流体力学第四章参考答案

合集下载

李玉柱流体力学课后题标准答案第四章

李玉柱流体力学课后题标准答案第四章

第四章 流体动力学基础4-1 设固定平行平板间液体的断面流速分布为1/7max /2/2u B y u B -⎛⎫= ⎪⎝⎭,0y ≥总流的动能修正系数为何值?解:172max max 0127282B A A B y v ud u dy u B A B ⎛⎫- ⎪=== ⎪⎝⎭⎰⎰因为31.0A A u d A v α∆⎛⎫≈+⎪⎝⎭⎰ u u v ∆=-所以 172233821.0 1.01 1.0572B B A A B y u v d dy B A v B α-⎛⎫⎛⎫-- ⎪⎛⎫⎪≈+=+⋅-= ⎪⎪ ⎪⎝⎭ ⎪⎝⎭⎝⎭⎰⎰4-2 如图示一股水流自狭长的缝中水平射出,其厚度00.03m δ=,平均流速V 0=8m/s ,假设此射流受重力作用而向下弯曲,但其水平分速保持不变。

试求(1)在倾斜角45θ=o 处的平均流速V ;(2)该处的水股厚度δ。

解:(1)由题意可知:在45度水流处,其水平分速度仍为8m/s,由勾股定理可得:V=︒45sin 8=11.31m/s (2)水股厚度由流量守恒可得:VD D V δδ=000,由于缝狭长,所以两处厚度近似相等,所以000.0380.02111.31V V δδ⨯===m 。

4-3 如图所示管路,出口接一收缩管嘴,水流射人大气的速度V 2=20m/s ,管径d 1=0.1m ,管嘴出口直径d 2=0.05m ,压力表断面至出口断面高差H =5m ,两断面间的水头损失为210.5(/2)V g 。

试求此时压力表的读数。

解:取压力表处截面为截面1-1,收缩管嘴处截面为截面2-2,选择两截面包围的空间为控制体,由实际流体的恒定总流能量方程得:2211221222wV p V p z z h g g g g ρρ'++=+++, 由连续性方程2211V A V A =可得1-1断面流速s m 51=V ,由上述两个方程可得压力表的读数(相对压强):222112212wV V p p z z h g g ρ⎛⎫-'-=+-+ ⎪⎝⎭, 上式计算结果为:2.48at 。

工程流体水力学第四章习题答案

工程流体水力学第四章习题答案

第四章 理想流体动力学和平面势流答案4-1 设有一理想流体的恒定有压管流,如图所示。

已知管径1212d d =,212d D =,过流断面1-1处压强p 1>大气压强p a 。

试按大致比例定性绘出过流断面1-1、2-2间的总水头线和测压管水头线。

解:总水头线、测压管水头线,分别如图中实线、虚线所示。

4-2 设用一附有液体压差计的皮托管测定某风管中的空气流速,如图所示。

已知压差计的读数h =150mmH 2O ,空气的密度ρa =1.20kg/m 3,水的密度ρ =1000kg/m 3。

若不计能量损失,即皮托管校正系数c =1,试求空气流速u 0。

解:由伯努利方程得2002s a a p u p g g gρρ+= 00a 2()s p p u g gρ-=(1) 式中s p 为驻点压强。

由压差计得 0s p gh p ρ+=0s p p gh ρ-= (2)联立解(1)(2)两式得0a a 10002229.80.15m/s 49.5m/s 1.2gh h u gg g ρρρρ===⨯⨯⨯= 4-3 设用一装有液体(密度ρs =820kg/m 3)的压差计测定宽渠道水流中A 点和B 点的流速,如图所示。

已知h 1 =1m ,h 2 =0.6m ,不计能量损失,试求A 点流速u A 和B 点流速u B 。

水的密度ρ =1000kg/m 3。

解:(1)1229.81m/s 4.427m/s A u gh ==⨯⨯= (2)由伯努利方程可得22A AA u p h g gρ+= (1)22B BB u p h g gρ+= (2)式中A h 、A p 和B h 、B p 分别为A 点和B 点处的水深和驻点压强。

由(1)、(2)式可得2222A B A BA B p p u u h h g g gρ-=+-- (3) 由压差计得,22ρρρρ--++=A A s B B p gh gh gh gh p ,所以220.82A BA B p p h h h h gρ-=+-- (4) 由(3)式、(4)式得2222 4.427(10.82)0.6(10.82)0.8922229.8B A u u h g g =--=--=⨯ 29.80.892m/s 4.18m/s B u =⨯⨯=。

流体力学第四章习题答案

流体力学第四章习题答案

第四章习题答案选择题(单选题)4.1等直径水管,A-A 为过流断面,B-B 为水平面,1、2、3、4为面上各点,各点的流动参数有以下关系:(c )(a )1p =2p ;(b )3p =4p ;(c )1z +1p g ρ=2z +2p g ρ;(d )3z +3p g ρ=4z +4pgρ。

4.2伯努利方程中z +p g ρ+22v gα表示:(a )(a )单位重量流体具有的机械能;(b )单位质量流体具有的机械能;(c )单位体积流体具有的机械能;(d )通过过流断面流体的总机械能。

4.3水平放置的渐扩管,如忽略水头损失,断面形心点的压强,有以下关系:(c )p p 2(a )1p >2p ;(b )1p =2p ;(c )1p <2p ;(d )不定。

4.4黏性流体总水头线沿程的变化是:(a ) (a )沿程下降;(b )沿程上升;(c )保持水平;(d )前三种情况都有可能。

4.5黏性流体测压管水头线的沿程变化是:(d ) (a )沿程下降;(b )沿程上升;(c )保持水平;(d )前三种情况都有可能。

4.6平面流动具有流函数的条件是:(d )无黏性流体;(b )无旋流动;(c )具有速度势;(d )满足连续性。

4.7一变直径的管段AB ,直径A d =0.2m ,B d =0.4m ,高差h ∆=1.5m ,今测得A p =302/m kN ,B p =402/m kN , B 处断面平均流速B v =1.5s m /.。

试判断水在管中的流动方向。

解: 以过A 的水平面为基准面,则A 、B 点单位重量断面平均总机械能为:42323010 1.0 1.50.40 4.89210009.80729.8070.2A A A A A p v H z g g αρ⨯⨯⎛⎫=++=++⨯= ⎪⨯⨯⎝⎭(m )2324010 1.0 1.51.5 5.69210009.80729.807B B B B B p v H z g g αρ⨯⨯=++=++=⨯⨯(m )∴水流从B 点向A 点流动。

流体力学第四章习题答案

流体力学第四章习题答案

第四章习题答案选择题(单选题)4、1等直径水管,A-A 为过流断面,B-B 为水平面,1、2、3、4为面上各点,各点的流动参数有以下关系:(c)(a)1p =2p ;(b)3p =4p ;(c)1z +1p g ρ=2z +2p g ρ;(d)3z +3p g ρ=4z +4pgρ。

4、2伯努利方程中z +p g ρ+22v gα表示:(a)(a)单位重量流体具有的机械能;(b)单位质量流体具有的机械能;(c)单位体积流体具有的机械能;(d)通过过流断面流体的总机械能。

4、3水平放置的渐扩管,如忽略水头损失,断面形心点的压强,有以下关系:(c)p p 2(a)1p >2p ;(b)1p =2p ;(c)1p <2p ;(d)不定。

4、4黏性流体总水头线沿程的变化就是:(a)(a)沿程下降;(b)沿程上升;(c)保持水平;(d)前三种情况都有可能。

4、5黏性流体测压管水头线的沿程变化就是:(d)(a)沿程下降;(b)沿程上升;(c)保持水平;(d)前三种情况都有可能。

4、6平面流动具有流函数的条件就是:(d)无黏性流体;(b)无旋流动;(c)具有速度势;(d)满足连续性。

4、7一变直径的管段AB ,直径A d =0、2m,B d =0、4m,高差h ∆=1、5m,今测得A p =302/m kN ,B p =402/m kN , B 处断面平均流速B v =1、5s m /、。

试判断水在管中的流动方向。

解: 以过A 的水平面为基准面,则A 、B 点单位重量断面平均总机械能为:42323010 1.0 1.50.40 4.89210009.80729.8070.2A A A A A p v H z g g αρ⨯⨯⎛⎫=++=++⨯= ⎪⨯⨯⎝⎭(m)2324010 1.0 1.51.5 5.69210009.80729.807B B B B B p v H z g g αρ⨯⨯=++=++=⨯⨯(m)∴水流从B 点向A 点流动。

流体力学4-6章答案 (2)

流体力学4-6章答案 (2)

第四章 流体运动学和流体动力学基础4-15如图所示为一文丘里管和压强计,试推导体积流量和压强计读数之间的关系式。

解:对同在一条流线上的1、2两点列伯努利方程gu g p z g u g p z 2222222111 设测压管左侧液面坐标为z 3,1、2点的静压力满足gH H z z g p z z g p m 322311H z g p z g p m12211 代入伯努利方程可得4241/1/1124d d gH q m V4-16按图所示的条件求当H =30cm 时的流速u 。

解:设皮托管入口前方未受扰动处一点为点1,皮托管入口处一点为点2,由静压强分布可知x d g p p w 231x d H g p p w 242 gH p p w 8.043由以上三式,可得gH p p w 2.012由于1,2两点处于同一条流线上,对其列伯努利方程gp g u g p w w 2212 可得s m gH gp p g u w /084.13.08.94.04.0212 4-22如图所示,离心式水泵借一内径d =150mm 的吸水管以q V =60m 3/h 的流量从一敞口水槽中吸水,并将水送至压力水箱。

设装在水泵与吸水管接头上的真空计指示出负压值为39997Pa 。

水力损失不计,试求水泵的吸水高度H s 。

解:(1)取敞口水槽的自由液面与水泵出口之间的流体为控制体,令动能修正系数 1= 2=1,列伯努利方程gV g p H s 202222 吸水管内的平均流速为s m d q V V /943.015.03600/6044222可得 m g V g p H s 036.48.92943.08.910399972232224-29如图所示,一股射流以速度 0水平射到倾斜光滑平板上,体积流量为q V 0。

求沿板面向两侧的分流流量q V 1和q V 2的表达式,以及流体对板面的作用力。

忽略流体撞击的损失和重力影响,射流的压强分布在分流前后都没有变化。

流体力学第四章答案(DOC)

流体力学第四章答案(DOC)

第四章习题简答4-2 管径cm d 5=,管长m L 6=的水平管中有比重为0.9油液流动,水银差压计读数为cm h 2.14=,三分钟内流出的油液重量为N 5000。

管中作层流流动,求油液的运动粘度ν。

解: 管内平均流速为s m d Q v /604.1)4/05.0/(180/)9.09800/(5000)4//(22=⨯⨯==ππ 园管沿程损失h f 为γ(h 水银γ/油)1-=0.142(13.6/0.9-1)=2.004m园管沿程损失h f 可以用达西公式表示: g v d l h f 22λ=,对层流, Re /64=λ, 有fgdh lv 264Re 2=, 但νvd =Re , 从而lv h gd f 6422=ν, 代入已知量, 可得到s m /10597.124-⨯=ν题 4-2 图4-4 为了确定圆管内径,在管内通过s cm /013.02=ν的水,实测流量为s cm /353,长m 15管段上的水头损失为cm 2水柱。

试求此圆管的内径。

解:422222212842642642642Re 64gd lQ d d g lQ gd lv g v d l vd g v d l h f πνπννν=⎪⎭⎫ ⎝⎛==== m gd lQ d 0194.002.08.9210013.0351********4=⨯⨯⨯⨯⨯⨯==∴-ππν 4-6 比重85.0s m /10125.024-⨯=ν的油在粗糙度mm 04.0=∆的无缝钢管中流动,管径cm d 30=,流量s m Q /1.03=, 求沿程阻力系数λ。

解: 当78)(98.26∆d >Re>4000时,使用光滑管紊流区公式:237.0Re221.00032.0+=λ。

园管平均速度s m d q v /4147.1)4//(2==π, 流动的33953Re ==νvd , : 723908)(98.2678=∆d , 从而02185.0Re /221.00032.0237.=+=o λ4-8 输油管的直径mm d 150=,流量h m Q /3.163=,油的运动黏度s cm /2.02=ν,试求每公里长的沿程水头损失。

吴望一《流体力学》第四章习题参考答案

吴望一《流体力学》第四章习题参考答案

15.初始流体静止,因而流体初始无旋。该流动满足理想、正压、体力有势条件,根据涡旋 不生不灭定理,初始无旋则永远无旋。 16. 流动满足理想、不可压缩、体力有势条件,根据亥姆霍兹方程有:
K K K dΩ − ( Ω ⋅∇ ) V = 0 。 dt K K K K K K ∂V ∂V 设流动在 x − y 平面上,则涡度 Ω = Ωk ,且 = 0 ,于是 ( Ω ⋅∇ ) V = Ω =0 ∂z ∂z K dΩ 所以 = 0 ,即沿轨迹涡度不变。 dt
通过全平面的涡通量 lim Γ = lim Γ 0 (1 − e
R →∞ R →∞

R2 4 vt
) = Γ0 。
K K K K
11.解: 取平面内流线切向 τ 、法向 n 和平面的法向 k 作为三个正交单位向量,τ ,n 和 k 组成笛卡尔坐标系。
K
K
K rotV =
其中
1 ⎡ ∂ ( vn H n ) ∂ ( vτ Hτ ) ⎤ K − ⎢ ⎥k , ∂n ⎦ H n Hτ ⎣ ∂τ
涡线为
2
K j ∂ ∂y xy 2 z
K k K K K ∂ = ( xz 2 − xy 2 ) i + ( xy 2 − yz 2 ) j + ( zy 2 − zx 2 ) k ∂z xyz 2
dx dy dz 。 = = 2 2 2 2 x ( z − y ) y ( x − z ) z ( y − x2 )
z0 是常量。它的原本对于该流动某横截面上的涡通量的贡献为 Ω ( r ) S ,其中 S 代表该横截
面在球形流体内截出的圆面积。设球形流体固化后的角速度为 ω ′ ,则小球所在位置处的涡 度 = 2ω ′ 。由该横截面上涡通量守恒可知,固化前后球形流体内的截面 S 上的涡通量相等, 即 2ω ′S = Ω S ,可得 ω ′ =

《流体力学》第四章作业答案

《流体力学》第四章作业答案

解:设受水平推力为 R,管道流速和支管流速分别为 v1,v2 ,压强为 p1,p2
(1) p1 A1 + ρQ1v1 = 2(p2 A2 + ρQ2v2)cos300 + R

A1
πd 2 =
4
= 0.385m2 , A2
= 0.196m2
v1
=
Q A1
= 1.56m / s
, v2
= 1.53m / s
(1.2 − 0.7)gH = 159.8 pa
总能量=159.8 − 98.07 = 61.7 pa
v2 ρ
2
= 29 pa
pm
=
三角形中位线(负值)
=

1(159.8 2

61.7
+
29)=
−63.5 pa
4.25
4.28
30. 径 为 d1=700mm 的 管 道 在 支 承 水 平 面 上 分 支 为 d2=500 的 两 支 管 , A-A 断 面 压 强 为 70kN / m2 ,管道流量 Q = 0.6m3 / s ,两支管流量相等:(1)不计水头损失,求支墩受水平 推力。(2)水头损失为支管流速水头的 5 倍,求支墩受水平推力。不考虑螺栓连接的作用。
解:
以圆盘为基准面,列 1-1、2-2 两断面的能量方程:
3 + 0 + V12 = δ + 0 + V22
2g 2 2g

列 1-1、3 点的能量方程:
3 + 0 + V12 = 0 + p3 + 0
2g
γ

据连续性方程:
Q
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学第四章参考答案
流体力学是研究流体运动和力学性质的学科,它在工程学、物理学和地球科学等领域中具有重要的应用价值。

第四章是流体力学中的一个重要章节,主要讨论了流体的运动方程和流体的动力学性质。

在本文中,将对流体力学第四章的参考答案进行详细的论述和解释。

首先,我们来讨论流体的运动方程。

流体的运动方程是描述流体运动的基本方程,它包括连续性方程、动量方程和能量方程。

连续性方程描述了流体的质量守恒,即单位时间内通过某一截面的质量流量等于该截面内质量的减少量。

动量方程描述了流体的动量守恒,即单位时间内通过某一截面的动量流量等于该截面内动量的减少量。

能量方程描述了流体的能量守恒,即单位时间内通过某一截面的能量流量等于该截面内能量的减少量。

其次,我们来讨论流体的动力学性质。

流体的动力学性质包括粘性、密度、压力和速度等。

粘性是流体的一种性质,它描述了流体内部分子之间的摩擦力。

密度是流体的另一种性质,它描述了单位体积内的质量。

压力是流体的一种性质,它描述了单位面积上受到的力的大小。

速度是流体的运动状态,它描述了单位时间内流体通过某一截面的体积。

在解答流体力学问题时,我们需要根据具体情况选择合适的运动方程和动力学性质。

首先,我们可以根据问题中给出的条件和要求选择适当的运动方程。

例如,如果问题中要求求解流体的速度分布,则我们可以选择动量方程。

其次,我们可以根据问题中给出的条件和要求选择适当的动力学性质。

例如,如果问题中给出了流体的密度和压力分布,则我们可以选择密度和压力作为动力学性质。

在解答流体力学问题时,我们还需要运用一些基本的解题方法和技巧。

首先,
我们可以利用物理规律和数学方法建立数学模型。

例如,我们可以利用连续性
方程、动量方程和能量方程建立流体的运动方程。

其次,我们可以利用数学工
具和计算方法求解数学模型。

例如,我们可以利用微积分和偏微分方程求解流
体的运动方程。

最后,我们可以利用实验和观测数据验证数学模型和解题结果。

例如,我们可以通过实验和观测数据验证流体的速度分布和压力分布。

总之,流体力学第四章是流体力学中的一个重要章节,主要讨论了流体的运动
方程和流体的动力学性质。

在解答流体力学问题时,我们需要根据具体情况选
择合适的运动方程和动力学性质,并运用基本的解题方法和技巧。

通过学习和
掌握流体力学第四章的内容,我们可以更好地理解和应用流体力学的知识,为
工程学、物理学和地球科学等领域的研究和应用提供有力的支持。

相关文档
最新文档