2020年全国各地高考数学试卷分类汇编—排列组合、概率统计(含解析)

合集下载

2020届全国各地高考试题分类汇编15 排列组合 二项式定理

2020届全国各地高考试题分类汇编15 排列组合 二项式定理

2020届全国各地高考试题分类汇编15 排列组合 二项式定理1.(2020•北京卷)在52)-的展开式中,2x 的系数为( ). A. 5- B. 5C. 10-D. 10【答案】C【解析】)52展开式的通项公式为:()()55215522r rrrrr r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-.故选:C.2.(2020•全国1卷)25()()x x y xy ++的展开式中x 3y 3的系数为( )A. 5B. 10C. 15D. 20【答案】C【解析】5()x y +展开式的通项公式为515r r rr T C x y -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5所以33x y 的系数为10515+=.故选:C3.(2020•全国2卷)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A. 10名 B. 18名C. 24名D. 32名【答案】B【解析】由题意,第二天新增订单数为50016001200900+-=,设需要志愿者x 名,500.95900x≥,17.1x ≥,故需要志愿者18名.故选:B4.(2020•全国2卷)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有__________种. 【答案】36 【解析】4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学∴先取2名同学看作一组,选法有:246C =现在可看成是3组同学分配到3个小区,分法有:336A =根据分步乘法原理,可得不同的安排方法6636⨯=种 故答案为:36.5.(2020•全国3卷)262()x x+的展开式中常数项是__________(用数字作答).【答案】240 【解析】622x x ⎛⎫+ ⎪⎝⎭ 其二项式展开通项:()62612rrrr C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r rr r xC x --⋅=⋅1236(2)r r r C x -=⋅ 当1230r -=,解得4r =∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.6.(2020•新全国1山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A. 120种B. 90种C. 60种D. 30种【答案】C【解析】首先从6名同学中选1名去甲场馆,方法数有16C ;然后从其余5名同学中选2名去乙场馆,方法数有25C ;最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C7.(2020•天津卷)在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________. 【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.故答案为:10.8.(2020•浙江卷)设()2345125345612 x a a x a x a x a x a x +=+++++,则a 5=________;a 1+a 2 + a 3=________. 【答案】 (1). 80 (2). 122【解析】5(12)x +的通项为155(2)2r r r r rr T C x C x +==,令4r =,则444455280T C x x ==,故580a =;113355135555222122a a a C C C ++=++=.故答案为:80;1229.(2020•上海卷)从6人中挑选4人去值班,每人值班1天,第一天需要1人,第二天需要1人,第三天需要2人,则有种排法。

2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版—统计概率(原卷版)

2020年高考数学试题分项版——统计概率(原卷版)一、选择题1.(2020·全国Ⅰ理,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x2.(2020·全国Ⅰ理,8)⎝⎛⎭⎫x +y2x (x +y )5的展开式中x 3y 3的系数为( ) A .5 B .10 C .15 D .203.(2020·全国Ⅱ理,3)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1 600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名4.(2020·全国Ⅲ理,3)在一组样本数据中,1,2,3,4出现的频率分别为p 1,p 2,p 3,p 4,且∑i =14pi =1,则下面四种情形中,对应样本的标准差最大的一组是()A .p 1=p 4=0.1,p 2=p 3=0.4B .p 1=p 4=0.4,p 2=p 3=0.1C .p 1=p 4=0.2,p 2=p 3=0.3D .p 1=p 4=0.3,p 2=p 3=0.25.(2020·新高考全国Ⅰ,3)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( ) A .120种 B .90种 C .60种 D .30种6.(2020·新高考全国Ⅰ,12)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,…,n ,且1()0(1,2,,),1ni i i P X i p i n p ===>==∑,定义X 的信息熵21()log ni i i H X p p ==-∑( )A .若n =1,则H (X )=0B .若n =2,则H (X )随着p i 的增大而增大C .若p i =1n(i =1,2,…,n ),则H (X )随着n 的增大而增大D .若n =2m ,随机变量Y 所有可能的取值为1,2,…,m ,且P (Y =j )=p j +p 2m +1-j (j =1,2,…,m ),则H (X )≤H (Y )7.(2020·北京,3)在(x -2)5的展开式中,x 2的系数为( ) A .-5 B .5 C .-10 D .108.(2020·新高考全国Ⅱ,6)3名大学生利用假期到2个山村参加扶贫工作,每名大学生只去1个村,每个村至少1人,则不同的分配方案共有( ) A .4种 B .5种 C .6种 D .8种9.(2020·新高考全国Ⅱ,9)我国新冠肺炎疫情防控进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是( )A .这11天复工指数和复产指数均逐日增加B .这11天期间,复产指数增量大于复工指数的增量C .第3天至第11天复工复产指数均增大都超过80%D .第9天至第11天复产指数增量大于复工指数的增量10.(2020·天津,4)从一批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间[5.43,5.47]内的个数为( )A .10B .18C .20D .3611.(2020·全国Ⅰ文,4)设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( ) A.15 B.25 C.12 D.4512.(2020·全国Ⅰ文,5)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i =1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( ) A .y =a +bx B .y =a +bx 2 C .y =a +b e xD .y =a +b ln x13.(2020·全国Ⅱ文,3)如图,将钢琴上的12个键依次记为a 1,a 2,…,a 12.设1≤i <j <k ≤12.若k -j =3且j -i =4,则称a i ,a j ,a k 为原位大三和弦;若k -j =4且j -i =3,则称a i ,a j ,a k 为原位小三和弦.用这12个键可以构成的原位大三和弦与原位小三和弦的个数之和为( )A .5B .8C .10D .1514.(2020·全国Ⅱ文,4)在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1 200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05.志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( ) A .10名 B .18名 C .24名 D .32名15.(2020·全国Ⅲ文,3)设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为( )A .0.01B .0.1C .1D .10 二、填空题1.(2020·全国Ⅱ理,14)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有________种. 2.(2020·全国Ⅲ理,14)⎝⎛⎭⎫x 2+2x 6的展开式中常数项是________.(用数字作答) 3.(2020·天津,11)在⎝⎛⎭⎫x +2x 25的展开式中,x 2的系数是________. 4.(2020·天津,13)已知甲、乙两球落入盒子的概率分别为12和13.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为________;甲、乙两球至少有一个落入盒子的概率为________.5.(2020·江苏,3)已知一组数据4,2a,3-a,5,6的平均数为4,则a 的值是________. 6.(2020·江苏,4)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是________.7.(2020·浙江,12)二项展开式(1+2x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,则a 4=________,a 1+a 3+a 5=________.8.(2020·浙江,16)盒中有4个球,其中1个红球,1个绿球,2 个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为ξ,则P (ξ=0)=________,E (ξ)=________. 三、解答题1.(2020·全国Ⅰ理,19)甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为12.(1)求甲连胜四场的概率; (2)求需要进行第五场比赛的概率; (3)求丙最终获胜的概率.2.(2020·全国Ⅱ理,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.3.(2020·全国Ⅲ理,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),4.(2020·新高考全国Ⅰ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),5.(2020·新高考全国Ⅱ,19)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO2浓度(单位:μg/m3),得下表:(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:(3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),6.(2020·北京,18)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:假设所有学生对活动方案是否支持相互独立.(1)分别估计该校男生支持方案一的概率,该校女生支持方案一的概率;(2)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;(3)将该校学生支持方案二的概率估计值记为p0,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为p1,试比较p0与p1的大小.(结论不要求证明)7.(2020·江苏,23)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为X n,恰有2个黑球的概率为p n,恰有1个黑球的概率为q n.(1)求p1,q1和p2,q2;(2)求2p n+q n与2p n-1+q n-1的递推关系式和X n的数学期望E(X n)(用n表示).8.(2020·全国Ⅰ文,17)某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:甲分厂产品等级的频数分布表乙分厂产品等级的频数分布表(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务?9.(2020·全国Ⅱ文,18)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得20160i ix==∑,2011200i iy==∑,2021)80i ix x =-=∑(,2021)9000i iy y =-=∑(,201))800ii ix y x y =--=∑((.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大,为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数r))niix y x y --∑((,2≈1.414.10.(2020·全国Ⅲ文,18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),。

专题14 排列组合、二项式定理--2020届全国卷高考数学真题分类汇编含答案

专题14 排列组合、二项式定理--2020届全国卷高考数学真题分类汇编含答案

专题14排列组合、二项式定理研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。

排列组合二项式定理——近3年排列组合二项式定理考了7道小题,(3道排列组合,4道二项式定理)二项式定理出现较多,这一点很合理,因为排列组合可以在概率统计和分布列中考查,排列组合出现的考题难度不大,无需投入过多时间(无底洞),而且排列组合难题无数,只要处理好两个理(分类加法原理、分步乘法原理)及分配问题,掌握好分类讨论思想即可!二项式定理“通向问题”出现较多。

该项内容对文科考生不作要求。

1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理15))从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有种.(用数字填写答案)【答案】见解析。

【考点】D9:排列、组合及简单计数问题.【专题】11:计算题;38:对应思想;4O:定义法;5O:排列组合.【分析】方法一:直接法,分类即可求出,方法二:间接法,先求出没有限制的种数,再排除全是男生的种数.【解答】解:方法一:直接法,1女2男,有C21C42=12,2女1男,有C22C41=4根据分类计数原理可得,共有12+4=16种,方法二,间接法:C63﹣C43=20﹣4=16种,故答案为:16【点评】本题考查了分类计数原理,属于基础题2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理6))(1+)(1+x)6展开式中x2的系数为()A.15 B.20 C.30 D.35【考点】DA:二项式定理.【专题】35:转化思想;4R:转化法.【分析】直接利用二项式定理的通项公式求解即可.【解答】解:(1+)(1+x)6展开式中:若(1+)=(1+x﹣2)提供常数项1,则(1+x)6提供含有x2的项,可得展开式中x2的系数:若(1+)提供x﹣2项,则(1+x)6提供含有x4的项,可得展开式中x2的系数:由(1+x)6通项公式可得.可知r=2时,可得展开式中x2的系数为.可知r=4时,可得展开式中x2的系数为.(1+)(1+x)6展开式中x2的系数为:15+15=30.故选:C.【点评】本题主要考查二项式定理的知识点,通项公式的灵活运用.属于基础题.3.(2016年普通高等学校招生统一考试新课标Ⅰ卷数学(理14))(2x+)5的展开式中,x3的系数是.(用数字填写答案)【答案】见解析。

2020年全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)

2020年全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)

全国及各省市高考数学试题分类汇编(11 排列组合与概率统计)1.(2019·全国I 文·6)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,3,,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是( ).A.8号学生B.200号学生C.616号学生D.815号学生答案:C解析:从1000名学生中抽取100名,每10人抽一个,46号学生被抽到,则抽取的号数就为106(099,)n n n N +≤≤∈,可得出616号学生被抽到.2.(2019·全国I 理·6)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是( )A.516B.1132C.2132D.1116 答案:A 解析:每爻有阴阳两种情况,所以总的事件共有62种,在6个位置上恰有3个是阳爻的情况有36C 种,所以36620526416C P ===.3.(2019·全国II 文·4)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( ) A.23 B.35 C.25 D.15答案:B解析:计测量过的3只兔子为1、2、3,设测量过的2只兔子为A 、B 则3只兔子的种类有(1,2,3)(1,2,)A (1,2,)B (1,3,)A (1,3,)B (1,,)A B ()()()()2,3,2,3,2,,3,,A B A B A B 则恰好有两只测量过的有6种,所以其概率为35. 4.(2019·全国II 理·5)演讲比赛共有9位评委分别给出某位选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分。

专题17 概率统计解答题-2020届全国卷高考数学真题分类汇编含答案

专题17  概率统计解答题-2020届全国卷高考数学真题分类汇编含答案

专题17 概率统计解答题研究发现,课标全国卷的试卷结构和题型具有一定的稳定性和延续性,每个题型考查的知识点、考查方法、考查角度、思维方法等相对固定,掌握了全国卷的各种题型,就把握了全国卷命题的灵魂,基于此,潜心研究全国Ⅰ、Ⅱ、Ⅲ卷及高考数学考试说明,精心分类汇总至少最近三年全国卷的所有题型(按年份先理后文的排列),对把握全国卷命题的方向,指导我们的高考有效复习,走出题海,快速提升成绩,会起到事半功倍的效果。

概率统计解答题,每年一题,第一问,(文科)多为概率问题,(理科)多为统计问题,第二问,(文科)多为统计问题,(理科)多为分布列、期望计算问题或统计问题,特点;实际生活背景在加强,统计知识在加强,频率分布直方图、茎叶图、回归分析、独立性检验、正态分布(文理科)都有可能会考。

1.(2018年普通高等学校招生统一考试新课标Ⅰ卷数学(理20))某工厂的某种产品成箱包装,每箱200件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取20件作检验,再根据检验结果决定是否对余下的所有产品作检验.设每件产品为不合格品的概率都为p(0<p<1),且各件产品是否为不合格品相互独立.(1)记20件产品中恰有2件不合格品的概率为f(p),求f (p)的最大值点p0.(2)现对一箱产品检验了20件,结果恰有2件不合格品,以(1)中确定的p0作为p的值.已知每件产品的检验费用为2元,若有不合格品进入用户手中,则工厂要对每件不合格品支付25元的赔偿费用.(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为X,求EX;(ⅱ)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?【答案】见解析。

【考点】CG:离散型随机变量及其分布列;CH:离散型随机变量的期望与方差.【专题】11:计算题;35:转化思想;49:综合法;5I:概率与统计.【分析】(1)求出f(p)=,则=,利用导数性质能求出f (p)的最大值点p0=0.1.(2)(i)由p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),再由X=20×2+25Y,即X=40+25Y,能求出E(X).(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,E(X)=490>400,从而应该对余下的产品进行检验.【解答】解:(1)记20件产品中恰有2件不合格品的概率为f(p),则f(p)=,∴=,令f′(p)=0,得p=0.1,当p∈(0,0.1)时,f′(p)>0,当p∈(0.1,1)时,f′(p)<0,∴f (p)的最大值点p0=0.1.(2)(i)由(1)知p=0.1,令Y表示余下的180件产品中的不合格品数,依题意知Y~B(180,0.1),X=20×2+25Y,即X=40+25Y,∴E(X)=E(40+25Y)=40+25E(Y)=40+25×180×0.1=490.(ii)如果对余下的产品作检验,由这一箱产品所需要的检验费为400元,∵E(X)=490>400,∴应该对余下的产品进行检验.【点评】本题考查概率的求法及应用,考查离散型随机变量的数学期望的求法,考查是否该对这箱余下的所有产品作检验的判断与求法,考查二项分布等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.2.(2017年普通高等学校招生统一考试新课标Ⅰ卷数学(理19))为了监控某种零件的一条生产线的生产过程,检验员每天从该生产线上随机抽取16个零件,并测量其尺寸(单位:cm).根据长期生产经验,可以认为这条生产线正常状态下生产的零件的尺寸服从正态分布N(μ,σ2).(1)假设生产状态正常,记X表示一天内抽取的16个零件中其尺寸在(μ﹣3σ,μ+3σ)之外的零件数,求P(X≥1)及X的数学期望;(2)一天内抽检零件中,如果出现了尺寸在(μ﹣3σ,μ+3σ)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(ⅰ)试说明上述监控生产过程方法的合理性;(ⅱ)下面是检验员在一天内抽取的16个零件的尺寸:9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.0410.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95经计算得==9.97,s==≈0.212,其中x i为抽取的第i 个零件的尺寸,i=1,2, (16)用样本平均数作为μ的估计值,用样本标准差s作为σ的估计值,利用估计值判断是否需对当天的生产过程进行检查?剔除(﹣3+3)之外的数据,用剩下的数据估计μ和σ(精确到0.01).附:若随机变量Z服从正态分布N(μ,σ2),则P(μ﹣3σ<Z<μ+3σ)=0.9974,0.997416≈0.9592,≈0.09.【答案】见解析。

高中数学高考专题26 排列组合、二项式定理(解析版)

高中数学高考专题26 排列组合、二项式定理(解析版)

专题26 排列组合二项式定理命题规律内 容典 型1 求两个二项式相乘展开式中的指定项问题 2020年高考全国Ⅰ卷理数8 2 求二项式展开式的指定项或指定项系数 2020年高考全国Ⅲ卷理数14 3 求二项式展开式中奇数项系数 2020年高考浙江卷12 4 利用计数原理计算组合问题2020年高考山东卷3 5利用计数原理计算排列组合的综合问题2020年高考全国Ⅱ卷理数14命题规律一 求两个二项式相乘展开式中的指定项问题【解决之道】利用二项式定理展开式的通项,列出关于所求项的指定项指数的方程,通过解不定方程,即可确定指定项,利用通项公式即可求出指定项系数,注意分类讨论. 【三年高考】1.【2020年高考全国Ⅰ卷理数8】()25y x x x y ⎛⎫ ⎪⎭+⎝+的展开式中33x y 的系数为( )A .5B .10C .15D .20 【答案】C【解析】5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),∴2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积可表示为:56155rrrr rr r xT xC xy C xy --+==或22542155r r rr r r r T C x y xC y y y x x --++==,在615r r rr xT C x y -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x xy y -++=中,令1r =,可得:521332T C y x xy =,该项中33x y 的系数为5,∴33x y 的系数为10515+=,故选C . 2.【2019年高考全国Ⅲ卷理数】(1+2x 2 )(1+x )4的展开式中x 3的系数为( )A .12B .16C .20D .24【答案】A【解析】由题意得x 3的系数为3144C 2C 4812+=+=,故选A .命题规律二 求二项式展开式的指定项或指定项系数【解决之道】解决此类问题,设指定项为二项式展开式的第r 项,利用通项公式,列出关于r 的方程,解出r ,即可求出指定的系数.【三年高考】1.【2020年高考北京卷3】在)52的展开式中,2x 的系数为( )A .5-B .5C .10-D .10 【答案】C【解析】由题意展开式的通项为T r+1=C 5r(x 12)5−r(−2)r ==C 5r (−2)r x5−r2,令r=1得x 2的系数为-10,故选C .2.【2020年高考全国Ⅲ卷理数14】622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是 (用数字作答). 【答案】240【解析】622x x ⎛⎫+ ⎪⎝⎭,其二项式展开通项:()62612rr rr C x x T -+⎛⎫⋅⋅ ⎪⎝⎭=1226(2)r r r r xC x --⋅=⋅1236(2)r r r C x -=⋅,当1230r -=,解得4r =,∴622x x ⎛⎫+ ⎪⎝⎭的展开式中常数项是:664422161516240C C ⋅=⋅=⨯=.故答案为:240.3.【2020年高考天津卷11】在522x x ⎛⎫+ ⎪⎝⎭的展开式中,2x 的系数是_________.【答案】10【解析】因为522x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()5531552220,1,2,3,4,5rr r r r r r T C x C x r x --+⎛⎫==⋅⋅= ⎪⎝⎭,令532r -=,解得1r =.所以2x 的系数为15210C ⨯=.4.【2018年高考全国Ⅲ卷理数】522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为( )A .10B .20C .40D .80【答案】C【解析】由题可得522x x ⎛⎫+ ⎪⎝⎭的展开式的通式为()521031552C C 2rr r r r rr T x x x --+⎛⎫⋅⋅== ⎪⎝⎭,令1034r -=,得2r =,所以展开式中4x 的系数为225C 240⨯=.故选C .5.【2019年高考浙江卷理数】在二项式9)x 的展开式中,常数项是__________;系数为有理数的项的个数是__________.【答案】 5【解析】由题意,9)x的通项为919C (0,1,29)r r r r T x r -+==,当0r =时,可得常数项为919C T ==;若展开式的系数为有理数,则1,3,5,7,9r =,有246810T , T , T , T , T 共5个项.6.【2018年高考浙江卷】二项式81)2x的展开式的常数项是__________. 【答案】7【解析】二项式812x ⎫⎪⎭的展开式的通项公式为848318811C C 22rr rrrr r T xx --+⎛⎫==⋅⋅ ⎪⎝⎭, 令8403r -=得2r =,故所求的常数项为2821C =72⋅.故答案为:7. 7.【2018年高考天津卷理数】在5(x 的展开式中,2x 的系数为__________.【答案】52【解析】二项式5(x -的展开式的通项公式为35521551C C 2r rr r r r r T x x --+⎛⎛⎫==- ⎪ ⎝⎭⎝,令3522r -=可得:2r =,则2x 的系数为:225115C 10242⎛⎫-=⨯= ⎪⎝⎭.故答案为:52.命题规律三 求二项式展开式中奇数项系数【解决之道】解决此类问题,要熟记二项式展开式的系数性质,利用赋值法,即可列出二项式系数的方程(组),系数和即赋值1x =,偶数项系数和减去奇数项系数和即赋值1x =-,通过解方程即可求出偶数项(奇数项)系数和.【三年高考】1.【2020年高考浙江卷12】设()2345123455612x a a x a x a x a x a x +=+++++,则5a = ;123a a a ++= .【答案】80;51【解析】由题意可知5a 表示4x 的系数,即4455280a C =⋅=,11a =,125210a C =⋅=,2235240a C =⋅=,∴12351a a a ++=.命题规律四 利用计数原理计算组合问题【解决之道】排列组合问题常见解法:(1)元素分析法:在解有限定元素的排列问题时,首先考虑特殊元素的安排方法,再考虑其他元素的排法。

2020年全国各地高考真题分类汇编—排列组合、概率统计(含答案)

2020年全国各地高考真题分类汇编—排列组合、概率统计(含答案)

2020年全国各地⾼考真题分类汇编—排列组合、概率统计1.(2020•海南)要安排3名学⽣到2个乡村做志愿者,每名学⽣只能选择去⼀个村,每个村⾥⾄少有⼀名志愿者,则不同的安排⽅法共有()A.2种B.3种C.6种D.8种2.(2020•天津)从⼀批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直⽅图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()A.10B.18C.20D.36 3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.10 4.(2020•新课标Ⅲ)设⼀组样本数据x1,x2,…,x n的⽅差为0.01,则数据10x1,10x2,…,10x n 的⽅差为()A.0.01B.0.1C.1D.10 5.(2020•新课标Ⅰ)某校⼀个课外学习⼩组为研究某作物种⼦的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进⾏种⼦发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下⾯的散点图:由此散点图,在10℃⾄40℃之间,下⾯四个回归⽅程类型中最适宜作为发芽率y和温度x的回归⽅程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.(2020•新课标Ⅰ)设O为正⽅形ABCD的中⼼,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.B.C.D.7.(2020•新课标Ⅲ)在⼀组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i=1,则下⾯四种情形中,对应样本的标准差最⼤的⼀组是()A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2 8.(2020•新课标Ⅱ)在新冠肺炎疫情防控期间,某超市开通⽹上销售业务,每天能完成1200份订单的配货,由于订单量⼤幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货⼯作.已知该超市某⽇积压500份订单未配货,预计第⼆天的新订单超过1600份的概率为0.05.志愿者每⼈每天能完成50份订单的配货,为使第⼆天完成积压订单及当⽇订单的配货的概率不⼩于0.95,则⾄少需要志愿者()A.10名B.18名C.24名D.32名9.(2020•⼭东)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()A.120种B.90种C.60种D.30种10.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.20 11.(2020•天津)已知甲、⼄两球落⼊盒⼦的概率分别为和.假定两球是否落⼊盒⼦互不影响,则甲、⼄两球都落⼊盒⼦的概率为;甲、⼄两球⾄少有⼀个落⼊盒⼦的概率为.12.(2020•上海)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.13.(2020•浙江)盒中有4个球,其中1个红球,1个绿球,2个⻩球.从盒中随机取球,每次取1个,不放回,直到取出红球为⽌.设此过程中取到⻩球的个数为ξ,则P(ξ=0)=,E(ξ)=.14.(2020•上海)从6个⼈挑选4个⼈去值班,每⼈值班⼀天,第⼀天安排1个⼈,第⼆天安排1个⼈,第三天安排2个⼈,则共有种安排情况.15.(2020•浙江)⼆项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.16.(2020•江苏)已知⼀组数据4,2a,3﹣a,5,6的平均数为4,则a的值是.17.(2020•新课标Ⅱ)4名同学到3个⼩区参加垃圾分类宣传活动,每名同学只去1个⼩区,每个⼩区⾄少安排1名同学,则不同的安排⽅法共有种.18.(2020•江苏)将⼀颗质地均匀的正⽅体骰⼦先后抛掷2次,观察向上的点数,则点数和为5的概率是.19.(2020•上海)已知A={﹣3,﹣2,﹣1,0,1,2,3},a、b∈A,则|a|<|b|的情况有种.20.(2020•上海)已知⼆项式(2x+)5,则展开式中x3的系数为.21.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(⽤数字作答).22.(2020•天津)在(x+)5的展开式中,x2的系数是.23.(2020•北京)某校为举办甲、⼄两项不同活动,分别设计了相应的活动⽅案;⽅案⼀、⽅案⼆.为了解该校学⽣对活动⽅案是否⽀持,对学⽣进⾏简单随机抽样,获得数据如表:男⽣⼥⽣⽀持不⽀持⽀持不⽀持⽅案⼀200⼈400⼈300100⼈⼈⽅案⼆350⼈250⼈150250⼈⼈假设所有学⽣对活动⽅案是否⽀持相互独⽴.(Ⅰ)分别估计该校男⽣⽀持⽅案⼀的概率、该校⼥⽣⽀持⽅案⼀的概率;(Ⅱ)从该校全体男⽣中随机抽取2⼈,全体⼥⽣中随机抽取1⼈,估计这3⼈中恰有2⼈⽀持⽅案⼀的概率;(Ⅲ)将该校学⽣⽀持⽅案⼆的概率估计值记为p0.假设该校⼀年级有500名男⽣和300名⼥⽣,除⼀年级外其他年级学⽣⽀持⽅案⼆的概率估计值记为p1.试⽐较p0与p1的⼤⼩.(结论不要求证明)24.(2020•海南)为加强环境保护,治理空⽓污染,环境监测部⻔对某市空⽓质量进⾏调研,随机抽查了100天空⽓中的PM2.5和SO2浓度(单位:µg/m3),得下表:[0,50](50,150](150,475] SO2PM2.5[0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市⼀天空⽓中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下⾯的2×2列联表:[0,150](150,475]SO2PM2.5[0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市⼀天空⽓中PM2.5浓度与SO2浓度有关?附:K2=P(K2≥k)0.0500.0100.001k 3.841 6.63510.828。

2020高考数学全国真题及答案汇编

2020高考数学全国真题及答案汇编

2020 年普通高等学校招生全国统一考试 理科数学 I
本试卷 5 页, 23 题 (含选考题). 全卷满分 150 分. 考试用时 120 分钟. 注意事项: 1. 答题前, 先将自己的姓名、准考证号填写在试卷和答题卡上, 并将准考证号条形码粘贴在答题卡上的指定 位置. 2. 选择题的作答: 每小题选出答案后, 用 2B 铅笔把答题卡上对应题目的答案标号涂黑. 写在试卷、草稿纸和 答题卡上的非答题区域均无效. 3. 非选择题的作答: 用黑色签字笔直接答在答题卡上对应的答题区域内. 写在试卷、草稿纸和答题卡上的非 答题区域均无效. 4. 选考题的作答: 先把所选题目的题号在答题卡上指定的位置用 2B 铅笔涂黑. 答案写在答题卡上对应的答 题区域内, 写在试卷、草稿纸和答题卡上的非答题区域均无效. 5. 考试结束后, 请将本试卷和答题卡一并上交.
4
√ D: 5 + 1
2
题3图 4. 已知 A 为抛物线 C : y2 = 2px(p > 0) 上一点, 点 A 到 C 的焦点的距离为 12, 到 y 轴的距离为 9, 则 p =( ).
A: 2
B: 3
C: 6
D: 9
2020 年高考数学全国 I 卷理科真题
2
5. 某校一个课外学习小组为研究某作物种子的发芽率 y 和温度 x (单位: ◦C) 的关系, 在 20 个不同的温度条 件下进行种子发芽实验, 由实验数据 xi, yi (i = 1, 2, · · · , 20) 得到下面的散点图:
目录
2020 年高考数学全国 I 卷理科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1 2020 年高考数学全国 I 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6 2020 年高考数学全国 I 卷文科真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 15 2020 年高考数学全国 I 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 20 2020 年高考数学全国 II 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28 2020 年高考数学全国 II 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 32 2020 年高考数学全国 II 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40 2020 年高考数学全国 II 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 44 2020 年高考数学全国 III 卷理科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 51 2020 年高考数学全国 III 卷理科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 55 2020 年高考数学全国 III 卷文科真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63 2020 年高考数学全国 III 卷文科真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 67 2020 年新高考数学 I 卷真题· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 74 2020 年新高考数学 I 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 79 2020 年新高考数学 II 卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87 2020 年新高考数学 II 卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 92 2020 年高考数学北京卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 100 2020 年高考数学北京卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104 2020 年高考数学天津卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 112 2020 年高考数学天津卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 116 2020 年高考数学上海卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 124 2020 年高考数学上海卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 127 2020 年高考数学浙江卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 135 2020 年高考数学浙江卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 139 2020 年高考数学江苏卷真题 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 146 2020 年高考数学江苏卷真题解析 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年全国各地⾼考真题分类汇编—排列组合、概率统计
1.(2020•海南)要安排3名学⽣到2个乡村做志愿者,每名学⽣只能选择去⼀个村,每个村⾥⾄少有⼀名志愿者,则不同的安排⽅法共有()
A.2种B.3种C.6种D.8种2.(2020•天津)从⼀批零件中抽取80个,测量其直径(单位:mm),将所得数据分为9组:
[5.31,5.33),[5.33,5.35),…,[5.45,5.47),[5.47,5.49],并整理得到如下频率分布直⽅图,则在被抽取的零件中,直径落在区间[5.43,5.47)内的个数为()
A.10B.18C.20D.36 3.(2020•北京)在(﹣2)5的展开式中,x2的系数为()
A.﹣5B.5C.﹣10D.10 4.(2020•新课标Ⅲ)设⼀组样本数据x1,x2,…,x n的⽅差为0.01,则数据10x1,10x2,…,10x n 的⽅差为()
A.0.01B.0.1C.1D.10 5.(2020•新课标Ⅰ)某校⼀个课外学习⼩组为研究某作物种⼦的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进⾏种⼦发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下⾯的散点图:
由此散点图,在10℃⾄40℃之间,下⾯四个回归⽅程类型中最适宜作为发芽率y和温度x的回归⽅程类型的是()
A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx
6.(2020•新课标Ⅰ)设O为正⽅形ABCD的中⼼,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()
A.B.C.D.7.(2020•新课标Ⅲ)在⼀组样本数据中,1,2,3,4出现的频率分别为p1,p2,p3,p4,且p i
=1,则下⾯四种情形中,对应样本的标准差最⼤的⼀组是()
A.p1=p4=0.1,p2=p3=0.4B.p1=p4=0.4,p2=p3=0.1
C.p1=p4=0.2,p2=p3=0.3D.p1=p4=0.3,p2=p3=0.2 8.(2020•新课标Ⅱ)在新冠肺炎疫情防控期间,某超市开通⽹上销售业务,每天能完成1200份订单的配货,由于订单量⼤幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货⼯作.已知该超市某⽇积压500份订单未配货,预计第⼆天的新订单超过1600份的概率为0.05.志愿者每⼈每天能完成50份订单的配货,为使第⼆天完成积压订单及当⽇订单的配货的概率不⼩于0.95,则⾄少需要志愿者()
A.10名B.18名C.24名D.32名
9.(2020•⼭东)6名同学到甲、⼄、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,⼄场馆安排2名,丙场馆安排3名,则不同的安排⽅法共有()
A.120种B.90种C.60种D.30种
10.(2020•新课标Ⅰ)(x+)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.20 11.(2020•天津)已知甲、⼄两球落⼊盒⼦的概率分别为和.假定两球是否落⼊盒⼦互
不影响,则甲、⼄两球都落⼊盒⼦的概率为;甲、⼄两球⾄少有⼀个落⼊盒⼦的概率为.
12.(2020•上海)已知有四个数1,2,a,b,这四个数的中位数是3,平均数是4,则ab=.
13.(2020•浙江)盒中有4个球,其中1个红球,1个绿球,2个⻩球.从盒中随机取球,每次取1个,不放回,直到取出红球为⽌.设此过程中取到⻩球的个数为ξ,则P(ξ=0)=,E(ξ)=.
14.(2020•上海)从6个⼈挑选4个⼈去值班,每⼈值班⼀天,第⼀天安排1个⼈,第⼆天安排1个⼈,第三天安排2个⼈,则共有种安排情况.
15.(2020•浙江)⼆项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.
16.(2020•江苏)已知⼀组数据4,2a,3﹣a,5,6的平均数为4,则a的值是.
17.(2020•新课标Ⅱ)4名同学到3个⼩区参加垃圾分类宣传活动,每名同学只去1个⼩区,每个⼩区⾄少安排1名同学,则不同的安排⽅法共有种.
18.(2020•江苏)将⼀颗质地均匀的正⽅体骰⼦先后抛掷2次,观察向上的点数,则点数和为5的概率是.
19.(2020•上海)已知A={﹣3,﹣2,﹣1,0,1,2,3},a、b∈A,则|a|<|b|的情况有种.20.(2020•上海)已知⼆项式(2x+)5,则展开式中x3的系数为.21.(2020•新课标Ⅲ)(x2+)6的展开式中常数项是(⽤数字作答).22.(2020•天津)在(x+)5的展开式中,x2的系数是.
23.(2020•北京)某校为举办甲、⼄两项不同活动,分别设计了相应的活动⽅案;⽅案⼀、⽅案⼆.为了解该校学⽣对活动⽅案是否⽀持,对学⽣进⾏简单随机抽样,获得数据如表:
男⽣⼥⽣
⽀持不⽀持⽀持不⽀持⽅案⼀200⼈400⼈300
100⼈
⼈⽅案⼆350⼈250⼈150
250⼈

假设所有学⽣对活动⽅案是否⽀持相互独⽴.
(Ⅰ)分别估计该校男⽣⽀持⽅案⼀的概率、该校⼥⽣⽀持⽅案⼀的概率;
(Ⅱ)从该校全体男⽣中随机抽取2⼈,全体⼥⽣中随机抽取1⼈,估计这3⼈中恰有2⼈⽀持⽅案⼀的概率;
(Ⅲ)将该校学⽣⽀持⽅案⼆的概率估计值记为p0.假设该校⼀年级有500名男⽣和300名⼥⽣,除⼀年级外其他年级学⽣⽀持⽅案⼆的概率估计值记为p1.试⽐较p0与p1的⼤⼩.(结论不要求证明)。

相关文档
最新文档