2,3D .2,3,5参考答案1.C【分析】直接根据并集含义即可得到答案.【详解】由题意得 |34M x x N .故选:C.2.B【分析】根据集合交集的概念直接求解即可.【详解】因为集合 1,2,3,4A , 2,3,4,5B ,所以 2,3,4A B ,故选:B3.C【分析】根据集合B 的定义先算出具体含有的元素,然后根据交集的定义计算.【详解】依题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x ,则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B ,于是{1,2,3,4}A B .故选:C4.A【分析】化简集合A ,由交集的概念即可得解.【详解】因为 |,3,1,0,2,3A x x ,且注意到12 ,从而A B 1,0 .故选:A.5.D【分析】由集合B 的定义求出B ,结合交集与补集运算即可求解.【详解】因为1,2,3,4,5,9,A B A ,所以 1,4,9,16,25,81B ,则 1,4,9A B ,2,3,5A A B ð故选:D。
集合的基本运算

集合的基本运算习题(含答案)一、单选题1.集合A={x|0≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|{x|0≤x≤1}B.{x|0<x<1}C.{x|1≤x≤2}D.{x|0<x<2} 2.已知集合,,则()A.B.C.D.3.已知集合,集合,则A.B.C.D.4.设集合,则A.B.C.D.5.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则(∁U P)∪Q=()A.B.C.D.6.已知,3,,则A.B.4,C.2,3,4,D.3,4,7.已知集合,,则集合A.B.C.D.8.设,,,,,若,,,,,,则()A.,,B.,C.,D.9.已知集合,,,则()A.,B.,C.,,D.10.已知集合,,则()A.B.C.D.二、填空题11.若集合,,则__________.12.对于集合M,N,定义M-N={x|x∈M且x∉N},M N=(M-N)∪(N-M).设A ={y|y=3x,x∈R},B={y|y=-(x-1)2+2,x∈R},则A B=________.13.已知集合A={a,b,2},B={2,,2a},且A∩B=A∪B,则a=________.14.已知集合,,则__________15.已知集合A={-1,a},B={2a,b},若A∩B={1},则A∪B=________.三、解答题16.设全集为,函数的定义域为,集合.(1)当时,求;(2)若,求实数的取值范围.17.已知全集,集合,集合,且,求实数的取值范围.18.函数的定义域为的值域为B(1)当时,证明:在A上单调递增;(2)若,求实数a的取值范围19.已知集合,.(1)求集合;(2)已知集合,若集合,求实数的取值范围.20.已知集合A={x|-3≤x≤4},B={x|2m-1≤x≤m+1}.(Ⅰ)当m=-3时,求()∩B;(Ⅱ)当A∩B=B时,求实数m的取值范围.参考答案1.C【解析】【分析】根据题意,由集合B结合补集的含义,可得集合∁R B,由交集的含义,计算可得A∩(∁R B),即可得答案.【详解】根据题意,B={x|x<1},则∁R B={x|x≥1},又由集合A={x|0≤x≤2},则A∩(∁R B)={x|1≤x≤2},故选C.【点睛】本题考查集合的交集、补集的运算,解题的关键是理解集合的补集、交集的含义.2.B【解析】【分析】利用一元二次不等式的解法化简集合A,然后进行交集的运算即可.【详解】因为集合;,,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合且属于集合的元素的集合. 3.A【解析】【分析】利用并集定义直接求解即可.【详解】集合,集合,.故选:A.【点睛】本题考查并集的求法,考查并集的定义等基础知识,考查运算求解能力,是基础题.4.C【解析】【分析】求解一元二次不等式化简集合A,然后由交集及子集的运算性质得答案.【详解】,又,.则.故选:C.【点睛】本题考查交集及其运算,考查了一元二次不等式的解法,是基础题.5.C【解析】【分析】由补集的定义先求出,再由并集的定义可求.【详解】,集合,,,故选C.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或不属于集合的元素的集合. 6.D【解析】【分析】利用并集概念与运算直接得到结果.【详解】,3,,3,4,,故选:D.【点睛】本题考查并集的定义与运算,属于基础题.7.B【解析】【分析】直接根据并集的运算性质计算即可.【详解】集合,所以集合,故选B.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合或属于集合的元素的集合8.D【解析】【分析】根据交集的定义求出,然后再求。
高中数学必修一 《1 3 集合的基本运算》课时分层作业

课时分层作业(五)补集(建议用时:60分钟)[合格基础练]一、选择题1.若全集U={0,1,2,3}且∁U A={2},则集合A的真子集共有()A.3个B.5个C.7个D.8个C[A={0,1,3},真子集有23-1=7个.]2.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=() A.{x|x≥0} B.{x|x≤1}C.{x|0≤x≤1} D.{x|0<x<1}D[由题意可知,A∪B={x|x≤0,或x≥1},所以∁U(A∪B)={x|0<x<1}.] 3.已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B={1,2},则A∩∁U B等于()A.{3}B.{4} C.{3,4}D.∅A[∵U={1,2,3,4},∁U(A∪B)={4},∴A∪B={1,2,3}.又∵B={1,2},∴{3}⊆A⊆{1,2,3}.又∁U B={3,4},∴A∩∁U B={3}.]4.设全集U为实数集R,M={x|x>2或x<-2},N={x|x≥3或x<1}都是全集U的子集,则图中阴影部分所表示的集合是()A.{x|-2≤x<1} B.{x|-2≤x≤2}C.{x|1<x≤2} D.{x|x<2}A[阴影部分表示的集合为N∩(∁U M)={x|-2≤x<1},故选A.]5.已知M,N为集合I的非空真子集,且M,N不相等,若N∩∁I M=∅,则M∪N等于()A.M B.N C.I D.∅A[因为N∩∁I M=∅,所以N⊆M(如图),所以M∪N=M.]二、填空题6.设全集U=R,A={x|x<1},B={x|x>m},若∁U A⊆B,则实数m的取值范围是________.{m|m<1}[∵∁U A={x|x≥1},B={x|x>m},∴由∁U A⊆B可知m<1.]7.已知集合A={x|-2≤x<3},B={x|x<-1},则A∩(∁R B)=________.{x|-1≤x<3}[∵A={x|-2≤x<3},B={x|x<-1},∴∁R B={x|x≥-1},∴A∩(∁R B)={x|-1≤x<3}.]8.设全集U=R,则下列集合运算结果为R的是________.(填序号)①Z∪∁U N;②N∩∁U N;③∁U(∁U∅);④∁U Q.①[结合常用数集的定义及交、并、补集的运算,可知Z∪∁U N=R,故填①.]三、解答题9.已知U={1,2,3,4,5,6,7,8},A={3,4,5},B={4,7,8},求A∩B,A∪B,(∁A)∩(∁U B),A∩(∁U B),(∁U A)∪B.U[解]法一(直接法):由已知易求得A∩B={4},A∪B={3,4,5,7,8},∁U A={1,2,6,7,8},∁U B={1,2,3,5,6},∴(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.法二(Venn图法):画出Venn图,如图所示,可得A∩B={4},A∪B={3,4,5,7,8},(∁U A)∩(∁U B)={1,2,6},A∩(∁U B)={3,5},(∁U A)∪B={1,2,4,6,7,8}.10.已知全集U={x|x≤4},集合A={x|-2<x<3},B={x|-3≤x≤2},求A∩B,(∁U A)∪B,A∩(∁U B),∁U(A∪B).[解]如图所示.∵A={x|-2<x<3},B={x|-3≤x≤2},U={x|x≤4},∴∁U A={x|x≤-2,或3≤x≤4},∁U B={x|x<-3,或2<x≤4}.A∩B={x|-2<x≤2},A∪B={x|-3≤x<3}.故(∁U A)∪B={x|x≤2,或3≤x≤4},A∩(∁U B)={x|2<x<3},∁U(A∪B)={x|x<-3,或3≤x≤4}.[等级过关练]1.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},那么集合{2,7}是()A.A∪B B.A∩BC.∁U(A∩B) D.∁U(A∪B)D[∵A∪B={1,3,4,5,6},∴∁U(A∪B)={2,7}.]2.已知集合A={x|x<a},B={x|1<x<2},且A∪(∁R B)=R,则实数a的取值范围是()A.{a|a≤1} B.{a|a<1}C.{a|a≥2} D.{a|a>2}C[由于A∪(∁R B)=R,则B⊆A,可知a≥2.故选C.]3.设全集U是实数集R,M={x|x<-2,或x>2},N={x|1≤x≤3}.如图所示,则阴影部分所表示的集合为________.{x|-2≤x<1}[阴影部分所表示的集合为∁U(M∪N)=(∁U M)∩(∁U N)={x|-2≤x≤2}∩{x|x<1或x>3}={x|-2≤x<1}.]4.设全集U={1,2,x2-2},A={1,x},则∁U A=________.{2}[若x=2,则x2-2=2,与集合中元素的互异性矛盾,故x≠2,从而x =x2-2,解得x=-1或x=2(舍去).故U={1,2,-1},A={1,-1},则∁U A={2}.]5.已知全集U=R,集合A={x|1≤x≤2},若B∪(∁U A)=R,B∩(∁U A)={x|0<x<1或2<x<3},求集合B.[解]∵A={x|1≤x≤2},∴∁U A={x|x<1或x>2}.又B∪(∁U A)=R,A∪(∁U A)=R,可得A⊆B.而B∩(∁U A)={x|0<x<1或2<x<3},∴{x|0<x<1或2<x<3}⊆B.借助于数轴可得B=A∪{x|0<x<1或2<x<3}={x|0<x<3}.。
高中数学必修一集合练习题

高中数学必修一集合练习题1. 集合的表示法:给定集合A={1, 2, 3},请用描述法表示集合A。
2. 子集与真子集:若集合B={x | x是A的子集},集合A={1, 2, 3},请列出集合B的所有元素,并判断哪些是A的真子集。
3. 集合的并集:已知集合C={1, 2}和集合D={2, 3},请计算C∪D。
4. 集合的交集:若集合E={1, 3, 5}和集合F={2, 3, 5},请找出E∩F。
5. 集合的差集:给定集合G={1, 2, 3, 4}和集合H={3, 4, 5},求G-H。
6. 集合的补集:设全集U={1, 2, 3, 4, 5, 6},集合I={2, 4, 6},请求∁_U I。
7. 幂集:集合J={a, b},请列出J的所有幂集。
8. 集合的包含关系:若集合K={x | x是小于10的正整数},集合L={1, 3, 5, 7, 9},请判断K和L之间的关系。
9. 集合相等:集合M={x | x是偶数}和集合N={2, 4, 6, 8, 10},判断M和N是否相等。
10. 集合的笛卡尔积:若集合O={1, 2}和集合P={a, b},请计算O×P。
解答提示:- 对于第1题,描述法表示集合A可以写作A={x | x是正整数,且1≤x≤3}。
- 第2题中,集合B的所有元素包括空集和所有A的子集,即B={∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}。
其中,A的真子集是不包含A本身的所有子集。
- 第3题,C∪D={1, 2, 3}。
- 第4题,E∩F={3, 5}。
- 第5题,G-H={1, 2}。
- 第6题,∁_U I={1, 3, 5}。
- 第7题,J的幂集包括所有J的子集,即{∅, {a}, {b}, {a, b}}。
- 第8题,K包含L,因为L的所有元素都在K中。
- 第9题,M和N相等,因为它们包含相同的元素。
【高一】集合的基本运算过关训练题(带答案)

【高一】集合的基本运算过关训练题(带答案)1.(2021年高考广东卷)若集合A={x-2<x<1},B={x0<x<2},则集合A∩B=( )A.{x-1<x<1} B.{x-2<x<1}C.{x-2<x<2} D.{x0<x<1}解析:选D.因为A={x-2<x<1},B={x0<x<2},所以A∩B={x0<x<1}.2.(2021年高考湖南卷)已知集合={1,2,3},N={2,3,4}则( )A.⊆N B.N⊆C.∩N={2,3} D.∪N={1,4}解析:选C.∵={1,2,3},N={2,3,4}.∴选项A、B显然不对.∪N={1,2,3,4},∴选项D错误.又∩N={2,3},故选C.3.已知集合={yy=x2},N={yx=y2},则∩N=( )A.{(0,0),(1,1)} B.{0,1}C.{yy≥0} D.{y0≤y≤1}解析:选C.={yy≥0},N=R,∴∩N=={yy≥0}.4.已知集合A={xx≥2},B={xx≥},且A∪B=A,则实数的取值范围是________.解析:A∪B=A,即B⊆A,∴≥2.答案:≥21.下列关系Q∩R=R∩Q;Z∪N=N;Q∪R=R∪Q;Q∩N=N中,正确的个数是( )A.1 B.2C.3 D.4解析:选C.只有Z∪N=N是错误的,应是Z∪N=Z.2.(2021年高考四川卷)设集合A={3,5,6,8},集合B={4,5,7,8},则A∩B等于( )A.{3,4,5,6,7,8} B.{3,6}C.{4,7} D.{5,8}解析:选D.∵A={3,5,6,8},B={4,5,7,8},∴A∩B={5,8}.3.(2021年高考东卷)集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( )A.0 B.1X k b 1 . c oC.2 D.4解析:选D.根据元素特性,a≠0,a≠2,a≠1.∴a=4.4.已知集合P={x∈N1≤x≤10},集合Q={x∈Rx2+x-6=0},则P∩Q等于( )A.{2} B.{1,2}C.{2,3} D.{1,2,3}解析:选A.Q={x∈Rx2+x-6=0}={-3,2}.∴P∩Q={2}.5.(2021年高考福建卷)若集合A={x1≤x≤3},B={xx>2},则A∩B等于( )A.{x2<x≤3} B.{xx≥1}C.{x2≤x<3} D.{xx>2}解析:选A.∵A={x1≤x≤3},B={xx>2},∴A∩B={x2<x≤3}.6.设集合S={xx>5或x<-1},T={xa<x<a+8},S∪T=R,则a的取值范围是( )A.-3<a<-1 B.-3≤a≤-1C.a≤-3或a≥-1 D.a<-3或a>-1解析:选A.S∪T=R,∴a+8>5,a<-1.∴-3<a<-1.7.(2021年高考湖南卷)已知集合A={1,2,3},B={2,,4},A∩B={2,3},则=________.解析:∵A∩B={2,3},∴3∈B,∴=3.答案:38.满足条件{1,3}∪={1,3,5}的集合的个数是________.解析:∵{1,3}∪={1,3,5},∴中必须含有5,∴可以是{5},{5,1},{5,3},{1,3,5},共4个.答案:49.若集合A={xx≤2},B={xx≥a},且满足A∩B={2},则实数a=________.解析:当a>2时,A∩B=∅;当a<2时,A∩B={xa≤x≤2};当a=2时,A∩B={2}.综上:a=2.答案:210.已知A={xx2+ax+b=0},B={xx2+cx+15=0},A∪B={3,5},A∩B={3},求实数a,b,c的值.解:∵A∩B={3},∴由9+3c+15=0,解得c=-8.由x2-8x+15=0,解得B={3,5},故A={3}.又a2-4b=0,解得a=-6,b=9.综上知,a=-6,b=9,c=-8.11.已知集合A={xx-2>3},B={x2x-3>3x-a},求A∪B.解:A={xx-2>3}={xx>5},B={x2x-3>3x-a}={xx<a-3}.借助数轴如图:①当a-3≤5,即a≤8时,A∪B={xx<a-3或x>5}.②当a-3>5,即a>8时,A∪B={xx>5}∪{xx<a-3}={xx∈R}=R.综上可知当a≤8时,A∪B={xx<a-3或x>5};当a>8时,A∪B=R.12.设集合A={(x,y)2x+y=1,x,y∈R},B={(x,y)a2x+2y=a,x,y∈R},若A∩B=∅,求a的值.解:集合A、B的元素都是点,A∩B的元素是两直线的公共点.A∩B=∅,则两直线无交点,即方程组无解.列方程组2x+y=1a2x+2y=a,解得(4-a2)x=2-a,则4-a2=02-a≠0,即a=-2.感谢您的阅读,祝您生活愉快。
《集合的基本运算》同步练习及答案(共五套)

《1.3 集合的基本运算》分层同步练习(一)基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.44.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或36.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.8.已知集合A={x|1≤x≤2},B={x|x<a},若A∩B=A,则实数a的取值范围是_________,若A∩B=∅,则a的范围为_________.能力提升9.已知全集U=R,M={x|x≤1},P={x|x≥2},则∁U(M∪P)等于( )A. {x|1<x<2}B.{x|x≥1}C.{x|x≤2}D.{x|x≤1或x≥2}10.已知集合A={x|x<1,或x>5},B={x|a≤x≤b},且A∪B=R,A∩B={x|5<x≤6},则2a-b=________.11.已知全集U=R,集合A={x|-2≤x≤5},B={x|a+1≤x≤2a-1}且A⊆∁U B,求实数a的取值范围.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案解析】基础巩固1.设全集U={1,2,3,4,5},集合A={1,2},则∁U A等于( )A.{1,2}B.{3,4,5}C.{1,2,3,4,5}D.∅【答案】B【解析】因为U={1,2,3,4,5},A={1,2},所以∁U A={3,4,5}.2.已知U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是( )A.{1,3,5}B.{1,2,3,4,5}C.{7,9}D.{2,4}【答案】D【解析】图中阴影部分表示的集合是(∁UA)∩B={2,4}.故选D.3.满足{1,3}∪A={1,3,5}的所有集合A的个数是( )A.1B.2C.3D.4【答案】D【解析】因为{1,3}∪A={1,3,5},所以1和3可能是集合A的元素,5一定是集合A的元素,则集合A可能是{5},{1,5},{3,5},{1,5,3}共4个.故选D.4.已知集合M={x|-3<x≤5},N={x|x<-5,或x>4},则M∪N=( )A.{x|x<-5,或x>-3}B.{x|-5<x<4}C.{x|-3<x<4}D.{x|x<-3,或x>5}【答案】A【解析】在数轴上分别表示集合M和N,如图所示,则M∪N={x|x<-5,或x>-3}.5.已知集合A={1,3,m2},B={1,m},A∪B=A,则m等于( )A.3B.0或3C.1或0D.1或3【答案】B【解析】因为B∪A=A,所以B⊆A,因为集合A={1,3,m2},B={1,m},所以m=3,或m2=m,所以m=3或m=0.故选B.6.已知全集U=N*,集合A={x|x=2n,n∈N*},B={x|x=4n,n∈N*},则( )A.U=A∪BB.U=(∁UA)∪BC.U=A∪(∁UB)D.U=(∁UA)∪(∁UB)【答案】C【解析】由题意易得B A,画出如图所示的示意图,显然U=A∪(∁U B),故选C.7.集合A={x|x≤-1或x>6},B={x|-2≤x≤a},若A∪B=R,则实数a的取值范围为_________.【答案】{a|a≥6}【解析】由图示可知a≥6.所以a的取值范围为{a|a≥6}8.已知集合A={x|1≤x ≤2},B={x|x<a},若A ∩B=A,则实数a 的取值范围是_________,若A ∩B=∅,则a 的范围为_________.【答案】{a|a>2} {a|a ≤1}【解析】根据题意,集合A={x|1≤x ≤2},若A ∩B=A,则有A ⊆B,必有a>2,若A ∩B=,必有a ≤1.能力提升9.已知全集U=R,M={x|x ≤1},P={x|x ≥2},则∁U(M ∪P)等于( )A. {x|1<x<2}B.{x|x ≥1}C.{x|x ≤2}D.{x|x ≤1或x ≥2}【答案】A【解析】因为M ∪P={x|x ≤1或x ≥2},所以∁U(M ∪P)={x|1<x<2}.故选A.10.已知集合A={x|x<1,或x>5},B={x|a ≤x ≤b},且A ∪B=R,A∩B={x|5<x≤6},则2a-b=________.【答案】-4【解析】如图所示,可知a=1,b=6,2a-b=-4.11.已知全集U=R,集合A={x|-2≤x ≤5},B={x|a+1≤x ≤2a-1}且A ⊆∁U B,求实数a 的取值范围.【答案】见解析【解析】若B=∅,则a+1>2a-1,则a<2,此时∁U B=R,所以A ⊆∁U B;若B ≠∅,则a+1≤2a-1,即a ≥2,此时∁U B={x|x<a+1,或x>2a-1},由于A ⊆∁U B,如图,则a+1>5,所以a>4,所以实数a 的取值范围为{a|a<2,或a>4}.素养达成12.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【答案】见解析【解析】设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.《1.3 集合的基本运算》分层同步练习(二)(第1课时)巩固基础1.已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B等于( )A.{0} B.{-1,0} C.{0,1} D.{-1,0,1}2.已知集合A={x|x≥0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2} C.{x|0<x≤2} D.{x|1≤x≤2} 3.若集合A={参加伦敦奥运会比赛的运动员},集合B={参加伦敦奥运会比赛的男运动员},集合C={参加伦敦奥运会比赛的女运动员},则下列关系正确的是( )A.A⊆B B.B⊆C C.A∩B=C D.B∪C=A4.已知集合M={x|(x-1)2<4,x∈R},N={-1,0,1,2,3},则M∩N=( )A.{0,1,2} B.{-1,0,1,2} C.{-1,0,2,3} D.{0,1,2,3} 5.已知集合M={(x,y)|x+y=2},N={(x,y)|x-y=4},那么集合M∩N为( ) A.x=3,y=-1 B.(3,-1)C.{3,-1} D.{(3,-1)}6.设集合M={1,2},则满足条件M∪N={1,2,3,4}的集合N的个数是( ) A.1 B.3 C.2 D.47.设A={x|-3≤x≤3},B={y|y=-x2+t}.若A∩B=∅,则实数t的取值范围是( )A.t<-3 B.t≤-3 C.t>3 D.t≥38.若集合A={x|x≤2},B={x|x≥a},满足A∩B={2},则实数a=________. 9.设集合A={-2},B={x|ax+1=0,a∈R},若A∩B=B,求a的值.10.已知集合A={x|-1≤x<3},B={x|2x-4≥x-2}.(1)求A∩B;(2)若集合C={x|2x+a>0},满足B∪C=C,求实数a的取值范围.综合应用11.集合A={0,2,a},B={1,a2},若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1 C.2 D.412.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},且B≠∅,若A∪B =A,则( )A.-3≤m≤4 B.-3<m<4 C.2<m<4 D.2<m≤413.已知集合A={1,3,m},B={1,m},A∪B=A,则m等于( )A.0.0或3 C.1.1或314.设集合A={x|-1≤x≤2},B={x|-1<x≤4},C={x|-3<x<2}且集合A∩(B∪C)={x|a≤x≤b},则a=________,b=________.15.已知M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于。
数学高中集合大题练习题及讲解

数学高中集合大题练习题及讲解集合是数学中描述对象的集合体,是高中数学中的重要组成部分。
以下是一些集合相关的大题练习题及讲解:### 练习题1:集合的运算设集合A = {1, 2, 3},集合B = {2, 3, 4},求以下集合运算的结果:1. A ∪ B(A并B)2. A ∩ B(A交B)3. A - B(A减B)讲解:1. A ∪ B表示A和B中所有元素的集合,不重复地列出,即{1, 2, 3, 4}。
2. A ∩ B表示A和B中共有的元素,即{2, 3}。
3. A - B表示A中有而B中没有的元素,即{1}。
### 练习题2:子集与幂集设集合S = {a, b, c},求:1. S的所有子集。
2. S的幂集。
讲解:1. S的所有子集包括空集以及S中所有元素的所有组合,即:∅,{a},{b},{c},{a, b},{a, c},{b, c},{a, b, c}。
2. S的幂集是S所有子集的集合,即:{∅, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}}。
### 练习题3:集合的包含关系设集合A = {1, 2, 3},集合B = {2, 3, 4, 5},判断A是否是B的子集,并说明理由。
讲解:A不是B的子集,因为A中的元素1不在B中。
子集的定义是如果集合A的所有元素都在集合B中,那么A是B的子集。
### 练习题4:集合的相等集合A = {1, 2, 3}和集合C = {3, 2, 1}是否相等?为什么?讲解:集合A和C相等。
根据集合的性质,集合的元素是无序的,即元素的排列顺序不影响集合的相等性。
### 练习题5:描述法和列举法用描述法表示集合{x | x是小于10的正整数},并用列举法表示集合{x | x是偶数}。
讲解:1. 描述法表示为{x | x ∈ N, 1 ≤ x < 10},其中N表示自然数集合。
2. 列举法表示为{2, 4, 6, 8, 10}。
集合的基本运算练习题

集合的基本运算练习题集合的基本运算练题一、选择题(每小题5分,共30分)1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B={ }。
答案:A。
解析:A∩B表示既属于A又属于B的元素,即{3,9}。
2.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于{ }。
答案:B。
解析:A表示2≤x<4的实数,B表示3x-7≥8-2x的实数,化简得x≥3,因此A∪B表示x≥2或x≥3,即{x|x≥2}。
3.集合A={0,2,a},B={1,a}。
若A∪B={0,1,2,4,16},则a的值为{ }。
答案:D。
解析:A∪B表示A和B的并集,即所有属于A或B的元素,因此a=4.4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是{ }。
答案:C。
解析:M中的元素可以是{a1,a2}、{a1,a2,a4}、{a1,a2,a3}、{a1,a2,a3,a4},共4种情况,但由于M∩{a1,a2,a3}={a1,a2},因此M中必须包含a1和a2,只有第三种情况符合要求。
5.已知全集U=R,集合A={x|-2≤x≤3},B={x|x<-1或x>4},那么集合A∩(CUB)等于{ }。
答案:A。
解析:CUB表示全集,即所有实数,因此A∩(CUB)=A。
6.设I为全集,S1,S2,S3是I的三个非空子集且S1∪S2∪S3=I,则下面论断正确的是{ }。
答案:B。
解析:CIS1表示全集I中不属于S1的元素构成的集合,因此CIS1∩(S2∪S3)表示不属于S1且属于S2或S3的元素,即S2\S1∪S3\S1,因此B正确。
二、填空题(每小题5分,共30分)1.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是{ }。
答案:a≤1.解析:A表示所有小于等于1的实数,B表示所有大于等于a的实数,因此A∪B表示所有实数,即R,因此a≤1.2.满足{1,3}∪A={1,3,5}的所有集合A的个数是{ }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合的基本运算
一、选择题(每小题5分,共30分)
1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=()
A.{3,5} B.{3,6} C.{3,7} D.{3,9}
2.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于()
A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}
3.集合A={0,2,a},B={1,2a}.若A∪B={0,1,2,4,16},则a的值为()
A.0 B.1 C.2 D.4
4.满足M⊆{
4
3
2
1
,
,a
a
a
a},且M∩{
3
2
1
,
,a
a
a}={
2
1
,a
a}的集合M的个数是()
A.1 B.2 C.3 D.4
5.已知全集U=R,集合A={x︱-2≤x≤3},B={x︱x<-1或x>4},那么集合A∩(C U B)等于().
A.{x︱-2≤x<4}
B.{x︱x≤3或x≥4} C.{x︱-2≤x<-1} D.{-1︱-1≤x≤3}
6.设I为全集,
3
2
1
S,
S,
S是I的三个非空子集且I
S
S
S
3
2
1
=
,则下面论断正确的是()。
A.Φ
=
)
S
(S
)
S
(C
3
2
1
I
B.)]
S
(C
)
S
[(C
S
3
I
2
I
1
⊆
C.Φ
=
)
S
(C
)
S
(C
)
S
(C
3
I
2
I
1
I
D. )]
S
(C
)
S
[(C
S
3
I
2
I
1
⊆
二、填空题(每小题5分,共30分)
1.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.
2.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.
3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.
4.设,
若,则实数m的取值范围是_______.
5. 设U=Z,A={1,3,5,7,9},B={1,2,3,4,5},则图中阴影部分表示的集合是_______.
6. 如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(S A)∪(S B)=.
三、解答题(每小题10分,共40分)
1.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.
2.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.
4.集合S={x|x≤10,且x∈N *},A S,B S,且A∩B={4,5},(S B)∩A={1,2,3},
(S A)∩(S B)={6,7,8},求集合A和B.
{}{}m
x
m
x
B
x
x
A3
1
1
/
,5
2
/-
<
<
+
=
<
<
-
=
A
B
A=
⋂。