标准曲线不确定度的分析

标准曲线不确定度的分析
标准曲线不确定度的分析

标准曲线不确定度的分析

曹涛

(深圳市通量检测科技有限公司,广东深圳 518102)

摘要:本文阐述了标准曲线不确定度分析的通用方法,讲解了标准曲线不确定度的分析步骤和方法。并且通过检测过程中经典的几个项目的标准曲线的不确定度实例分析,来论证影响不确定度分析的因素;通过实验数据证明:参与标准曲线的点的个数和样品测定的次数越多,标准不确定度越小;并且样品测定的结果越靠近标准曲线的重点,标准不确定度越小;标准曲线的线性越好,斜率越高,标准不确定度越好;关键词:标准曲线,不确定度

中图分类号:R155.5文献标识码:A文章编号:

作者简介:曹涛(1987-06-04),男,汉族,陕西省汉中市,中山大学本科毕业,研究食品中营养成分、添加剂、农兽药残留的检测分析;E-mail:vitcy@https://www.360docs.net/doc/7f2161420.html,

Analysis of Standard Curve’s Uncertainty

Cao Tao

(Shenzhen Total-Test Technology Co., Ltd, Shenzhen 518102)

Abstract: This paper expounds a general method of the analysis of standard curve’s uncertainty and explains the steps of the analysis of standard curve’s uncertainty. Prove the effect of the factors of uncertainty analysis through the testing process in classical several items of standard curves of uncertainty analysis. Experiments demonstrate: Improving the test’s times of the standard curve and sample can make the standard’s uncertainty small. And The results of sample are more close to the center of the standard curve, the standard’s uncertainty is smaller. T he standard curve is linear in the better, and the slope is higher, the standard uncertainty can be smaller.

Key word: the standard curve. uncertainty

前言:仪器分析中线性回归标准曲线测定方法,利用被测物质相应的信号强度与其浓度成正比关系,通过测定已知浓度的溶液(即标准溶液)的信号强度,通过最小二乘法将响应值和浓度的对应的线性关系拟合成一条直线,再根据未知样品的响应值推算出对应的浓度;然而测得的所有点未必全部都落在标准曲线上(除非线性相关系数r=1),因此得到的标准曲线本身具备相应的不确定性,而通过标准曲线去计算得到的浓度值就不可避免的具备不确定性,而且这个不确定性往往是整个实验不确定度的最大来源;因此对标准曲线计算不确定度非常有必要;

1 标准曲线不确定度分析的概念和计算

1.1 标准曲线的不确定度忽略标准溶液的不确定度的引入

用线性最小二乘法拟合曲线程序的前提是假定横坐标(标准溶液的浓度)量的不确定度远小于纵坐标的量的不确定度,因此通常的C 0不确定度计算程序仅仅与响应值不确定度有关,而与校准溶液不确定度无关,也不与从同一溶液中逐次稀释产生必然的相关性[1]

1.2 标准曲线方差和残余方差的概念和计算

假定一条标准曲线

bx a y += (1.2.1)

响应值y 1,y 2…y n 的偏差(y -y i

)主要由两方面原因引入:一是自变量x 取值不同导致的响应值的

偏离均值(y -y ?),另一方面是测量误差导致的响应值偏离标准曲线(y

?-y i

);如下图

图1:标准曲线响应值偏差分析

y i ——第x i 点对应的响应值

y

?——第x i 点带入标准曲线(1.2.1)得到的理论响应值 y ——所有浓度响应值的平均值

n ——参与标准曲线的浓度点和响应值的个数;(注:并不仅仅是标准曲线的点的个数,比如标准曲线有五个点,其中有两个点平行做了3次,则911123n

=+++?=,同样计算x 的时候也需要把

平行做的点计算在内,即x 和y 的平均值是参与本次标准曲线所有点的几何重心)

在量化的过程中,用n 个取值的偏离平方和来描述,这里分别记为:总偏差平方和S (反映了i y 的总的分散程度)、回归平方和T (反映了回归值i y ?的分散程度,仅与标准曲线斜率相关)和残余平方和Q (反映了观测值i y 偏离回归直线的程度,真实描述标准曲线不确定度);

[]

∑∑∑∑∑=====?++=+==n 1

i n 1

i n

1

i i i i 2

i 2

i i 2

n

1

i i i i n 1

i 2

i y -y

?y ?-y 2y -y ?y ?-y y -y ?y ?-y y -y S )()()()()()()( 由于交叉项

=?n

1i i i i

y -y

?y ?-y )()(结果为0(可参考最小二乘法计算线性回归方程公式); 因此

T Q y -y ?y ?-y S n

1

i n

1

i 2

i 2

i i +=+=∑∑==)()( (1.2.3)

其中∑==n

1i 2

i i y ?-y Q

)(, ∑==n

1

i 2i y -y

?T )( 因此S 的自由度v S =v T +v Q ;总偏差平方和的自由度由于受平均值的约束为n -1,而回归偏差平方和的自由度只与斜率b 有关,自由度为1,因此残余偏差平方和的自由度v Q =n -2

通过残余偏差平方和除以自由度得到对应的残余偏差

2

-n Q

s 2=

所以标准曲线的残余标准偏差2

-n y

?-y s n

1

i 2

i i

==

)( (1.2.4)

1.3 标准曲线斜率和截距的不确定度分析

由于得到的标准曲线中斜率b 和截距a 参与到未知样品的浓度的计算,因此必须对斜率b 和截距a 进行不确定度的分析;

斜率的标准不确定度:∑

==

n

1i 2i x -x s b s )

()( (1.3.1)

扩展不确定度U (b )=)

(b s t p

? (1.3.2) 式中t P 是指选定置信空间P 水平内,根据残余偏差自由度v Q 查t 分布表所得的t 值;

截距的标准不确定度:

∑∑===+

?=??

=n

1i 2

i

2

n 1

i 2

i n

1i 2i

x -x x n

1

s x -x n x

s a s )

()

()( (1.3.3)

扩展不确定度U (a )=)

(a s t p

? (1.3.4) 式中t P 是指选定置信空间P 水平内,根据残余偏差自由度v Q 查t 分布表所得的t 值

1.4 代入未知样品响应值计算浓度过程不确定度分析

标准曲线相关不确定度都已通过公式计算得到,而未知样品根据响应值再带入标准曲线得到浓度值的过程也会引入相应的不确定度,计算如下: 被测物含量标准偏差:

21

i 2s 0)

()(1

1s x s ∑=--++?=n i x x x x n

p b )( (1.4.1) 扩展不确定度U (x 0)=)

(0p x s t ? (1.4.2)p ——被测物测定平行次数;

s

x ——被测物平行测定的平均值;

x i ——标准曲线中各个浓度值;

t P ——选定置信空间P 水平内,根据残余偏差自由度v Q 查t 分布表所得的t 值 2 以原子吸收法测铅的标准曲线不确定度分析进行实例分析[2]

表1 原子吸收法测铅标准曲线原始记录

浓度值X 0 10 20 30 40 50 吸光度y i

0.0118

0.0629 0.1113 0.1623 0.2083 0.2531 0.0120

0.0630

0.1144

0.1628

0.2054

0.2523

由上述原始记录可知下列数据: 2.1:参与标准曲线的点n=12

2.2:线性曲线的方程:y=0.00482x+0.01458 ; 相关系数:r=0.9996 2.3:标准曲线的重心(25,0.1350),即25x

=,1350.0y =

2.4:观测值与理论值一一对应关系如下:

表2 实测值与理论值对应关系表

浓度值X

观测值y i 理论值y

? 观测值y i 理论值y

? 0 0.0118 0.0146 0.0120 0.0146 10 0.0629 0.0628 0.0630 0.0628 20 0.1113 0.1110 0.1144 0.1110 30 0.1623 0.1592 0.1628 0.1592 40 0.2083 0.2074 0.2054 0.2074 50

0.2531

0.2556

0.2523

0.2556

2.5:残余偏差 00266.02

-n y

?-y s n

1

i 2

i i

==

=)(

2.6:斜率标准不确定度

00004

5.0x -x 0026

6.0x -x s b s n

1i 2

i n

1i 2i ==

=

==)

()

()( 残余偏差自由度v Q =12-2=10,取置信空间为95%查t 分布表的t P =2.228,斜率扩展不确定度U (b )=2.228×0.00045=0.001003 2.7:截距标准不确定度

00136.0x -x 62512

100266.0x -x x n

1

s a s 12

1i 2

i n

1i 2

i

2

=+?

=+

?=∑

==)

()

()(

同上,截距扩展不确定度U (a )=2.228×0.00136=0.00303

2.8:样品测得一次,吸光度分别为:0.1223,代入标准曲线过程得到的浓度为22.35,其标准不确定

度如下:5750.0)

()(12

11100482.000266.0)()(11s x s 2121

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 2.9:样品平行测得两次,吸光度分别为:0.1223和0.1315,代入标准曲线过程得到的浓度分别为22.35和24.26,其标准不确定度如下:

4218.0)

()(12

1

2100482.000266.0)()(11s x s 2121

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 2.10:样品平行测得三次,吸光度分别为:0.1223、0.1315、0.1254,代入标准曲线过程得到的浓度分别为22.35、24.26、22.99,其标准不确定度如下:

3566.0)

()(121

3100482.000266.0)()(11s x s 2

12

1

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 2.11:样品平行测得四次,吸光度为:0.1223、0.1315、0.1254、0.1229,带入标准曲线得到的浓度分别为22.35、24.26、22.99、22.47,其标准不确定度如下

3192.0)

()(12

1

4100482.000266.0)()(11s x s 2121

i 2s 21

2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 2.12:样品平行测得五次,吸光度为:0.1223、0.1315、0.1254、0.1229、0.1304,带入标准曲线得到的浓度分别为22.35、24.26、22.99、22.47、24.03,其标准不确定度如下

2942.0)

()(12

1

5100482.000266.0)()(11s x s 2121

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 2.13:样品平行测得六次,吸光度分别为:0.1223、0.1315、0.1254、0.1229、0.1304、0.1309,带入标准曲线得到的浓度分别为22.35、24.26、22.99、22.47、24.03和24.13,其标准不确定度如下:

2764.0)

()(121

6100482.000266.0)()(11s x s 2

12

1

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 2.14:样品平行测得十次,吸光度分别为:0.1223、0.1315、0.1254、0.1229、0.1304、0.1309、0.1244、0.1312、0.1321、0.1277,带入标准曲线得到的浓度分别为22.35、24.26、22.99、22.47、24.03和24.13,其标准不确定度如下:

2367.0)

()(12

1

10100482.000266.0)()(11s x s 2121

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )(

总结样品测定次数和不确定度的关系曲线如下:

因此:样品测定一定要测定2-3次平行,超过四次对不确定度的减少意义并不大;

3 紫外分光光度法测亚硝酸盐标准曲线的不确定度分析[3]

表3 紫外分光光度法测亚硝酸盐标准曲线Q1原始记录

浓度值X 0 1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5 吸光度y i

0.0191

0.0481

0.0782

0.1132

0.1401

0.2094

0.2897

0.3596

表4 紫外分光光度法测亚硝酸盐标准曲线Q2原始记录

浓度值X 0 1.0 2.0 3.0 4.0 5.0 7.5 10.0 12.5 吸光度y i

0.0141

0.0483

0.0749

0.1013

0.1610

0.2299

0.2941

0.3463

由上述原始记录可知下列数据: 3.1:参与标准曲线的点n=9

3.2:线性曲线Q1的方程:y=0.02932x-0.00691 ; 相关系数:r=0.9995 线性曲线Q2的方程:y=0.02938x-0.00570 ; 相关系数:r=0.9952 3.3:标准曲线Q1的重心(5.0,0.1397),即0.5x =,1397.0y = 标准曲线Q2的重心(5.0,0.1412),即0.5x =,1412.0y =

3.4:观测值与理论值一一对应关系如下:

表5 实测值和理论值关系表

浓度值X

标准曲线Q1

标准曲线Q2

观测值y i

理论值y

? 观测值y i 理论值y

? 0 0.0 -0.0069 0.0 -0.0057 1.0 0.0191 0.0224 0.0141 0.0241 2.0 0.0481 0.0517 0.0483 0.0538 3.0 0.0782 0.0811 0.0749 0.0836 4.0 0.1132 0.1104 0.1013 0.1133 5.0 0.1401 0.1397 0.1610 0.1431 7.5 0.2094 0.2130 0.2299 0.2174 10.0 0.2897 0.2863 0.2941 0.2918 12.5

0.3596

0.3596

0.3463

0.3662

3.5:标准曲线Q1残余偏差 00401.02

-n y

?-y s n

1

i 2

i i

==

=)(

标准曲线Q2残余偏差 0134.02

-n y

?-y s n

1

i 2

i i

==

=)(

3.6:标准曲线Q1斜率标准不确定度

00033

6.0x -x 00401.0x -x s b s n

1i 2

i n

1i 2

i ==

=

==)

()

()( 残余偏差自由度v Q =9-2=7,取置信空间为95%查t 分布表的t P =2.365, 标准曲线Q1斜率扩展不确定度U (b )=2.365×0.000336=0.000795 标准曲线Q2斜率标准不确定度

00112

.0x -x 00401.0x -x s b s n

1i 2

i n

1i 2

i ==

=

==)

()

()( 同上,标准曲线Q2斜率扩展不确定度U (b )=2.365×0.00112=0.00265 3.7:标准曲线Q1截距标准不确定度

00215.0x -x 259

100401.0x -x x n

1s a s 9

1i 2

i n

1i 2

i

2

=+?

=+

?=∑

==)

()

()(

同上,标准曲线Q1截距扩展不确定度U (b )=2.365×0.00215=0.00508

标准曲线Q2截距标准不确定度

00715.0x -x 259

100401.0x -x x n

1s a s 9

1i 2

i n

1i 2

i

2

=+?

=+

?=∑

==)

()

()(

同上,标准曲线Q2截距扩展不确定度U (b )=2.365×0.00715=0.0169

3.8:测得样品平行两次,吸光度分别为:0.1554和0.1469,代入标准曲线Q1过程得到的浓度分别为5.54和5.34,其标准不确定度如下:

1071.0)

()(912102932.000401.0)()(11s x s 2

9

1

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 代入标准曲线Q2过程的到浓度分别为5.42和5.22,其标准不确定度如下:

3512.0)

()(91

2102938.00134.0)()(11s x s 2

9

1

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )( 总结以上数据得出如下结论:线性较好的标准曲线不确定度较低,而且线性的好坏对不确定度的影响

非常大!

4 液相色谱法测三聚氰胺的标准曲线的不确定度分析[4]

表6 液相色谱法测三聚氰胺的标准曲线原始记录

浓度值X 5.0 10.0 25.0 50.0 100.0 峰面积y i

239596 563163 1457947 2632863 5527594

240145

571322

1468971

2641009

/

由上述原始记录可知下列数据: 4.1:参与标准曲线的点n=9

4.2:线性曲线的方程:y=55184x+10123 ; 相关系数:r=0.9996 4.3:标准曲线的重心(31.11,1726957),即11.31x =,1726957

y = 4.4:观测值与理论值一一对应关系如下:

表7 实测值和理论值关系表

浓度值x

观测值y i 理论值y

? 观测值y i 理论值y

? 5 239596 286043 240145 286043 10.0 563163 561963 571322 561963 25.0 1457947 1389723 1468971 1389723 50.0 2732863 2769323 2741009

2769323

100.0

5527594

5528523

/

/

4.5:标准曲线残余偏差 498852

-n y

?-y s n

1

i 2

i i

==

=)(

4.6:标准曲线斜率标准不确定度

24.565x -x 49885x -x s b s n

1i 2

i n

1i 2

i ==

=

==)

()

()(

残余偏差自由度v Q =9-2=7,取置信空间为95%查t 分布表的t P =2.365, 标准曲线斜率扩展不确定度U (b )=2.365×565.24=1336.79 4.7:标准曲线截距标准不确定度

24202

x -x 9.9679

1

79369x -x x n

1

s a s 9

1i 2

i

n

1i 2

i 2

=+?=+

?=∑

==)

()

()(

同上,标准曲线截距扩展不确定度U (b )=2.365×24202=57237

4.8:测得样品平行两次,峰面积分别为:1798791和1810244,代入标准曲线得到浓度分别为32.41

和32.62,其标准不确定度如下:

7068.0)

()(91215518449885)()(11s x s 2

9

1

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )(

4.9:测得另一组样品平行两次,峰面积分别为:314445和331081,代入标准曲线得到浓度分别为

5.51和5.82,其标准不确定度如下:

7532.0)

()(91215518449885)()(11s x s 2

9

1

i 2s 21

i 2s 0=--++?=--++?=∑∑==i n i x x x x x x x x n p b )(

总结以上数据得出论证如下结论:样品的浓度越接近标准曲线的重心不确定度越小,但这种影响相比较而言较小; 5 结论

综上所述,通过理论的计算公式的深度分析和实例的不确定度的分析,可以得到以下结论: 5.1:灵敏度高的仪器测量结果标准偏差较小

5.2:被测量量越靠近标准曲线的重心,测量结果标准偏差越小 5.3:标准曲线线性越好,测量结果标准偏差越小

5.4:参与标准曲线的测量点越多,测量结果标准偏差越小(这里所指的参与标准曲线的测量点包含两个方面:一是标准曲线级别;二是每个级别重复的次数;因为影响到标准曲线的几何重心,所以在不确定度的贡献上不完全是等价的,根据实验认为:标准曲线的级别应该是5-6,而每个级别应该重复1-3次)

5.5:被测量物测定平行次数越多,测量结果标准偏差越小,一般同一样品至少测定两个平行,而不超过四个平行;

参考文献:

[1] 郭兰典,陈泽明,陈维青;《仪器分析中线性回归标准曲线法分析结果不确定度评估》;检验检疫科学;2001年04期

[2] 张萍,郭明才;《原子吸收光谱分析中测量不确定度的评定》 计量与测试技术;2006年第33卷第7期;

[3]陈霞,刘长勇,罗力力;《分光光度法测定腌肉中亚硝酸盐含量的测量不确定度分析》 农产品加工·学刊;2010年6月第6期

[4]杨洋,徐春祥,车文军;《高效液相色谱法测定奶粉中的三聚氰胺及其不确定度分析》 食品科学;2010年第31卷第4期

合成标准不确定度的计算修订稿

合成标准不确定度的计 算 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

第七讲合成标准不确定度的计算 减小字体增大字体作者:李慎安?来源:发布时间:2007-05-08 10:19:04 计量培训:测量不确定度表述讲座 国家质量技术监督局 李慎安 合成标准不确定u c的定义如何理解? 合成标准不确定度无例外地用标准偏差给出,其符号u以小写正体c作为下角标;如给出的为相对标准不确定度,则应另加正体小写下角标rel,成为u crel。按《JJF1001》定义为:当测量结果是由若干个其他量的值求得时,按其他各量的方差和协方差算得的标准不确定度。如各量彼此独立,则协方差为零;如不为零(相关情况下),则必须加进去。 上述定义可以理解为:当测量结果的标准不确定度由若干标准不确定度分量构成时,按方和根(必要时加协方差)得到的标准不确定度。有时它可以指某一台测量仪器,也可以指一套测量系统或测量设备所复现的量值。在某个量的不确定度只以一个分量为主,其他分量可忽略不计的情况下,显然就无所谓合成标准不确定度了。 什么是输入量、输出量 在间接测量中,被测量Y不能直接测量,而是通过若干个别的可以直接测量的量或是可以通过资料查出其值的量,按一定的函数关系得出: Y=f(X1,X2,…,X n) 其中X i为输入量,而把Y称之为输出量。 例如:被测量为一个立方体的体积V,通过其长l、宽b和高h三个量的测量结果,按函数关系 V=l·b·h计算,则l,b,h为输入量,V为输出量。 什么叫作线性合成 例如在测量误差的合成计算中,其各个误差分量,不论是随机误差分量还是系统误差分量,当合成为测量误差时,所有这些分量按代数和相加。这种合成的方法称为线性合成。 不确定度的各个分量如彼此独立,则恒用方和根的方式合成。但如果其中某两个分量彼此强相关,且相关系数r=+1,则合成时是代数相加,即线性合成而非方和根合成。 什么叫灵敏系数 当输出量Y的估计值y与输入量X i的估计值x1,x2,…x n之间有

测量不确定度评定报告

测量不确定度评定报告1、评定目的识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 、评定依据2CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 、测量不确定度评定流程3 测量不确定度评定总流程见图一。

概述 建立数学模型,确定被测量Y与输入量 测量不确定度来源 标准不确定度分量评 B类评定评类A 计算合成标准不确定 评定扩展不确定 编制不确定度报告 图一测量不确定度评定总流程 测量不确定度评定方法、4建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影响量(输入量)X,X,…,X间的函数关系f来确定,即:N21 Y=f(X,X,…,X)N12建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x=c称为灵敏系数。有时灵敏系数c可由实验测定,iii即通过变化第i个输入量x,而保持其余输入量不变,从而测定Y的变化i量。

不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性f 等)的局限性; 、赋予计量标准的值或标准物质的值不准确;g 、引入的数据和其它参量的不确定度;h 、与测量方法和测量程序有关的近似性和假定性;i 、在表面上完全相同的条件下被测量在重复观测中的变化。j 标准不确定度分量评定 对观测列进行统计分析所作的评估--4.3.1 A 类评定 , x进行n次独立的等精度测量,得到的测量结果为:a对输入量XI 1为xx,…x。算术平均值n2 n1 ∑xx = in n i=1 由贝塞尔公式计算:s(x单次测量的实验标准差)i 1 n ∑ i—i 2 ( xx )S(x)= n-1 i=1

不确定度的计算

测量误差与不确定度评定 测量误差 1、测量误差和相对误差 (1)、测量误差 测量结果减去被测量的真值所得的差,称为测量误差,简称误差。 这个定义从20世纪70年代以来没有发生过变化,以公式可表示为:测量误差=测量结果-真值。测量结果是由测量所得到的赋予被测量的值,是客观存在的量的实验表现,仅是对测量所得被测量之值的近似或估计,显然它是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员等有关。真值是量的定义的完整体现,是与给定的特定量的定义完全一致的值,它是通过完善的或完美无缺的测量,才能获得的值。所以,真值反映了人们力求接近的理想目标或客观真理,本质上是不能确定的,量子效应排除了唯一真值的存在,实际上用的是约定真值,须以测量不确定度来表征其所处的范围。因而,作为测量结果与真值之差的测量误差,也是无法准确得到或确切获知的。 过去人们有时会误用误差一词,即通过误差分析给出的往往是被测量值不能确定的范围,而不是真正的误差值。误差与测量结果有关,即不同的测量结果有不同的误差,合理赋予的被测量之值各有其误差并不存在一个共同的误差。一个测量结果的误差,若不是正值(正误差)就是负值(负误差),它取决于这个结果是大于还是小于真值。实际上,误差可表示为: 误差=测量结果-真值=(测量结果-总体均值)+(总体均值-真值)=随机误差+系统误差

(2)、相对误差 测量误差除以被测量的真值所得的商,称为相对误差。 2、随机误差和系统误差 (1)、随机误差 测量结果与重复性条件下,对同一被测量进行无限多次测量所得结果的平均值之差,称为随机误差。 随机误差=测量结果-多次测量的算术平均值(总体均值) 重复性条件是指在尽量相同的条件下,包括测量程序、人员、仪器、环境等,以及尽量短的时间间隔内完成重复测量任务。 此前,随机误差曾被定义为:在同一量的多次测量过程中,以不可预知方式变化的测量误差的分量。 随机误差的统计规律性: ○1对称性:绝对值相等而符号相反的误差,出现的次数大致相等,也即测得值是以它们的算术平均值为中心而对称分布的。由于所有误差的代数和趋于零,故随机误差又具有低偿性,这个统计特性是最为本质的;换言之,凡具有低偿性的误差,原则上均可按随机误差处理。 ○2有界性:测得值误差的绝对值不会超过一定的界限,也即不会出现绝对值很大的误差。 ○3单峰性:绝对值小的误差比绝对值大的误差数目多,也即测得值是以它们的算术平均值为中心而相对集中地分布的。 (2)、系统误差 在重复性条件下,对同一被测量进行无限多次测量所得结果的平均

测量不确定度评定报告

测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。 图一测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y(输出量)与影

响量(输入量)X 1,X 2 ,…,X N 间的函数关系f来确定,即: Y=f(X 1,X 2 ,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由实验测定,即通 过变化第i个输入量x i ,而保持其余输入量不变,从而测定Y的变化量。 4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a、对被测量的定义不完整; b、复现被测量定义的方法不理想; c、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e、对模拟式仪器的读数存在人为偏差(偏移); f、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区及稳定性等)的 局限性; g、赋予计量标准的值或标准物质的值不准确; h、引入的数据和其它参量的不确定度; i、与测量方法和测量程序有关的近似性和假定性; j、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a对输入量X I 进行n次独立的等精度测量,得到的测量结果为: x 1,x 2 , (x) n 。 算术平均值x为 1 n x n= ∑x i n i=1 单次测量的实验标准差s(x i )由贝塞尔公式计算: 1 n S(x i )= ∑ ( x i — x )2 n-1 i=1

标准不确定度的A类评定

标准不确定度的A类评定 减小字体增大字体作者:李慎安来源:https://www.360docs.net/doc/7f2161420.html, 发布时间:2007-04-28 08:52:07 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 5.1 A类评定的基本方法是什么? 用统计方法(参阅4.1)评定标准不确定度称为不确定度的A类评定,所得出的不确定度称为A类标准不确定度,简称A类不确定度。当它作为一个分量时,无例外地只用标准偏差表征。 标准不确定度A类评定的基本方法是采用贝塞尔公式计算标准差s的方法。 一个被测量Q(既可以是输入量中的一个,也可以是输出量或被测量)在重复性条件下或复现性条件下重复测量了n次,得到n个观测结果q1,q2,…,q n,那么,Q的最佳估计 即是这n个观测值的算术平均值: 由于n只是有限的次数,故又称为样本平均值,它只是无限多次(总体)平均值的一个估计。n越大,这个估计越可靠。 每次的测量结果q i减称为残差v i,v i=(q i-),因此有n个残差。 残差的平方和除以n-1就是实验方差s2(q i),即一次测量结果的实验方差,其正平方根即为实验标准差s(q i),当用它来表述一次测量结果的不确定度u(q i)时,有s(q)=u(q i),或简写成s=u。 请注意,今后不再把s作为A类不确定度的符号,把u作为B类不确定度的符号,而是不分哪一类,标准不确定度均用u表示。 上述的计算程序就是3.1给出的程序。 平均值的标准偏差s()或其标准不确定度u()为: 必须注意上式中的n指所用的次数。在实际工作中,为了得到一个较为可靠的实验标准偏差s(q i),往往作较多次的重复测量(n较大,自由度ν也较大);但在给出被测量Q i测量结果q时,只用了较少的重复观测次数(例如往往只有4次)。那么,4次的平均值的标准偏差就是s(q i)/4=0.5×s(q i) 但是,如果用于评定s(q i)时的n个观测值,直接用于评定s()(n个的平均),则成为下式: 5.2 除基本方法外还有哪些简化的方法?用于何种场合? 在JJF1059中提出了另外的一种简化方法,称之为极差法,极差R定义为一个测量列

6测量不确定度评定方法.doc

测量不确定度的评定方法 1适用范围 本方法适用于对产品或参数进行检测时,所得检测结果的测量不 确定度的评 定与表示。 2编制依据 JJF 1059 —1999测量不确定度评定与表示 3评定步骤 3.1概述:对受检测的产品或参数、检测原理及方法、检测用仪器 设备、检测时的环境条件、本测量不确定度评定报告的使用作一简要的描述; 3.2建立用于评定的数学模型; 3.3根据所建立的数学模型,确定各不确定度分量(即数学模型中 的各输入量)的来源; 3.4分析、计算各输入量的标准不确定度及其自由度; 3.5计算合成不确定度及其有效自由度; 3.6计算扩展不确定度; 3.7给出测量不确定度评定报告。 4评定方法 4.1数学模型的建立 数学模型是指被测量(被检测参数)Y 与各输入量 X i之间的函数

关系,若被测量 Y 的测量结果为 y,输入量的估计值为x i,则数学模型为 y f x1 , x2 ,......, x n。 数学模型中应包括对测量结果及其不确定度由影响的所有输入 量,输入量一般有以下二种: ⑴ 当前直接测定的值。它们的值可得自单一观测、重复观测、 依据经验信息的估计,并包含测量仪器读数修正值,以及对周围温度、大气压、湿度等影响的修正值。 ⑵ 外部来源引入的量。如已校准的测量标准、有证标准物质、 由手册所得的参考数据。 4.2测量不确定度来源的确定 根据数学模型,列出对被测量有明显影响的测量不确定度来源,并要做到不遗漏、不重复。如果所给出的测量结果是经过修正后的结果,注意应考虑由修正值所引入的标准不确定度分量。如果某一标准不确定度分量对合成不确定度的贡献较小,则其分量可以忽略不计。 测量中可能导致不确定度的来源一般有: ⑴被测量的定义不完整; ⑵复现被测量的测量方法不理想; ⑶取样的代表性不够,即被测样本不能代表所定义的被测量; ⑷对测量过程受环境影响的认识不恰如其分或对环境的测量 与控制不完善; ⑸对模拟式仪器的读数存在人为偏移;

合成标准不确定度计算举例

合成标准不确定度计算举例 (例1) 一台数字电压表的技术说明书中说明:“在校准后的两年内,示值的最大允许误差为±(14×10-6×读数+2×10-6×量程)”。 现在校准后的20个月时,在1V 量程上测量电压V ,一组独立重复观测值的算术平均值为0.928571V ,其A 类标准不确定度为12μV 。求该电压测量结果的合成标准不确定度。 评定:(1)A 类标准不确定度: =12μV ( 2)B 类标准不确定度: 读数:0.928571V ,量程:1V a = 14×10-6×0.928571V +2×10-6×1V=15μV 假设为均匀分布, (3)合成标准不确定度: 由于上述两个分量不相关,可按下式计算: (例2)在测长机上测量某轴的长度,测量结果为40.0010

mm,经不确定度分析与评定,各项不确定度分量为: 1)读数的重复性引入的标准不确定度分量u1: 从指示仪上7次读数的数据计算得到测量结果的实验标准偏差为0.17 μm。 u1=0.17 μm 2)测长机主轴不稳定性引入的标准不确定度分量u2: 由实验数据求得测量结果的实验标准偏差为0.10 μm。u2=0.10 μm。 3)测长机标尺不准引入的标准不确定度分量u3:根据检定证书的信息知道该测长机为合格,符合±0.1μm的技术指标,假设为均匀分布,则:k =3 u3= 0.1 μm /3=0.06 μm。 4)温度影响引入的标准不确定度分量u4: 根据轴材料温度系数的有关信息评定得到其标准不确定度为0.05 μm。 u4=0.05 μm 不确定度分量综合表

轴长测量结果的合成标准不确定度计算:各分量间不相关,

不确定度的计算方法(可编辑修改word版)

(U u )2 + (U w )2 u w = = = = 测量结果的正确表达 被测量 X 的测量结果应表达为: X = X ± U (仪仪 ) 表 1 常用函数不确定度合成公式 其中 X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为 cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 2 N = X αY β Z γ U N = N 直接测量不确定度的计算方法 U = 1. 在函数关系是乘除法时,先计算相对不确定度( U N )比较方便.例如表中第二行 N 的公式. 2. 不确定度合成公式可以联合使用. 其中: S = 为标准差; sin θ u 例如: 若 τ ,令u sin θ , w 3φ 则 τ . 3φ w ?仪 是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 根据表中第二行公式,有: U τ = ; τ 间接测量 N = f (x , y , z ,??仪 的平均值公式为: N = f (x , y , z ,??仪 ; 根据表中第一行公式,有: U w = = 3U φ ; 不确定度合成公式为:U N = 根据表中第三行公式,有: 。 U u = cos θ ?U θ . 也可根据表 1 中的公式计算间接测量的不确定度。 所以, U τ = τ ? = τ S 2 + ? 2 仪 ∑ ( X - X ) 2 i n -1 ( ) ?U + ( ) ?U + ( ) ?U + ? N 2 2 ? N 2 2 ? N 2 2 ?X X ?Y Y ?Z Z α 2 (U X ) 2 + β 2 (U Y ) 2 + γ 2 (U Z ) 2 X Y Z 32U 2 φ

低温测量不确定度评估报告

低温测量不确定度评定报告 报告编号:201403 1. 测量方法 1.1)按图1所示的线路连接样品; 试验供电电源:220V ±5%~, 50Hz ±1%,电路导线横截面积:1.0mm2。 1.2) 样品放置在试验箱外,将样品感温探头放入试验箱中,进入试验箱的毛细管长度应大于150mm ; 1.3)接通电路,开启试验箱,从常温开始降温,观察指示灯状态,至指示灯熄灭,记录试验起始和结束时间、试验起始温度和指示灯熄灭瞬间样品的动作温度。 2. 数学模型 n x t t = 式中,x t 为样品在低温箱中的实际温度,n t 为低温箱温度显示仪表的相应读数。 3. 不确定度来源 3.1 通过分析识别出影响结果的因素有测量重复性,人员的读数,温度试验箱的偏差,温度试验箱 内的时间波动度与空间均匀性,降温速率,环境温度湿度的影响,电源电压的波动,读数的时延等等。 3.2 不确定度分量的分析评估 温度试验箱的特性对本次测量结果有较大的影响,如箱体的精度,偏差,波动度,均匀性等。 温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致,因此需考虑降温速率所引入的不确定度。 图1

由于在温度箱内进行试验,因此,环境温湿度对结果的影响也较小,基本忽略。 电源电压的波动通过稳压源控制电压参数的可变性,从而使得影响程度最小化。 读数的时延,我们通过选择熟练的操作人员的操作而减小其影响。人员的读数影响较小,可忽略。 综上所述,不确定度分量如下: A 类评定:1. 重复性条件下重复测量引入的标准不确定度分量1u . B 类评定:2. 低温箱的校准(温度偏差)引入的标准不确定度分量2u 3. 低温箱的最大偏差引入的标准不确定度分量 3u 4. 温度变化速率(温度波动度)引入的标准不确定度分量4u 5. 温度均匀度引入的标准不确定度分量 5u 4. 不确定度分量评定 4.1 1u 的计算 (测量重复性) 将样品在重复性条件下重复测量4次指示灯熄灭时的瞬间温度,测的数据列表如下: () () C 4349.01u 10 1 2 1?=--= ∑=n t t i i 4.2 2u 的计算 (温湿度箱的校准) 由校准证书给出扩展不确定度为0.3 °C ,K=2,则标准不确定度为: 15.023 .02== u 4.3 3u 的计算 (温湿度箱的最大偏差) 校准证书显示温度箱在-30°C ~70°C 的最大偏差为0.45°C ,服从均匀分布,3=k ,则 2598 .03 45.03== u 4.4 4u 的计算 (温度变化速率,即温度波动度) 温度箱的降温速率为1K/min ,在到达温控器响应的温度时,温度箱内的温度在持续变化,可能造成温度箱内的温度与实际动作温度不完全一致。由校准证书给出温度箱的波动度为±0.23°C , ° C °C

不确定度计算示例

五、交流标准电流源电流测量不确定度评定 一、概 述 1.1 目 的 评定交流标准电流源测量不确定度。 1.2 依据标准 暂无,参考JJG445-1986《直流标准电压源检定规程》。 1.3 使用的仪器设备 交流数字电压表,仪器校准后1年内,在1.5V ,50Hz 点示值最大允许误差为: 80×10-6 ×(读数) +10×2×10-6 ?(满量程) 6位半显示,经检定合格。 交流电流电压变换器,型号:LYB-02,准确度等级:0.005%。 1.4 测量程序 由被检交流标准电流源输出1A 加到交流电流-电压变换器,调准被检源交流电流为1A ,由交流电流电压变换器将1A ,50Hz 交流电流转换为1.5V ,50Hz 交流电压,读取交流数字电压表值。 1.5 不确定度评定结果的应用 符合上述条件或十分接近上述条件同类测量结果,一般可以参照本例方法评定。 二、数学模型 测量结果直接由交流数字电压表读数给出 I x = C E 0 式中: I x ——被检标准源的输出电流值,A ;

E 0——交流数字电压表的显示值,V (为避免与不确定度符号U 混淆,采用字母E 表示电压); C ——常数,交流电流-电压变换器的变比值,C =1.5V/1A 。 三、不确定度来源 直流标准电压源测量不确定度来源主要包括: (1) 测量重复性的不重复引入的不确定度u A ,采用A 类方法评定; (2) 交流数字电压表准确度引入的不确定度u B1,采用B 类方法评定; (3) 交流数字电压表上级标准传递引入的不确定度u B2,采用B 类方法评定; (4) 交流数字电压表分辨力引入的不确定度u B3,采用B 类方法评定; (5) 交流电流-电压变换器准确度引入的不确定度u B4,采用B 类方法评定。 (6) 交流电流电压变换器上级传递引入的不确定度u B5,采用B 类方法评定。 测量重复性 数字式电压表引入的不确 交流数字电压表上级标准传递引入的不确定度 交流电流-电压变换器引入的不确定度 交流电流电压变换器上级标准传递引入的不确定度 图1 各种不确定度分量关系图

第八讲 扩展不确定度的计算

第八讲扩展不确定度的计算 减小字体增大字体作者:李慎安来源:https://www.360docs.net/doc/7f2161420.html, 发布时间:2007-05-08 10:33:45 计量培训:测量不确定度表述讲座 国家质量技术监督局李慎安 8.1 什么叫扩展不确定度? 按《JJF1001》扩展不确定度定义为:确定测量结果区间的量,合理赋予被测量之值分布的大部分可望含于此区间。也称展伸不确定度或范围不确定度。符号为大写斜体U,U P。当除以被测量之值后,称为相对扩展不确定度,符号为U rel,U prel。符号中的p为置信概率,一般取95%,99%,这时其符号成为U95,U99,U95rel或U99rel。定义中所指大部分,最常用的是95%和99%。 扩展不确定度过去曾称总不确定度(overall uncertainty),这一名称已为《导则》所禁止使用,因其从含义上易与合成不确定度混淆。 扩展不确定度是比合成标准不确定度大的一个参数,它等于合成标准不确定度乘以包含因子k后的值,对于合成标准不确定度而言,它是成倍地被扩大了的一个值。 8.2 扩展不确定度分成几种? 扩展不确定度根据所乘的包含因子k的不同,分成两大类。当包含因子k之值取2或3时,扩展不确定度U只是合成标准不确定度u C的k倍。在给出U时,必须指明k的取值。实际上,这时的U所包含的信息与u C一样,并未因乘以k后,其信息有所增多。此外,还有一种包含因子k p,它是为了使扩展不确定度所给出的区间内能有概率为p的合理赋予被测量之值含于其中所必须有的因子。所得到的扩展不确定度为U p。一般,只在被测量Y可能值y的分布类型可估计为正态时才给出U P。这时的k p之值,按u c(y)的有效自由度υeff,通过本讲座6.6中的表得出,即t p值,k p=t p(υ)。随υ的增大,k有所降低,随p的增大,k p有所增加。 与上述类似,相对扩展不确定度亦有两种。 8.3 什么情况下使用U,什么情况下使用U p来说明测量结果的不确定度? (1)根据有关测量仪器校准的技术规范。例如,以下技术规范规定取k=3,JJF2002,2003,2004,2018,2019,2025,2026,2030,2032~2041,2045,2446等,不一一例举。而以下技术规范规定取k=2,JJF2049,2050,2072,2089等。也有一些技术规范规定用U95,如JJF2006,2061,等。规定采用U99的如JJF2020,2056,146等。 (2)可以估计被测量Y估计值y之分布接近正态时,可给出U p,否则只能给出U。 8.4 什么情况下可用包含因子k95=2及k99=3? 如果y的分布是比较理想的正态分布,那么,当合成标准不确定度u C(y)的有效自由度充分大时,即可做出这样较简单的处理,例如,在p=95%时,自由度为12,这时,按本讲座6.6,k p=2.18,如取k p=2,其值小了不到十分之一,应该说就无足轻重了。当p=99%时,υeff无穷大的k p=2.58≈2.6,整化为k99=3,已较保守;而当υeff=20时,k99之值为2.85,它比2.6大约大十分之一,因此,这时如不用2.85而用2.6,所得U99也只小十分之一左右,应可忽略。因此,在《JJF1059》中所要求的有效自由度应充分大,拿十分之一作为可忽略的标准,则对于p=95%时,υeff应大于12,对于p=99%,应大于20。 8.5 什么情况下,虽未计算合成标准不确定度u c(y)的有效自由度,取包含因子k=2给出的扩展不确定度U可以估计是置信区间在p=95%的半宽,可否在检定证书中给出其值为U95? 虽未算出υeff,但其值估计不太小,例如,大于12,而且,可以估计Y的估计值的分布接近正态,这时,一般可以认为U=2u c(y)的置信概率p大约为95%。但是不能在证书上给出其值为U95之值。

盲样测量不确定度评定报告

盲样测量不确定度评定报告 1、概述 1.1 测量依据 JJG119-2005《实验室(酸度)计检定规程》 1.2 环境条件: 温度(23±3)℃;相对湿度≤85%RH 1.3 测量标准: pH 标准缓冲溶液,中国计量测试技术研究院提供;酸度计:型号:pHS-3E ; 编号:600709040019;制造厂:上海精密科学仪器有限公司;量程:(0.00~14.00)pH;分辨率:0.01pH;电极编号:05598709J 1.4 被测对象:盲样(新疆维吾尔自治区计量测试研究院提供) 1.5 测量过程: 选用JJG119-2005《实验室(酸度)计检定规程》附录A 表1中规定的一种(或多种)标准溶液,在规定温度的重复性条件下,对pHS-3E 型酸度计进行校准后,测量盲样溶液,重复校准和测量操作6次,6次测量结果的平均值即为盲样的pH 值。 2、数学模型 y=x 3、输入量引入的标准不确定度 3.1测量重复性引入的标准不确定度分量u 1 按照贝塞尔公式计算单次测量的实验标准差: () 1 1 2 --= ∑=n pH pH s n i i (n=6) 平均值的实验标准差: u 1= 6

盲样检测 3.2酸度计引入的不确定度分量u2 用性能已知的pH(酸度)计,对未知pH值的盲样(酸度计溶液标准物质)进行测量。 选用JJG119-2005《实验室(酸度)计检定规程》参照酸度计使用说明书中校准点对传递的酸度计进行校准,用校准过的酸度计对盲样(酸度计溶液标准物质)进行测定6次,得出测量重复性引入的标准不确定度分量u 1 。结合酸度 计引入的不确定度分量u 2和盲样引入的标准不确定度分量u 3 得到合成标准不确 定度,扩展不确定度。

钢卷尺测量不确定度评定报告

钢卷尺测量不确定度评定报告 1测量方法及数学模型 1.1测量依据:依据JJG4-1999《钢卷尺检定规程》 钢卷尺的示值误差:△L=L a-L s+L a*αa*Δt-L s*αs*Δt 式中:L a——被检钢卷尺的长度; L s——标准钢卷尺的长度; αa——被检钢卷尺的膨胀系数; αs——标准钢卷尺的膨胀系数; Δt——被检钢卷尺和标准钢卷尺对参考温度20℃的偏离值。 由于L a-L s很小,则数学模型: △L= L a-L s +L s*△α*Δt 式中:△α——被检钢卷尺和标准钢卷尺的膨胀系数差 1.2方差及传播系数的确定 对以上数学模型各分量求偏导: 得出:c(L a)=1;c(L s)= -1+△α*Δt≈-1;c(△α)= L s*Δt;c(Δt)= L s*△α≈0 则:u c2 =u2(△L)=u2(L s)+ u2(L a) + (L s*Δt )2u2(△α) 2计算分量标准不确定度 2.1标准钢卷尺给出的不确定度u (L s) (1)由标准钢卷尺的测量不确定度给出的分量u (L s1) 根据规程JJG741—2005《标准钢卷尺》,标准钢卷尺的测量不确定度为: U=0.02mm其为正态分布,覆盖因子k=3,自由度v=∞,故其标准不确定度: u (L s1)= 0.02∕3 =0.007 (2)由年稳定度给出的不确定度分量u (L s2) 根据几年的观测,本钢卷尺年变动量不超过0.05mm,认为是均匀分布,则:L a≤5m:u (L s2)=0.05∕31/2 =0.029mm 估计u (L s2)的不可靠性为10%,则自由度v=1/2×(0.1)-2=50 (3)由拉力偏差给出的不确定度分量u (L s3) 由拉力引起的偏差为:△=L×103×△p/(9.8×E×F)

不确定度评估基本方法

三、检测和校准实验室不确定度评估的基本方法 1、测量过程描述: 通过对测量过程的描述,找出不确定度的来源。 内容包括:测量内容;测量环境条件;测量标准;被测对象;测量方法;评定结果的使用。 不确定度来源: ● 对被测量的定义不完整; ● 实现被测量的测量方法不理想; ● 抽样的代表性不够,即被测样本不能代表所定义的被测量; ● 对测量过程受环境影响的认识不周全,或对环境的测量与控制不完善; ● 对模拟式仪器的读数存在人为偏移; ● 测量仪器的计量性能(如灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性; ● 测量标准或标准物质的不确定度; ● 引用的数据或其他参量(常量)的不确定度; ● 测量方法和测量程序的近似性和假设性; ● 在相同条件下被测量在重复观测中的变化。 2、建立数学模型: 建立数学模型也称为测量模型化,根据被测量的定义和测量方案,确立被测量与有关量之间的函数关系。 ● 被测量Y 和所有个影响量i X ),2,1(n i ,?=间的函数关系,一般可写为 ),2,1(n X X X f Y ,?=。 ● 若被测量Y 的估计值为y ,输入量i X 的估计值为i x ,则有),x ,,x f(x y n ?= 21。有时为简化 起见,常直接将该式作为数学模型,用输入量的估计值和输出量的估计值代替输入量和输出量。 ● 建立数学模型时,应说明数学模型中各个量的含义。 ● 当测量过程复杂,测量步骤和影响因素较多,不容易写成一个完整的数学模型时,可以分步评定。 ● 数学模型应满足以下条件: 1) 数学模型应包含对测量不确定度有显著影响的全部输入量,做到不遗漏。 2) 不重复计算不确定度分量。

测量不确定度评定报告(完整资料).doc

此文档下载后即可编辑 测量不确定度评定报告 1、评定目的 识别实验室定量项目检测结果不确定度的来源,明确评定方法,给临床检测结果提供不确定度依据。 2、评定依据 CNAS-GL05《测量不确定度要求的实施指南》 JJF 1059-1999《测量不确定度评定和表示》 CNAS— CL01《检测和校准实验室能力认可准则》 3 、测量不确定度评定流程 测量不确定度评定总流程见图一。

图一 测量不确定度评定总流程 4、测量不确定度评定方法 4.1建立数学模型 4.1.1 数学模型根据检验工作原理和程序建立,即确定被测量Y (输出量)与影响量(输入量)X 1,X 2,…,X N 间的函数关系f 来确定,即: Y=f (X 1,X 2,…,X N ) 建立数学模型时应说明数学模型中各个量的含义和计量单位。必须注意, 数学模型中不能进入带有正负号(±)的项。另外,数学模型不是唯一的,若采用不同测量方法和不同测量程序,就可能有不同的数学模型。 4.1.2计算灵敏系数 偏导数Y/x i =c i 称为灵敏系数。有时灵敏系数c i 可由 实验测定,即通过变化第i 个输入量x i ,而保持其余输入量不变,从而测定Y 的变化量。

4.2不确定度来源分析 测量过程中引起不确定度来源,可能来自于: a 、对被测量的定义不完整; b 、复现被测量定义的方法不理想; c 、取样的代表性不够,即被测量的样本不能完全代表所定义的被测量; d 、对测量过程受环境影响的认识不周全或对环境条件的测量和控制不完善; e 、对模拟式仪器的读数存在人为偏差(偏移); f 、测量仪器的计量性能(如灵敏度、鉴别力阈、分辨力、死区 及稳定性等)的局限性; g 、赋予计量标准的值或标准物质的值不准确; h 、引入的数据和其它参量的不确定度; i 、与测量方法和测量程序有关的近似性和假定性; j 、在表面上完全相同的条件下被测量在重复观测中的变化。 4.3标准不确定度分量评定 4.3.1 A 类评定--对观测列进行统计分析所作的评估 a 对输入量XI 进行n 次独立的等精度测量,得到的测量结果为: x 1,x 2,…x n 。算术平均值x 为 1 n x n = ∑x i

不确定度计算

2、不确定度各分量的评定 根据测量步骤可知,测量氨氮质量的不确定度来源有几个方面,一是由标准曲线配制所产生的不确定度,二是测试过程所产生的不确定度。按《化学分析中不确定度的评估指南》,对于只涉及积或商的模型,例如:C N=m/v,合成标准不确定度为: % 「"㈣12 工「"(¥) —-\\[ ------- J + L—J c \ m v 式中,u(c)为质量m和体积v的合成标准测量不确定度,mg/L ; u(m)为质量m的标准测量不确定度,ug; u(v)为体积v的标准测量不确定度,mLo 2.1取样体积引入的相对不确定度u rel(V) 所取水样用50mL单标线吸管移取。查JJG 196— 2006〈〈常用玻璃量器检定规程》,A级50mL 单标线吸管的容量允差为0.05mL,根据JJF 1059-1999〈〈测量不确定度评定与表示》的规定,标定体积为三角分布,则容量允差引入的不确定度为:u(△ V)=0.050/ V6。 根据制造商提供的信息,吸量管校准温度为20C,设实验室内温度控制在土5C范围内波动,与校准时的温差为5C,由膨胀系数(以水的膨胀系数计算)为2.1X 10-4/C得到50mL水样的标准不确定度为(假定为均匀分布):

= 50.00x2.1x 10~4 x 5/ = 0.03ImL w) 综合以上两项,则: u(r}= =/o.021’+ 0.031’ = 0,038(wZ)取样体积引入的相对不确定度为: 打 =打/ 50 = 0.038/5。= 7.6 x 1 O'4 2.2重复性测定引入的相对不确定度U rel(rep) 采用A类方法评定,与重复性有关的合成标准不确定度均包含其中。对某水样进行7次重复性测定,所得结果如下: 1.33、1.35、1.34、1.34、1.35、1.38、1.35mg/L,平均值 1.35 mg/L。 重复测量数据的标准不确定度为: X(x t-x) 5 = [I ------------ = 0.0060 | — 1) 因此,重复测量的相对标准不确定度为: '(明二&0060/1.35 二0.00445 2.3铉(以氮计)的绝对量m引入的不确定度U rel(m) 2.3.1配制过程中引入的不确定度U rel(1)

拉伸试验结果的测量不确定度报告

拉伸试验结果的测量不确定度评定 1试验 检测方法 依据GB∕T228-2002《金属材料室温拉伸试验方法》进行试样的加工和试验. 环境条件 试验时室温为25℃,相对湿度为75%. 检测设备及量具 100kN电子拉力试验机,计量检定合格,示值误差为±1%;电子引伸计(精度级);0~150㎜游标卡尺,精度0.02mm;50mm间距的标距定位极限偏差为±1%。 被测对象 圆形横截面比例试样,名义圆形横截面直径10 mm。 试验过程 根据GB∕T228-2002,在室温条件下,用游标卡尺测量试样圆形横截面直径,计算原始横截面积,采用电子拉力试验机完成试验,计算相应的规定非比例延伸强度、上屈服强度R eH、下屈服强度R eL、抗拉强度R m、断后伸长率A及断面收缩率Z。 2数学模型 拉伸试验过程中涉及到的考核指标,R eH,R eL,R m,A,Z的计算公式分别为 = ∕S0(1) R eH=F eH∕S0(2) R eL= F eL∕S0(3) R m=F m∕S0(4) A=(L U-L0)∕L0(5) Z=(S0-S)∕S0(6) 式中———规定非比例延伸力; F eH———上屈服力; F eL———下屈服力; F m———最大力; L U———断后标距; L0———原始标距; S0———原始横截面积; S u———断面最小横截面积。 3测量不确定度主要来源 试验在基本恒温的条件下进行,温度变化范围很小,可以忽略温度对试验带来的影响。 对于强度指标,不确定度主要分量可分为三类:试验力值不确定度分量、试样原始横截面积测量不确定度分量和强度计算结果修约引起的不确定度分量. 对于断后伸长率A, 不确定度主要分量包含输入量L0和L U的不确定度分量. 对于断面收缩率Z, 不确定度主要分量包含输入量S0和S u的不确定度分量. 4标准不确定度分量的评定 试验力值测量结果的标准不确定度分量 4.1.1试验机误差所引入的不确定度分量

(整理)不确定度的计算方法.

精品文档 测量结果的正确表达 被测量X 的测量结果应表达为:)(单位U X X ±= 其中X 是测量值的平均值,U 是不确定度。 例如: 用最小刻度为cm 的直尺测量一长度最终结果为:L =(0.750±0.005)cm ; 测量金属丝杨氏模量的最终结果为:E =(1.15±0.07)×1011Pa 。 1. 不确定度的计算方法 直接测量不确定度的计算方法 2 2仪?+=S U 其中: 1 )(2 --= ∑n X X S i 为标准差; 仪?是仪器误差,一般按仪器最小分度的一半计算,但是游标卡尺和角游标按最小 分度计算。也可按仪器级别计算或查表。 间接测量不确定度的合成方法 间接测量)??=,,,(z y x f N 的平均值公式为:)??=,,,(z y x f N ; 不确定度合成公式为: +???+???+???=2 22222)()()( Z Y X N U Z N U Y N U X N U 。 也可根据表1中的公式计算间接测量的不确定度。 表1 常用函数不确定度合成公式 函数表达式 合成公式 2 γ β αZ Y X N = 222222)()()(Z U Y U X U N U Z Y X N γβα++= 注: 1. 在函数关系是乘除法时,先计算相对不确定度(N U N )比较方便.例如表中第二行的公式. 2. 不确定度合成公式可以联合使用. 例如: 若φθτ3sin = ,令θsin =u ,φ3=w 则w u =τ.

精品文档 根据表中第二行公式,有: 22)()(w U u U U w u +=ττ; 根据表中第一行公式,有: φφU U U w 332 2 ==; 根据表中第三行公式,有: θθU U u ?=cos . 所以, 2222)( )sin cos ( )33( )sin cos ( φ θ θτφ θ θτφθ φθ τU U U U U +??=+??=

不确定度测定汇总

测量不确定度评定与表示 测量的目的是确定被测量值或获取测量结果。有测量必然存在测量误差,在经典的误差理论中,由于被测量自身定义和测量手段的不完善,使得真值不可知,造成严格意义上的测量误差不可求。而测量不确定度的大小反映着测量水平的高低,评定测量不确定度就是评价测量结果的质量。 图1 1 识别测量不确定度的来源 测量不确定度来源的识别应从分析测量过程入手,即对测量方法、测量系统和测量程序作详细研究,为此必要时应尽可能画出测量系统原理或测量方法的方框图和测量流程图。 检测和校准结果不确定度可能来自: (1)对被测量的定义不完善; (2)实现被测量的定义的方法不理想; (3)取样的代表性不够,即被测量的样本不能代表所定义的被测量; (4)对测量过程受环境影响的认识不全,或对环境条件的测量与控制不完善; (5)对模拟仪器的读数存在人为偏移; (6)测量仪器的计量性能 (如最大允许误差、灵敏度、鉴别力、分辨力、死区及稳定性等)的局限性,即导致仪器的不确定度; (7)赋予计量标准的值或标准物质的值不准确; (8)引用于数据计算的常量和其它参量不准确; (9)测量方法和测量程序的近似性和假定性; (10)在表面上看来完全相同的条件下,被测量重复观测值的变化。 分析时,除了定义的不确定度外,可从测量仪器、测量环境、测量人员、测量方

法等方面全面考虑,特别要注意对测量结果影响较大的不确定度来源,应尽量做到不遗漏、不重复。 2 定义 2.1 测量误差简称误差,是指“测得的量值减去参考量值。” 2.2 系统测量误差简称系统误差,是指“在重复测量中保持恒定不变或按可预见的方式变化的测量误差的分量。” 系统测量误差的参考量值是真值,或是测量不确定度可忽略不计的测量标准的测量值, 或是约定量值。系统测量误差及其来源可以是已知的或未知的。对于已知的系统测量误差可 以采用修正来补偿。系统测量误差等于测量误差减随机测量误差。 2.3 随机测量误差简称随机误差,是指“在重复测量中按不可预见的方式变化的测量误差的分量。” 随机测量误差的参考量值是对同一个被测量由无穷多次重复测量得到的平均值。随机测量误差等于测量误差减系统测量误差。 图2 测量误差示意图 2.4 测量不确定度简称不确定度,是指“根据用到的信息,表征赋予被测量值分散性的非负参数。” 测量不确定度一般由若干分量组成。其中一些分量可根据一系列测量值的统计分布,按测量不确定度的A类评定(随机效应引起的)进行评定,并用标准偏差表征;而另一些分量则可根据基于经验或其它信息所获得的概率密度函数,按测量不确定度的B类评定(系统效应引起的)进行评定,也用标准偏差表征。 2.5 标准不确定度是“以标准偏差表示的测量不确定度。”

不确定度计算公式

Xi 是每次仪器测量的示值或读书X上面有一横线的是每次测量结果的平均值 n为测量次数 对同一量,进行多次计量,然后算出平均值。对于偏离平均值的正负差值,就是其不确定度。其差值越大,则计量的不确定度就越大。 在数理统计学上,一般用方差(S)来表示:S^2={(x1- X)^2+(x2-X)^2+(x3-X)^2……+(xn-X)^2}/(n-1)。 注:X为平均值,n为测量的次数。 方差越大,其不确定度则越大;方差越小,其不确定度就越小。 1.启用标准偏 打开计算器 > 查看(V) > 选择"科学型" > 单击计算器左边的"Sta"按钮(此时会弹出一个统计框) 2.数据编辑:(例子:数据[25,34,13]) 在统计框内单击"全清(A)"按钮 > 返回计算器 > 输入数据"25" > 单击计算器左边的"Dat"按钮 > 输入数据"34" > 单击计算器左边的"Dat"按钮 > 输入数据"13" > 单击计算器左边的"Dat"按钮 (此时统计框已记录下数据[25,34,13]) 3.标准偏差计算: 平均值 -- "Ave" 按钮 总和 -- "Sum" 按钮 样本标准差[不是标准差或方差] -- "s" 按钮 方差: 先求出样本标准差,然后平方,除以样本数量,再乘以(样本数量减1),才得出方差 标准差: 将方差开方

在测量过程中,各项误差合成后得到的总极限误差称为测量的不确定度,他是表示由于测量过程中各项误差影响而使测量结果不能肯定的误差范围。 测量误差=测量值-真值,测量值>真值,为正差;测量值<真值,为负差。 由于我们习惯了测量误差这个概念,现在提出测量不确定度,确实理解起来比较困难。测量不确定度目前在各种资料上给出的解释不尽相同,但本质都是相同的。我们可以这样简单的理解:测量误差为一个确定值(尽管被测量真值是一个未知量),而不确定度是被测量真值所处一个范围的评定或由于测量误差致使测量结果不能肯定的程度。(这是我个人理解所得,上课的时候也是这样教学生的) 由ISO、IEC、BIPM、IFCC、IUPAC、IUPAP、OIML七个国际组织共同组成国际测量不确定度工作组,在1NC-1(1980)建议书的基础上,起草制定了《测量不确定度表示指南》(GUM)。1993年,GUM以7个国际组织的名义正式由ISO颁布实施,并在1995年作了修订。为了贯彻GUM在我国的实施,由全国法制计量委员会委托中国计量科学研究院起草制定了国家计量技术规范《测量不确定度评定与表示》(JJF1059-1999)。该规范原则上等同GUM的基本内容,作为我国统一准则对测量结果及其质量进行评定、表示和比较。 国家计量技术规范《测量不确定度评定与表示》(JJF1059-1999)中,对测量不确定度定义为:表征合理地赋予被测量之值的分散性,与测量结果相联系的参数。此参数可以是标准差或其倍数,或说明了置信水准的区间的半宽度,其值恒为正值。

相关文档
最新文档