大学物理复习第四章知识点总结

合集下载

物理笔记第四章知识点总结

物理笔记第四章知识点总结

物理笔记第四章知识点总结一、牛顿第一定律:惯性定律1. 一切物体都具有惯性2. 惯性是物体存在并保持其状态的一种性质。

物体不受外力作用时,静止的物体将始终保持静止,而匀速直线运动的物体将保持匀速直线运动。

二、牛顿第二定律:运动定律1. 物体所受的合外力与物体的质量成正比2. 物体所受的合外力的方向与物体所受的加速度方向相同3. 物体所受的合外力与物体的质量和加速度成正比的关系可用公式表示为F=ma,其中F 为物体所受的合外力,m为物体的质量,a为物体的加速度。

三、牛顿第三定律:作用-反作用定律1. 任何两个物体之间的相互作用都会产生两个大小相等、方向相反的作用力。

其中,这两个作用力分别作用在两个物体上。

2. 例如,当一个人站在地面上,他对地面施加一个向下的作用力,地面对他则产生一个向上的反作用力。

这就是作用-反作用定律的典型例子。

四、质量及其测量1. 质量是物体所固有的一种性质,它是反映物体惯性大小的物理量。

2. 质量的国际单位是千克(kg)。

3. 质量的测量可通过天平等仪器进行,常用的天平就是用来测量物体的质量。

五、力及其分类1. 力是使物体改变速度、形状和方向的作用。

2. 根据力的性质和作用对象的不同,力可分为接触力和非接触力。

其中,摩擦力、张力、弹力等为接触力,万有引力、静电力、磁力等为非接触力。

六、质量的重力作用1. 质量的重力作用是质量所受的万有引力,其大小与质量成正比,与所在地的重力加速度成正比。

2. 质量的重力作用公式为F=mg,其中F为质量所受的重力,m为质量,g为重力加速度。

在地球表面,重力加速度约为9.8m/s^2。

七、牛顿运动定律的应用1. 通过牛顿第二定律的公式F=ma,可求解物体所受合外力的大小;物体所受合外力作用的时间;物体所受的合外力对物体所产生加速度的影响等问题。

2. 通过牛顿第三定律,可求解物体之间的作用-反作用力的大小,方向及影响范围等问题。

八、力对物体的作用1. 力对物体的作用可使物体发生变形、改变速度、产生加速度等。

大学物理各章主要知识点总结

大学物理各章主要知识点总结

2 转动定律
M I 转动定律内容
刚体定轴转动的角加速度与它所受的合外力矩成 正比 ,与刚体的转动惯量成反比 .
其中:M 是定合义外式力矩M , 相 当r 于 平F 动问题中的合外力
I 是转动惯量,相当于平动问题中的质量
是角加速度,相当于平动问题中的加速度
3 转动定律的两种积分
力矩的空间累积效应
. 力的空间累积效应
r2
F
dr
r1
功、动能、动能定理、势能、机械能、
功能原理、机械能守恒定律
1 动力学问题的解题步骤: (1)确定研究对象 (2)确定参考系(默认大地,可不写) (3)建立坐标系 (4)分析物体的运动或者受力情况 (5)列方程
2 主要方程:
动量守恒定律;机械能守恒定律;动量定理; 动能定理;牛顿第二定律
4 温度与平均平动动能的关系: w 3 k T 2
5 分子自由度
单原子分子 i=3 双原子分子 i=5 多原子分子 i=6
6 速率分布律的定义式和物理意义
⑴ 定义式: dN f (v)dv N
⑵ 物理意义:表示速率在v附近,“dv速率区间” 内的分子数占总分子数的百分比为d N 。
N
7 速率分布函数的定义式和物理意义
n 是分子数密度 注意摩尔质量的单位,以及气体摩尔质量的数值
2 理想气体的内能公式
★ 一定量理想气体的内能为
Ei RT M i RT
2
Mmol 2
说明:内能只与温度有关
★ 若温度改变,内能改变量为
EiRT M iRT
2
Mmol 2
说明:内能变化只与温度变化有关
3 理想气体压强公式
p 2 nw 3
DdSQ0

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结

大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。

曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。

静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。

⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。

Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。

Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。

3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。

大学物理 第四章

大学物理 第四章
b
b a
质点动能定理:
5
§4.2 动能定理
质点系动能定理
F1
b
f1 = − f 2
r11
m
m
r2
2
F2
O 外力做功A外 内力做功A内
a
A内 + A外 = E k 2 − E k 1
质点系动能定理
质点系总动能
6
§4.2 动能定理
例4.2:已知一质量为m的质点做平面曲线运动,其运动方程为 试求在t=0到t=π/2ω时间内质点所受合外力的功。
解:(利用动能定理)
t=0 t=π/2ω
7
A = F • r = Fr cosθ
重力做功:
§4.3 保守力做功、势能
dA = − mg cos αds = − mgdy
重力做功只与 质点始末位置 有关,与质点 经过路径无关
8
§4.3 保守力做功、势能
弹簧弹性力做功:
弹簧弹性力做功只与质 点始末位置有关,与质 点经过路径无关
第四章 功和能
做功是物体能量改变的原因之一,是物 体机械能改变的唯一原因。
主要内容: 一个定理:动能定理 一个原理:功能原理 一个定律:机械能守恒定律 三个概念:功、动能、势能
§4.1 力的空间累积效应
功的定义:
A = F • r = Fr cos θ
元功的定义:
θ
r
θ
dA = F cos θdr = F • dr
解:
平衡方程为:
力F做功:
4
§4.2 动能定理
b Aab = ∫a F • dr = ∫a F cos αdr
b
力F对质点m沿曲 线从a到b做的功:

大学物理四章知识点归纳

大学物理四章知识点归纳

大学物理四章知识点归纳大学物理是理工科学生必修的一门课程,它涵盖了广泛的物理知识。

在大学物理课程中,我们通常会学习四个主要章节:力学、热学、电磁学和光学。

本文将通过逐步思考的方式,归纳总结这四个章节的主要知识点。

力学力学是物理学的基础,它研究物体在力的作用下的运动规律。

力学主要包括牛顿运动定律、动量和能量守恒等内容。

1.牛顿第一定律:一个物体如果没有外力作用在它上面,它将保持静止或匀速直线运动。

2.牛顿第二定律:一个物体所受到的合力等于物体的质量乘以加速度,即F=ma。

3.牛顿第三定律:任何两个物体之间的相互作用力大小相等、方向相反。

4.动量守恒定律:在一个封闭系统中,物体的总动量保持不变。

5.能量守恒定律:在一个封闭系统中,物体的总能量保持不变。

热学热学是研究热力学和热传导的学科,它与能量转化和热平衡有关。

热学主要包括温度、热传导、热容和热机等内容。

1.温度:物体的温度是物体分子平均运动速度的度量。

2.热传导:热传导是指热能从热源传递到冷源的过程。

3.热容:物体的热容是指单位质量物体升高或降低1摄氏度所需要的热量。

4.热机:热机是将热能转化为机械能的装置,如蒸汽机、内燃机等。

电磁学电磁学是研究电场和磁场相互作用的学科,它涉及电荷、电流和电磁波等内容。

1.库伦定律:两个电荷之间的电力与它们之间的距离成反比,与它们的电荷量成正比。

2.电流:电流是电荷在单位时间内通过导体截面的数量。

3.安培定律:电流所产生的磁场的大小与电流强度成正比。

4.法拉第电磁感应定律:变化的磁场会在导体中产生感应电动势。

5.麦克斯韦方程组:描述电磁场的基本方程。

光学光学是研究光的传播和光的性质的学科,它涉及光的干涉、衍射和偏振等内容。

1.光的干涉:当两束或多束光波相遇时,它们的干涉会产生明暗相间的干涉条纹。

2.光的衍射:光通过一个小孔或尺寸相近的障碍物时,会发生衍射现象。

3.光的偏振:只有在某个方向上振动的光称为偏振光。

4.杨氏实验:通过干涉的方法测量光的波长。

大学物理第四章

大学物理第四章

解:利用功能原理:
A=DE
q
kF
m
Fl0tgq
=
1 2
k (l0 setq
- l0 )2

1 2
mv2
F
m
解得:
v=
2 m
Fl0tgq
-
1 m
k (l0 setq
-
l0
)2
[例13] 作业、p-55 功和能 自-20
一质量为m的球,从质量为M的圆弧
形槽中由A位置静止滑下,设圆弧形槽的半
径为R,(如图)。所有摩擦都略,试求:
+12 MV2
l
L
解得:
vr=
2(m +M) gR M
V= m
2gR M(m +M)
(2)小球到最低点B处时,槽滑行的距离。
∵ SFx = 0 ∴ DPx = 0
mvx = MVx
Am
m vxdt = M Vxdt
R
ml=ML
MB
l+L=R
L
=
mR m+M
lL
(3)小球在最低点B处时,槽对球的作用力;
1、动量: P
P = mv 2、第二定律:
F
=
dP dt
= ma
3、冲量: I
I
=
F t 2
t1
dt
4、动量原理
I = DP
5、力矩 M M = r × F
6、动量矩 L
L = r × P = r × mv
7、角动量原理:
t 2 t1
M dt
=
ω ω
2 1
J

= Jω 2

成都理工大学《大学物理学》各章节知识点总结

成都理工大学《大学物理学》各章节知识点总结

大学物理学知识总结第一篇 力学基础质点运动学一、描述物体运动的三个必要条件(1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。

(2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。

质点适用的范围:1.物体自身的线度l 远远小于物体运动的空间范围r2.物体作平动如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。

如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。

(3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。

在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。

二、描述质点运动和运动变化的物理量(1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。

在直角坐标系中zk yi xi r ++=在自然坐标系中)(s r r =在平面极坐标系中0rr r =(2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即12r r r -=∆位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。

路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ∆表示。

路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下:s r ∆≠∆但是在0→∆t 时,有ds dr =(3)速度v 与速率v :平均速度t rv ∆∆=平均速率t sv ∆∆=平均速度的大小(平均速率)t st r v ∆∆≠∆∆=质点在t 时刻的瞬时速度dt drv =质点在t 时刻的速度dt dsv =则vdt dsdt dr v ===。

大学物理四章知识点总结

大学物理四章知识点总结

大学物理四章知识点总结1. 电磁学电磁学是物理学的一个重要分支,它研究电荷和电流产生的电场和磁场以及它们之间的相互作用。

电磁学的基础概念包括库伦定律、高斯定律、安培定律和法拉第定律,这些定律描述了电荷和电流之间如何产生电场和磁场,并且它们的变化如何产生彼此的变化。

另外,电磁学还研究了电磁波的传播和辐射现象,电磁波是电场和磁场相互耦合而形成的一种波动现象,它的传播速度是光速,常见的电磁波有射频、微波、红外线、可见光和紫外线等。

电磁学是理论物理和应用物理领域的重要理论基础,它对电子学、光学、电动力学等领域有着深远的影响。

2. 光学光学是研究光的传播、反射、折射和干涉等现象的科学,它的基础概念包括光的波动理论和光的粒子理论。

光的波动理论认为光是一种电磁波,它的传播遵循波动方程,并且能够产生干涉、衍射、偏振等现象;光的粒子理论认为光是由光子组成的,光子具有能量、动量和波粒二象性。

光学的主要应用领域包括透镜成像、干涉仪测量、激光技术、光纤通信等,光学的发展对光电子学、激光技术、光纤通信等领域有着深远的影响。

3. 相对论相对论是物理学的一个重要分支,它研究时间、空间和质量等物理量在不同参考系中的变换规律。

相对论包括狭义相对论和广义相对论,狭义相对论研究了运动状态下的物体在时间和空间中的变换规律,引入了相对论性的动量、能量和质量的概念,提出了著名的爱因斯坦质能关系和洛伦兹变换等概念;广义相对论研究了引力场中的物体运动规律,提出了广义相对论的场方程、黑洞和宇宙膨胀等理论。

相对论对宇宙学、引力理论、基本粒子物理等领域有着深远的影响,是现代理论物理的重要基础。

4. 原子物理原子物理是研究原子结构、原子核结构和原子核反应等现象的科学,它的基础概念包括玻尔原子模型、波尔-索末菲理论、量子力学和量子场论。

玻尔原子模型提出了原子结构的量子化假设,认为电子在原子内围绕原子核作匀速圆周运动,并且在不同能级上的能量是量子化的;波尔-索末菲理论将玻尔原子模型推广到多电子原子中,提出了多电子原子结构和光谱的理论;量子力学是描述微观世界的理论,它介绍了波动方程、波函数、不确定性原理等概念,解决了原子结构、光谱和原子核反应等基本问题;量子场论将量子力学推广到场的理论,描述了基本粒子和相互作用的基本规律。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大学物理复习第四章知识点总结大学物理复习第四章知识点总结一.静电场:1.真空中的静电场库仑定律→电场强度→电场线→电通量→真空中的高斯定理qq⑴库仑定律公式:Fk122err适用范围:真空中静止的两个点电荷F⑵电场强度定义式:Eqo⑶电场线:是引入描述电场强度分布的曲线。

曲线上任一点的切线方向表示该点的场强方向,曲线疏密表示场强的大小。

静电场电场线性质:电场线起于正电荷或无穷远,止于负电荷或无穷远,不闭合,在没有电荷的地方不中断,任意两条电场线不相交。

⑷电通量:通过任一闭合曲面S的电通量为eSdS方向为外法线方向1EdS⑸真空中的高斯定理:eSoEdSqi1int只能适用于高度对称性的问题:球对称、轴对称、面对称应用举例:球对称:0均匀带电的球面EQ4r20(rR)(rR)均匀带电的球体Qr40R3EQ240r(rR)(rR)轴对称:无限长均匀带电线E2or0(rR)无限长均匀带电圆柱面E(rR)20r面对称:无限大均匀带电平面EE⑹安培环路定理:dl0l2o★重点:电场强度、电势的计算电场强度的计算方法:①点电荷场强公式+场强叠加原理②高斯定理电势的计算方法:①电势的定义式②点电荷电势公式+电势叠加原理电势的定义式:UAAPEdl(UP0)B电势差的定义式:UABUAUBA电势能:WpqoPP0EdlEdl(WP00)2.有导体存在时的静电场导体静电平衡条件→导体静电平衡时电荷分布→空腔导体静电平衡时电荷分布⑴导体静电平衡条件:Ⅰ.导体内部处处场强为零,即为等势体。

Ⅱ.导体表面紧邻处的电场强度垂直于导体表面,即导体表面是等势面⑵导体静电平衡时电荷分布:在导体的表面⑶空腔导体静电平衡时电荷分布:Ⅰ.空腔无电荷时的分布:只分布在导体外表面上。

Ⅱ.空腔有电荷时的分布(空腔本身不带电,内部放一个带电量为q的点电荷):静电平衡时,空腔内表面带-q电荷,空腔外表面带+q。

3.有电介质存在时的静电场⑴电场中放入相对介电常量为r电介质,电介质中的场强为:E⑵有电介质存在时的高斯定理:SDdSq0,intE0r各项同性的均匀介质D0rE⑶电容器内充满相对介电常量为r的电介质后,电容为CrC0★重点:静电场的能量计算①电容:②孤立导体的电容C4R电容器的电容公式C0QQUUU举例:平行板电容器C圆柱形电容器C4oR1R2os球形电容器CR2R1d2oLR2ln()R1Q211QUC(U)2③电容器储能公式We2C22④静电场的能量公式WewedVE2dVVV12二.静磁场:1.真空中的静磁场磁感应强度→磁感应线→磁通量→磁场的高斯定理⑴磁感应强度:大小BF方向:小磁针的N极指向的方向qvsin⑵磁感应线:是引入描述磁感应强度分布的曲线。

曲线上任一点的切线方向表示该点的磁感应强度方向,曲线的疏密反映磁感应强度的大小。

磁感应线是没有起点和终点的闭合曲线。

任意两条曲线不相交。

⑶磁通量:mSBdSBdS0⑷磁场中的高斯定理:mSl磁场的安培环路定理:BdlIint应用举例:B磁场对运动电荷的作用:洛伦兹力公式Fqv磁场对电流的作用:安培力公式FIdlBL★重点:磁感应强度的计算磁感应强度的计算方法:①毕--萨定律+场强叠加原理②磁场的安培环路定理2.有磁介质存在时的静磁场⑴相对磁导率为r的磁介质放入磁场中磁介质内部一点的场强为:BrB0⑵有磁介质存在时的安培环路定理:lHdlIc,inSjcdSi各项同性的均匀介质BH0rH1B21dVH2dV⑶磁场的能量:WmVwmdVVV22三、电磁感应与电磁波1.法拉第电磁感应定律:ddt2.动生电动势(vB)dll3.麦克斯韦方程组:电场的性质磁场的性质SDdSdVVBdS0变化的磁场和电场的关系变化的电场和磁场的关系★重点:动生电动势的计算SdlBlEStdSDlHdlS(jct)dS扩展阅读:哈工大大学物理(上)期末复习知识点总结-刘星斯维提整理110202*班大学物理(上)知识点整理人刘星斯维提质点运动学一.描述运动的物理量1.位矢、位移和路程由坐标原点到质点所在位置的矢量r称为位矢位矢rxiyj,大小rrAysrrxy22rAt运动方程rrxxt运动方程的分量形式yytrBox位移是描述质点的位置变化的物理量△t时间内由起点指向终点的矢量△rrBrAxiyj,△rxy22路程是△t时间内质点运动轨迹长度s是标量。

明确r、r、s的含义(rrs)2.速度(描述物体运动快慢和方向的物理量)rrVxrDyr==i+j=uxi+uyj平均速度DtVtDtrdr瞬时速度(速度)vlim(速度方向是曲线切线方向)t0tdt22dxdydrdydrdxvijvxivyj,vdtdtdtdtdtdtrurDrvxvy22dsdtdrdt速度的大小称速率。

3.加速度(是描述速度变化快慢的物理量)2vddr平均加速度a瞬时加速度(加速度)alim2△t0ttdtdtdvxdvyd2xd2ydva方向指向曲线凹向aijij22dtdtdtdtdtaaxay22dvydvxdtdt22d2yd2x22dtdt122二.抛体运动运动方程矢量式为rv0t12gt2xv0cost(水平分运动为匀速直线运动)分量式为12yv0sintgt(竖直分运动为匀变速直线运动)2三.圆周运动(包括一般曲线运动)1.线量:线位移s、线速度v切向加速度atdvdtdsdt (速率随时间变化率)法向加速度anv2R(速度方向随时间变化率)。

ddt2.角量:角位移(单位rad)、角速度ddt22(单位rads1)角速度ddt(单位rads2)23.线量与角量关系:sR、v=R、atR、anR4.匀变速率圆周运动:vv0at0t121(1)线量关系sv0tat(2)角量关系0tt2222222vv02as02牛顿运动定律一、牛顿第二定律dpdt物体动量随时间的变化率F=dPdtdmvdt等于作用于物体的合外力Fr骣=桫rFi÷÷÷÷即:rrrrdV或F=ma,m常量时F=mdtF说明:(1)只适用质点;(2)为合力;(3)a与F是瞬时关系和矢量关系;(4)解题时常用牛顿定律分量式Fxmax(平面直角坐标系中)Fma(一般物体作直线运动情况)Fymay2vFnmanm(法向)r(自然坐标系中)Fma(物体作曲线运动)dvFtmatm(切向)dt运用牛顿定律解题的基本方法可归纳为四个步骤动量守恒和能量守恒定律一.动量定理和动量守恒定理1.冲量和动量It2t1Fdt称为在t1t2时间内,力F对质点的冲量。

质量m与速度v乘积称动量Pmv2.质点的动量定理:It2t1Fdtmv2mv1t2质点的动量定理的分量式:IxIyt1t2Fxdtmv2xmv1xFydtmv2ymv1yt1t2IFzdtmv2zmv1zzt13.质点系的动量定理:t2t1niexFdtnimivinimi0vi0PP0IxPxPox质点系的动量定理分量式IyPyPoyIPPzozzdP动量定理微分形式,在dt时间内:FdtdP或F=dt4.动量守恒定理:当系统所受合外力为零时,系统的总动量将保持不变,称为动量守恒定律nnF外=Fi0,i1则inmivi=mi0vi0=恒矢量i动量守恒定律分量式:若Fx0,若Fy0,若Fz0,则mivixC1恒量i则miviyC2恒量i则mivizC3恒量i二.功和功率、保守力的功、势能1.功和功率:质点从a点运动到b点变力F所做功WbaFdrbaFcosds恒力的功:WFcosrFr功率:pdwdtFcosvFv2.保守力的功物体沿任意路径运动一周时,保守力对它作的功为零Wc3.势能保守力功等于势能增量的负值,wEpEp0物体在空间某点位置的势能Epx,y,zEp00lFdr0EpEp(x,y,z)Ep00A(x,y,z)Fdr万有引力作功:重力作功:弹力作功:11wGMmrrabwmgybmgya1122wkxbkxa22三.动能定理、功能原理、机械能守恒守恒1.动能定理质点动能定理:W质点系动能定理:作用于系统一切外力做功与一切内力作功之和等于系统动能的增量nnexnin12mv212mv02WiiWiii12nmv2ii12mv2i02.功能原理:外力功与非保守内力功之和等于系统机械能(动能+势能)的增量WexWncinEE0机械能守恒定律:只有保守内力作功的情况下,质点系的机械能保持不变当WexWnc0inWexWnc(EkEp)(Ek0Ep0)in电学一.基本概念电场强度,电势;电势差,电势能,电场能量。

二.基本定律、定理、公式1.真空中的静电场:库仑定律:F140q1q2r3r。

1409×109Nm2C-2电场强度定义:EFq0,单位:NC,或Vm140-1-1点电荷的场强:Eqr3r点电荷系的场强:EE1E2EN,(电场强度叠加原理)。

任意带电体电场中的场强:电荷元dq场中某点产生的场强为:dE140dqr3r,整个带电体在该产生的场强为:EdE电荷线分布dq=dl,电荷面分布dq=dS,电荷体分布dq=dV电通量:eEdS=EcosdSSS高斯定理:在真空中的静电场中,穿过任一闭合曲面的电场强度的通量等于该闭合曲面所包围的电荷电量的代数和除以0。

EdSSq0i。

物理意义:表明了静电场是有源场注意理解:E是由高斯面内外所有电荷共同产生的。

qi是高斯面内所包围的电荷电量的代数和。

若高斯面内无电荷或电量的代数和为零,则EdS0,但高斯面上各点的E不一定为零。

在静电场情况下,高斯定理是普遍成立的。

对于某些具有对称性场强分布问题,可用高斯定理计算场强。

典型静电场:均匀带电球面:E0(球面内);E140qr3r(球面外)。

均匀带电无限长直线:E=20r,方向垂直带电直线。

均匀带电无限大平面:E=20,方向垂直带电直线。

qx均匀带电圆环轴线上:E=40(Rx)b223/2,方向沿轴线(R为圆环半径)。

b电场力:Fq0E,电场力的功:Aab=q0Edlq0Ecosdl,aa特点:积分与路经无关,说明静电场力是保守力。

静电场环路定理:Edl0。

物理意义:静电场是保守力场(无旋场)。

L电势能W:由Aab=q0Edl=-W=Wa-Wb,保守力作功,等于其势能减少。

ab通常取r,Wb=W=0,则a点电势能为:Wa=Aa=q0Edl。

Waq0a两点电荷q0、q间的电势能:Wa=q0Waq0Aaq0q40ra电势的定义:Ua==Edl。

a电势计算:点电荷的电势:Ua=qi40riq40ra点电荷系的电势:U=带电体的电势:U=b,U=U1+U2+…+UNdq40rb电势差(电压):Ua-Ub=Edl。

电场力的功:Aab=q0Edl=q0(Ua-Ub), aa两点电荷q0、q间的电势能:Wa=q0q40ra=q0Ua电场强度与电势的关系:积分关系:Ua=Edla微分关系:E=-gradU=-U,式中电势梯度gradU=dUdnn=U,在直角坐标系中UxUyUzxiyjzk,U=U(x,y,z,),则E=-U=-(ijk)静电场中的导体和电介质:导体静电平衡条件:导体内场强处处为零。

相关文档
最新文档