第三讲线性回归的常见问题

第三讲线性回归的常见问题
第三讲线性回归的常见问题

第三讲 线性回归的常见问题

一、多重共线性

1、含义与影响

多重共线性是在变量间存在严格的或近似的线性关系。也就是说,这些变量 被用来解释因变量时导致所提供的信息出现了“重叠”。多重共线性的直接后果是回归系数参数估计的标准误变大,置信区间变宽,估计值的稳定性下降。

2、诊断方法

Eviews 软件的各个版本都没有直接的操作考虑共线性诊断的问题,只能通过自己计算分析或在软件中编程计算。

3、多重共线性的处理方法

(1)剔除法。设法找到引起共线性的变量并予以剔除。 (2)差分法。 操作时的命令是:

ls ()d y 1()d x 2()d x ()p d x 或ls (1)y y -- 11(1)x x --(1)p p x x -- (3)重新定义方程

(4)有偏估计。如主成分分析、岭回归等。

4、案例分析

中国私人轿车拥有量决定因素分析。

考虑到目前农村家庭购买私人轿车的现象还很少,在建立中国私人轿车拥有量模型时,主要考虑如下因素:(1)城镇居民家庭人均可支配收入;(2)城镇总人口;(3)轿车产量;(4)公路交通完善程度;(5)轿车价格。

“城镇居民家庭人均可支配收入”、 “城镇总人口数”和“轿车产量”可以直接从统计年鉴上获得。“公路交通完善程度”用全国公路里程度量,也可以从统计年鉴上获得。由于国产轿车价格与进口轿车价格差距较大,而且轿车种类很多,做分种类的轿车销售价格与销售量统计非常困难,所以因素“轿车价格”暂且略去不用。定义变量名如下:

Y :中国私人轿车拥有量(万辆) X1:城镇居民家庭人均可支配收入(元), X2:全国城镇人口(亿人)

X3:全国汽车产量(万辆) X4;全国公路长度(万公里)

1985-2002年中国私人轿车拥有量以年增长率23%,年均增长55万辆的速度飞速增长。

年 Y X1 X2 X3 X4 1985 28.49 739.1 2.51 43.72 92.24 1986 34.71 899.6 2.64 36.98 96.28 1987 42.29 1002.2 2.77 47.18 98.22 1988 60.42 1181.4 2.87 64.47 99.96 1989 73.12 1375.7 2.95 58.35 101.43 1990 81.62 1510.2 3.02 51.4 102.83 1991 96.04 1700.6 3.05 71.42 104.11 1992 118.2 2026.6 3.24 106.67 105.67 1993 155.77 2577.4 3.34 129.85 108.35 1994 205.42 3496.2 3.43 136.69 111.78 1995 249.96 4283 3.52 145.27 115.7 1996 289.67 4838.9 3.73 147.52 118.58 1997 358.36 5160.3 3.94 158.25 122.64 1998 423.65 5425.1 4.16 163 127.85 1999 533.88 5854 4.37 183.2 135.17 2000 625.33 6280 4.59 207 140.27 2001 770.78 6859.6 4.81 234.17 169.8 2002 968.98

7702.8

5.02

325.1

176.52

二、异方差性 1、含义及影响

如果回归模型中的随机误差项不满足假设条件中的同方差性,即对不同的样本点有()()i j Var Var εε≠,i j ≠。

当存在异方差时用OLS 估计模型参数时可能出现:参数估计值虽然是无偏

的,但不是有效的;参数的显著性检验失去意义;预测失效等。

2、异方差的诊断方法

(1)图示检验法。以某一变量(通常取自变量或因变量的预测值)作为横坐标,以模型的残差为纵坐标,根据散点图直观地判断是否存在相关性。

(2)怀特检验。打开方程对象窗口,选View/Residual Tests/ Heteroskedasticity Tests/ White ,怀特检验还有一个交叉项选项。

(3)其他类似的检验。

Eviews 中的其他异方差检验方法与怀特检验方法大同小异,主要是方差函数的具体形式存在差异。异方差检验的方差函数的一般形式为:

22(,)t t f z σασ'=,0,1,2,t =

式中,2t σ是t 时刻随机项的理论方差;t z '是t 时刻方差函数的自变量向量,通常是原模型的自变量,但也不绝对;α是方差函数的参数向量。

异方差其他检验的方差函数如下表所示:

这些命令的调用方式同White 检验类似。 3、异方差的处理

(1)加权最小二乘法。加权最小二乘估计的实现与普通最小二乘估计基本相同,只是需要在方程定义对话框中按下Options 按钮,在Options 栏中选Weighted Ls 项,并在Weighted 项中输入权数序列名即可。

(2)异方差和自相关相容协方差估计。异方差和自相关相容协方差是Eviews 软件提供的另一种方法,适用于异方差的形式未知时,因为此时不能用WLS 来消除异方差。相容参数估计采用了另外估计回归系数协方差阵,从而改变了估计值的标准差。该方法的标准差是不正确的,不能用来推断。这一方法的操作是:在普通的建模过程中选方程定义对话框的Options 按钮,在新对话框选择Heteroskedasticity Consistent Covariances ,再从White 和Newey-West 选择一种开始估计。

4、案例分析

已知某地区的个人储蓄Y 、可支配收入X 的截面样本数据,建立它们之间的线性计量模型并估计之。

三、自相关性

1、含义及影响

回归模型中各残差项之间不满足独立假设,即

(,)0i j Cov εε≠,,1,,i j n = ;i j ≠。

当存在自相关时用OLS 估计模型参数时可能出现:参数估计值虽然是无偏的,但不是有效的;参数的显著性检验失去意义;预测失效等。

2、诊断方法

(1)D.W.检验。注意这种检验的几种不足。

(2)LM 检验。这个检验位于方程对象窗口菜单View/Residual Tests/Serial Correlation LM Test ,点击该功能后会弹出一个设定滞后期(Lag Specification )对话框。输入滞后的期数,点击OK 键,就会得到BG (LM )检验结果。

3、自相关的克服方法 (1)Cochrane-Orcutt 迭代法。

举例:考虑双变量模型12t t t Y X u ββ=++以及t u 的AR (1)模式,即

1t t t u u v ρ-=+,科克伦-奥科特(Cochrane-Orcutt )迭代法操作步骤如下:

(i )用通常的OLS 方法估计方程的残差?t u ; (ii )做回归:1???t t t u

u v ρ-=+; (iii )利用所得?ρ

估计广义差分方程?Y t = β1* +β2?X t + v t ; (iv )由于事先不知道(3)中得到的?ρ

是不是最佳估计值,所以把第3步中得到的*1?β和2?β代入原回归方程12t t t Y X u ββ=++,并得到新的残差*?t

u ; (v )现在估计回归:1***

???t

t t u u w ρ-=+得到ρ的第二轮估计值; (vi )按此思路一直进行迭代,一般直到相邻两个估计值相差很小(比如小于0.01或0.005等)时,便可以停止迭代。

Eviews 软件包中,广义差分采用了科克伦-奥科特(Cochrane-Orcutt )迭代法估计。操作方法是在方程对象窗口中引入AR (1)、AR (2)、…作为解释变量即可,得到参数和1ρ、2ρ、…的估计值。其中AR (m )表示随机误差项的m 阶自回归。在估计过程中自动完成了1ρ、2ρ、…的迭代。

(2)重新定义模型。新定义的模型可能会避免序列相关。 4、案例分析

改革开放(1978~2000)以来,天津市城镇居民人均消费性支出(CONSUM ),人均可支配收入(INCOME )以及消费价格指数(PRICE )数据见下表。现在研

究人均消费与人均可支配收入的关系。

天津市城镇居民人均消费与人均可支配收入数据

常见非线性回归模型

常见非线性回归模型 1.简非线性模型简介 非线性回归模型在经济学研究中有着广泛的应用。有一些非线性回归模型可以通 过直接代换或间接代换转化为线性回归模型,但也有一些非线性回归模型却无 法通过代换转化为线性回归模型。 柯布—道格拉斯生产函数模型 y AKL 其中L和K分别是劳力投入和资金投入, y是产出。由于误差项是可加的, 从而也不能通过代换转化为线性回归模型。 对于联立方程模型,只要其中有一个方程是不能通过代换转化为线性,那么这个联立方程模型就是非线性的。 单方程非线性回归模型的一般形式为 y f(x1,x2, ,xk; 1, 2, , p) 2.可化为线性回归的曲线回归 在实际问题当中,有许多回归模型的被解释变量y与解释变量x之间的关系都不是线性的,其中一些回归模型通过对自变量或因变量的函数变换可以转化为

线性关系,利用线性回归求解未知参数,并作回归诊断。如下列模型。 (1)y 0 1e x (2)y 0 1x2x2p x p (3)y ae bx (4)y=alnx+b 对于(1)式,只需令x e x即可化为y对x是线性的形式y01x,需要指出的是,新引进的自变量只能依赖于原始变量,而不能与未知参数有关。 对于(2)式,可以令x1=x,x2=x2,?,x p=x p,于是得到y关于x1,x2,?, x p 的线性表达式y 0 1x12x2 pxp 对与(3)式,对等式两边同时去自然数对数,得lnylnabx ,令 y lny, 0 lna, 1 b,于是得到y关于x的一元线性回归模型: y 0 1x。 乘性误差项模型和加性误差项模型所得的结果有一定差异,其中乘性误差项模型认为yt本身是异方差的,而lnyt是等方差的。加性误差项模型认为yt是等 方差的。从统计性质看两者的差异,前者淡化了y t值大的项(近期数据)的作用, 强化了y t值小的项(早期数据)的作用,对早起数据拟合得效果较好,而后者则 对近期数据拟合得效果较好。 影响模型拟合效果的统计性质主要是异方差、自相关和共线性这三个方面。 异方差可以同构选择乘性误差项模型和加性误差项模型解决,必要时还可以使用 加权最小二乘。

多元线性回归模型练习题及答案.doc

ESS&i-k)A RSS[(k -1) ESS /(SI)I). TSS/(n-k) 多元线性回归模型练习 一、单项选择题 1. 在由〃 =30的一组样本估计的、包含3个解释变量的线性回归模型中,计算 得可决系数为0.8500,则调整后的可决系数为(D ) A. 0. 8603 B. 0. 8389 C. 0. 8655 D. 0. 8327 2. 用一组有30个观测值的样本估计模型乂 =如玷气+E +0后,在0. 05的 显著性水平上对九的显著性作「检验,则气显著地不等于零的条件是其统计量, 大于等于 (C ) A. ,O .O 5(3°) B . ‘。025(28) c.,。。25(27) p ^*0.025 (^28) 3?线性回归模型乂 =4+"1也+勾% +……+ b k x h +u i 中,检验 =0(,= 0,1,2,..人)时,所用的统计量 服从(C ) A. t (n _k+l ) B. t (n -k -2) C. t (n -k _l ) D. t (n -k+2) 4. 调整的可决系数与多元样本判定系数R ,之间有如下关系( D ) 局=公—/?2 职=]_qj R2 A. n-k -1 B ? n-k-\ R 2=[—- (1 + R2) 斤 2 =]— (I-/?2) C. n-k-\ D. n-k-\ 5. 对模型Y L B 。+ B 伏"B 2X 2i + u 「进行总体显著性F 检验,检验的零假设是 (A ) A. P 1= 3 2=0 B. 3 i=0 C. B 2-O D. B 0二0 或 B i=0 6. 设k 为[q 归模型中的参数个数,n 为样本容量。则对多元线性同归方程进行 显著性检验时,所用的F 统计量可表示为(B ) R2/ k B (1-R2)/(D b/d) c. (1-R2)/(S1) 7. 多元线性问归分析中(回归模型中的参数个数为k ),调整后的可决系数与 可决系数R2之间的关系(A )

可线性化的回归分析

1.2可线性化的回归分析学案备注【学习目标】 1.能直观的判断两个变量是否满足线性相关 2.用非线性的函数关系来描述不好用线性关系刻画的两个 变量之间的关系 【重点、难点】用非线性的函数关系来描述不好用线性关系 刻画的两个变量之间的关系 【自主学习】 1.若两个变量不呈现线性关系,不能直接利用线性回归方程 建立两个变量的相关关系,那我们应如何建立两个变量的 关系?例如bx y=怎么化成线性相关问题解决?(阅读教 ae 材第9页到13页) 2. 在具体问题中,我们首先应该作出原始数据) x , (y 的,从中看出数据的大致规律,再 根据这个规律选择适当的函数进行拟合。 3. 对于非线性回归模型一般可转化为模 型从而得到相应的回归方程。 4.几种能转化为线性回归模型的非线性回归模型 (1)幂函数曲线x ab y=,作变换____________,得线性函数__________________ (2)指数曲线bx ae y=,作变换______________,得线性函数_______________

(3)倒指数曲线x b ae y =,作变换______________得线性函数 ________________ (4)对数曲线x b a y ln +=,作变换_______________得线性函数_____________ 【例题分析】 例1.(1)有5组(x,y )数据(1,3),(2,4),(4,5),(3,10),(10,12),去掉一组______数据后,剩下的四组数据的线性相关系数最大。 (2)已知幂函数曲线b ax y =做线性变换后得到的回归方程为v u 4.02+=,则a=_______,b=__________ 例2.为了研究某种细菌随时间x 变化,繁殖的个数,收集数据如下: 天数 x /天 1 2 3 4 5 繁殖个数y /个 6 12 25 49 95 (1)用天数作解释变量,繁殖个数作预报变量,作出这些数据的散点图; (2)试求出预报变量对解释变量的回归方程.(答案:所求 非线性回归方程为0.69 1.112?y =e x +.) 小结:利用回归方程探究非线性回归问题,可按“作散点图→建模→确定方程”这三个步骤进行. 其关键在于如何通过适当的变换,将非线性回归问题转化成线性回归问题.

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案) 高中苏教数学③ 2. 4线性回归方程测试题 一、选择题 1.下列关系属于线性负相关的是() A.父母的身高与子女身高的关系 B.身高与手长 C.吸烟与健康的关系 D.数学成绩与物理成绩的关系 答案:C 2.由一组数据得到的回归直线方程,那么下面说法不正确的是() A.直线必经过点 B.直线至少经过点中的一个点 C.直线 a的斜率为 D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线 答案:B 3.实验测得四组的值为,则y与x之间的回归直线方程为() A.B. C.D.

答案:A 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是() A.直线和一定有公共点 B.直线和相交,但交点不一定是 C.必有直线 D.和必定重合 答案:A 二、填空题 5.有下列关系: (1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 (3)苹果的产量与气候之间的关系 (4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系 其中,具有相关关系的是. 答案:(1)(3)(4) 6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表

中的各对数据在直角坐标系中描点得到的表示具有相关关 系的两个变量的一组数据的图形,叫做. 答案:统计分析;相关关系;散点图 7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是. 答案:;; 8.已知回归直线方程为,则可估计x与y增长速度之比约为. 答案: 三、解答题 9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下: 3 5 2 8 9 12 4 6 3 9 12 14 求y对x的回归直线方程. 解:,, 回归直线方程为. 10.已知10只狗的血球体积及红血球的测量值如下: 45 42 46 48 42 6.53 6.30 9.25 7.580 6.99 35 58 40 39 50

excel一元及多元线性回归实例

野外实习资料的数理统计分析 一元线性回归分析 一元回归处理的是两个变量之间的关系,即两个变量X和Y之间如果存在一定的关系,则通过观测所得数据,找出两者之间的关系式。如果两个变量的关系大致是线性的,那就是一元线性回归问题。 对两个现象X和Y进行观察或实验,得到两组数值:X1,X2,…,Xn和Y1,Y2,…,Yn,假如要找出一个函数Y=f(X),使它在 X=X1,X2, …,Xn时的数值f(X1),f(X2), …,f(Xn)与观察值Y1,Y2,…,Yn趋于接近。 在一个平面直角坐标XOY中找出(X1,Y1),(X2,Y2),…,(Xn,Yn)各点,将其各点分布状况进行察看,即可以清楚地看出其各点分布状况接近一条直线。对于这种线性关系,可以用数学公式表示: Y = a + bX 这条直线所表示的关系,叫做变量Y对X的回归直线,也叫Y对X 的回归方程。其中a为常数,b为Y对于X的回归系数。 对于任何具有线性关系的两组变量Y与X,只要求解出a与b的值,即可以写出回归方程。计算a与b值的公式为:

式中:为变量X的均值,Xi为第i个自变量的样本值,为因变量的均值,Yi为第i个因变量Y的样本值。n为样本数。 当前一般计算机的Microsoft Excel中都有现成的回归程序,只要将所获得的数据录入就可自动得到回归方程。 得到的回归方程是否有意义,其相关的程度有多大,可以根据相关系数的大小来决定。通常用r来表示两个变量X和Y之间的直线相关程度,r为X和Y的相关系数。r值的绝对值越大,两个变量之间的相关程度就越高。当r为正值时,叫做正相关,r为负值时叫做负相关。r 的计算公式如下: 式中各符号的意义同上。 在求得了回归方程与两个变量之间的相关系数后,可以利用F检验法、t检验法或r检验法来检验两个变量是否显著相关。具体的检验方法在后面介绍。

(完整版)线性回归方程-刷题训练

线性回归方程同步练习题(文科) 1.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值, 计算,得∑8 i =1 x i =52,∑8 i =1y i =228,∑8 i =1x 2 i =478,∑8 i =1x i y i =1849,则其线性回归方程为( A ) A.y ^ =11.47+2.62x B.y ^ =-11.47+2.62x C.y ^ =2.62+11.47x D.y ^ =11.47-2.62x 解析 利用回归系数公式计算可得a =11.47,b =2.62,故y ^ =11.47+2.62x . 2.已知x 与y 之间的一组数据: x 0 1 2 3 y 1 3 5 7 则y 对x 的线性回归方程y =bx +A. (2,2) B. (1.5,3.5) C. (1,2) D. (1.5,4) 3. 设回归直线方程为y =2-1.5x ,若变量x 增加1个单位,则( C ). A. y 平均增加1.5个单位 B. y 平均增加2个单位 C. y 平均减少1.5个单位 D. y 平均减少2个单位 4.已知回归方程为y ?=0.50x-0.81,则x=25时,y ?的估计值为 .答案 11.69 5.下表是某厂1~4月份用水量月份x 1 2 3 4 用水量y 4.5 4 3 2.5 由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^ =-0.7x +a ,则a 等于______. 解析 x =2.5,y =3.5,∵回归直线方程过定点(x ,y ),∴3.5=-0.7×2.5+a .∴a =5.25. 6.某服装商场为了了解毛衣的月销售量y (件)与月平均气温x (℃)之间的关系,随机统计了某4个月的月销售量与当月平均气温,其数据如下表: 月平均气温x (℃) 17 13 8 2 月销售量y (件) 24 33 40 55 由表中数据算出线性回归方程y ^ =bx +a 中的b ≈-2,气象部门预测下个月的平均气温约为6℃,据此估计, 该商场下个月毛衣的销售量约为________件. 答案 46解析 由所提供数据可计算得出x =10,y =38,又b ≈-2代入公式a =y -b x 可得a =58, 即线性回归方程y ^ =-2x +58,将x =6代入可得. 7.正常情况下,年龄在18岁到38岁的人们,体重y (kg )依身高x (cm )的回归方程为y=0.72x-58.5。 张红红同学不胖不瘦,身高1米78,他的体重应在 69.66 kg 左右。 8.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 . 答案 a,c,b 9.三点(3,10),(7,20),(11,24)的回归方程是 .答案 y ?=1.75x+5.75 10.使用年限x 2 3 4 5 6 维修费用y 2.2 3.8 5.5 6.5 7.0

(完整版)多元线性回归模型习题及答案

多元线性回归模型 一、单项选择题 1.在由30n =的一组样本估计的、包含3个解释变量的线性回归模型中,计算得多重决定系数为0.8500,则调整后的多重决定系数为( D ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.8327 2.下列样本模型中,哪一个模型通常是无效的(B ) A. i C (消费)=500+0.8 i I (收入) B. d i Q (商品需求)=10+0.8i I (收入)+0.9i P (价格) C. s i Q (商品供给)=20+0.75i P (价格) D. i Y (产出量)=0.650.6i L (劳动)0.4 i K (资本) 3.用一组有30个观测值的样本估计模型01122t t t t y b b x b x u =+++后,在0.05的显著性水 平上对1 b 的显著性作t 检验,则1 b 显著地不等于零的条件是其统计量t 大于等于( C ) A. )30(05.0t B. ) 28(025.0t C. ) 27(025.0t D. ) 28,1(025.0F 4.模型 t t t u x b b y ++=ln ln ln 10中,1b 的实际含义是( B ) A.x 关于y 的弹性 B. y 关于x 的弹性 C. x 关于y 的边际倾向 D. y 关于x 的边际倾向 5、在多元线性回归模型中,若某个解释变量对其余解释变量的判定系数接近于1,则表明模型中存在( C ) A.异方差性 B.序列相关 C.多重共线性 D.高拟合优度 6.线性回归模型01122......t t t k kt t y b b x b x b x u =+++++ 中,检验0:0(0,1,2,...) t H b i k ==时,所用的统计量 服从( C ) A.t(n-k+1) B.t(n-k-2) C.t(n-k-1) D.t(n-k+2)

第三章1.3可线性化的回归分析

1.3 可线性化的回归分析 [学习目标] 1.进一步体会回归分析的基本思想. 2.通过非线性回归分析,判断几种不同模型的拟合程度. [知识链接] 1.有些变量间的关系并不是线性相关,怎样确定回归模型? 答首先要作出散点图,如果散点图中的样本点并没有分布在某个带状区域内,则两个变量不呈现线性相关关系,不能直接利用线性回归方程来建立两个变量之间的关系,这时可以根据已有函数知识,观察样本点是否呈指数函数关系或二次函数关系,选定适当的回归模型. 2.如果两个变量呈现非线性相关关系,怎样求出回归方程? 答可以通过对解释变量进行变换,如对数变换或平方变换,先得到另外两个变量间的回归方程,再得到所求两个变量的回归方程. [预习导引] 1.非线性回归分析 对不具有线性相关关系的两个变量做统计分析,通过变量代换,转化为线性回归模型. 2.非线性回归方程 曲线方程曲线图形公式变换变换后的线性函数

y=ax b c=ln a v=ln x u=ln y u=c+bv y=a e bx c=ln a u=ln y u=c+bx y=a e b x c=ln a v= 1 x u=ln y u=c+bv y=a+b ln x v=ln x u=y u=a+bv 要点一线性回归分析 例1 某产品的广告费用x与销售额y的统计数据如下表: 广告费用x(万元)423 5 销售额y(万元)49263954 (1)由数据易知y与x具有线性相关关系,若b=9.4,求线性回归方程y=a+bx; (2)据此模型预报广告费用为4万元时的销售额. 解(1)x-= 4+2+3+5 4 =3.5,y-= 49+26+39+54 4 =42, ∴a=y--b x-=42-9.4×3.5=9.1

非线性回归分析

非线性回归分析(转载) (2009-10-23 08:40:20) 转载 分类:Web分析 标签: 杂谈 在回归分析中,当自变量和因变量间的关系不能简单地表示为线性方程,或者不能表示为可化为线性方程的时侯,可采用非线性估计来建立回归模型。 SPSS提供了非线性回归“Nonlinear”过程,下面就以实例来介绍非线性拟合“Nonlinear”过程的基本步骤和使用方法。 应用实例 研究了南美斑潜蝇幼虫在不同温度条件下的发育速率,得到试验数据如下: 表5-1 南美斑潜蝇幼虫在不同温度条件下的发育速率 温度℃17.5 20 22.5 25 27.5 30 35 发育速率0.0638 0.0826 0.1100 0.1327 0.1667 0.1859 0.1572 根据以上数据拟合逻辑斯蒂模型: 本例子数据保存在DATA6-4.SAV。 1)准备分析数据 在SPSS数据编辑窗口建立变量“t”和“v”两个变量,把表6-14中的数据分别输入“温度”和“发育速率”对应的变量中。 或者打开已经存在的数据文件(DATA6-4.SAV)。 2)启动线性回归过程 单击SPSS主菜单的“Analyze”下的“Regression”中“Nonlinear”项,将打开如图5-1

所示的线回归对话窗口。 图5-1 Nonlinear非线性回归对话窗口 3) 设置分析变量 设置因变量:从左侧的变量列表框中选择一个因变量进入“Dependent(s)”框。本例子选“发育速率[v]”变量为因变量。 4) 设置参数变量和初始值 单击“Parameters”按钮,将打开如图6-14所示的对话框。该对话框用于设置参数的初始值。 图5-2 设置参数初始值

多元线性回归模型练习题及答案

多元线性回归模型练习 一、单项选择题 1. 在由n =30的一组样本估计的、包含3个解释变量的线性回归模型中,计算 得 可决系数为0.8500,贝U 调整后的可决系数为(D ) A. 0.8603 B. 0.8389 C. 0.8655 D.0.8327 2. 用一组有30个观测值的样本估计模型 y t =b o ? b i x it b 2 X 2t U t 后,在0.05的 显著 性水平上对b l 的显著性作t 检验,则b l 显著地不等于零的条件是其统计量 t 大于等于(C ) A t o 』5(3O ) B t o.025 (28) C t o.o25(27) D F 0.025 (1,28) 3. 线性回归模型y t =b ° "旳+6x 21 + ............ +b k X kt +4中,检验 A H o :b =0(i 二。,1,2 ,.*)时,所用的统计量 / ■■ ■X 服从(C ) A.t (n-k+1) B.t (n-k-2) C.t (n-k-1) D.t( n k+2) 4. 调整的可决系数 :与多元样本判定系数: ‘之间有如下关系( D) R 2= n " R 2 R 2 =1 - n " R 2 A . n- k-1 B. n -k -1 R 2=1 - n " (1 R 2) R 2 =1 - n " (1-R 2 ) C n —k -1 D. n- k-1 5.对模型Y = B 0+ B 1X i + B 2X 2i + 卩 i 进行总体显著性F 检验,检验的零假设是 A ) A . B 1= B 2=0 B. B 1=0 C .B 2=0 D. B 0=0 或 B 1=0 6?设 k 为回归模型中的参数个数,n 为样本容量。则对多元线性回归方程进 行显著性检验时,所用的F 统计量可表示为( B ) ESS (n-k ) 一k A. RSS (k-1) B . (1-R 2 )/(n —k — 1 ) R 2 (n - k) C. (1 - R 2) '(k-1) 7.多元线性回归分析中(回归模型中的参数个数为 k ),调整后的可决系数 R 2与可决系数R 2之间的关系( A ) n -1 R 2 =1 _(1 _R 2 ) ESS/(k-1) D. TSS (n-k)

(完整版)第十二章相关和回归分析练习试题

第十二章相关与回归分析 一、填空 1.如果两变量的相关系数为0,说明这两变量之间_____________。 2.相关关系按方向不同,可分为__________和__________。 3.相关关系按相关变量的多少,分为______和复相关。4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。 5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。 6.变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。 7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值 c Y是服 从();(2)分布中围绕每个可能的 c Y值的()是相同的。 7.已知:工资(元)倚劳动生产率(千元)的回归方程为 x y c 80 10+ = ,因此,当劳动生产率每增长1千元,工资就 平均增加 80 元。 8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。这种分析方法,通常又称为(回归分析)。 9.积差系数r是(协方差)与X和Y的标准差的乘积之比。 二、单项选择 1.欲以图形显示两变量X和Y的关系,最好创建(D )。A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是( A )。 A 都是随机变量 B 都不是随机变量 C 其中一个是随机变量,一个是常数 D 都是常数 3. 相关关系的种类按其涉及变量多少可分为( )。 A. 正相关和负相关 B. 单相关和复相关 C. 线性相关和非线性相关 D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是( B )。 A当0≤ ≤r1时,表示两变量不完全相关; B当r=0时,表示两变量间无相关; C两变量之间的相关关系是单相关; D如果自变量增长引起因变量的相应增长,就形成正相关关系。 5. 当变量X按一定数量变化时,变量Y也随之近似地以固定的数量发生变化,这说明X与Y之间存在( )。 A. 正相关关系 B. 负相关关系 C. 直线相关关系 D. 曲线相关关系 6.当x按一定数额增加时,y也近似地按一定数额随之增加,那么可以说x与y之间存在( A )关系。 A 直线正相关 B 直线负相关 C 曲线正相关 D 曲线负相关 7.评价直线相关关系的密切程度,当r在0.5~0.8之间时,表示( C )。 A 无相关 B 低度相关 C 中等相关 D 高度相关 8.两变量的相关系数为0.8,说明( ) A.两变量不相关 B.两变量负相关 C.两变量不完全相关 D.两变量完全正相关 9.两变量的线性相关系数为0,表明两变量之间( D )。 A 完全相关 B 无关系 C 不完全相关 D 不存在线性相关 10.兄弟两人的身高之间的关系是( )A.函数关系 B.因果关系 C.互为因果关系 D.共变关系 11.身高和体重之间的关系是(C )。A 函数关系 B 无关系 C 共变关系 D 严格的依存关系

应用统计课件:第12章 多元线性回归

第12章多元线性回归 多元回归模型与回归方程 多元回归模型 (multiple regression model) 1.一个因变量与两个及两个以上自变量的回归 2.描述因变量y 如何依赖于自变量x1,x2,…,x k和误差项ε的方程,称为多 元回归模型 3.涉及k 个自变量的多元回归模型可表示为 多元回归模型 (基本假定) 1.误差项ε是一个期望值为0的随机变量,即E(ε)=0 2.对于自变量x1,x2,…,x k的所有值,ε的方差σ2都相同 3.误差项ε是一个服从正态分布的随机变量,即ε~N(0,σ2),且相互独立 多元回归方程 (multiple regression equation) 1.描述因变量y 的平均值或期望值如何依赖于自变量x1,x2,…,x k的方程 2.多元线性回归方程的形式为 E( y ) = β0+ β1 x1+ β2 x2+…+ βk x k 二元回归方程的直观解释 估计的多元回归方程 估计的多元回归的方程 (estimated multiple regression equation) 1.用样本统计量估计回归方程中的参数 时得到的方程 2.由最小二乘法求得 3.一般形式为 参数的最小二乘估计 参数的最小二乘法 参数的最小二乘法 (例题分析) 多重判定系数 多重判定系数 (multiple coefficient of determination) 1.回归平方和占总平方和的比例 2.计算公式为 3.因变量取值的变差中,能被估计的多元回归方程所解释的比例 修正多重判定系数 (adjusted multiple coefficient of determination) 1.用样本量n和自变量的个数k去修正R2得到 2.计算公式为 3.避免增加自变量而高估R2 4.意义与R2类似 5.数值小于R2 估计标准误差S y

Mathematica线性回归和非线性拟合

线性回归和非线性拟合 线性回归和非线性拟合都是根据随机观测的一些数据,按照最小二乘法的原理,得到要分析的量和与它相关的量之间近似的函数关系的过程。此外,还要求对结果做显著性检验、区间估计、预测、模型的优劣讨论和改进等。 Mathematica中,使用函数Regress来进行线性回归分析,其使用格式和做曲线拟合的Fit函数是一样的:(如果你只想得到拟合的函数而不需要分析结果,可以使用Fit函数) Regress[拟合数据,用于拟合的函数列表,变量] 下面是其常用的几种形式: 例:数学模型(姜启源),第294页,牙膏的销售量 1.输入数据 2.调入统计函数包,这是使用回归函数必须做的准备。 3.进行回归分析 4.根据选项RegressionReport输出参数的置信区间 关于结果分析和改进工作请参考书第297页~300页。 Mathematica中,使用函数NonlinearFit进行非线性拟合(在5.0版中,可以用内部函数FindFit代替),使用函数NonlinearRegress进行非线性回归分析,它们的使用格式是一样的,但NonlinearFit只

给出最优拟合函数,而NonlinearRegress还可以对结果进行分析,此外它还有和Regress函数一样的选项RegressionReport。下面是它们的使用格式: NonlinearFit[数据,拟合函数形式,变量表,参数表] NonlinearRegress[数据,拟合函数形式,变量表,参数表] 例:数学模型(姜启源),第312页,酶促反应,混合模型的求解和分析 上机练习: (1)数学模型(姜启源)第326页,第1题(答案:参见配套的习题解答) (2)数学模型(姜启源)第330页,第4题(答案:参见配套的习题解答) (3)2004年数学建模竞赛C题中,人一次性喝下含酒精Q 的啤酒后,假设血液中酒精的浓度与时间 的关系为: ()() () bt at aQ C t e e V a b -- =- - ,这里V0=420百毫升,a,b为待定参数,一瓶啤酒含有的酒 精量为21700毫克。试根据题目给出的数据拟合求出参数a,b,作出相应的图形比较拟合的结果,并计算血液中酒精的浓度什么时候达到最大值。 附:某人在短时间内喝下2瓶啤酒后,隔一定时间测量他的血液中酒精含量(毫克/百毫升),得到数据如下: (答案:可参考我校获奖论文)

用最小二乘法求线性回归方程

最小二乘法主要用来求解两个具有线性相关关系的变量的回归方程,该方法适用于求解与线性回归方程相关的问题,如求解回归直线方程,并应用其分析预报变量的取值等.破解此类问题的关键点如下: ①析数据,分析相关数据,求得相关系数r,或利用散点图判断两变量之间是否存在线性相关关系,若呈非线性相关关系,则需要通过变量的变换转化构造线性相关关系. ②建模型.根据题意确定两个变量,结合数据分析的结果建立回归模型. ③求参数.利用回归直线y=bx+a的斜率和截距的最小二乘估计公式,求出b,a,的值.从而确定线性回归方程. ④求估值.将已知的解释变量的值代入线性回归方程y=bx+a中,即可求得y的预测值. 注意:回归直线方程的求解与应用中要注意两个方面:一是求解回归直线方程时,利用样本点的中心(x,y)必在回归直线上求解相关参数的值;二是回归直线方程的应用,利用回归直线方程求出的数值应是一个估计值,不是真实值. 经典例题: 下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.

为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为1,2.,……,17)建立模型①:y=+;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:y=99+. (1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值; (2)你认为用哪个模型得到的预测值更可靠并说明理由. 思路分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果,(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测. 解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为 =–+×19=(亿元). 利用模型②,该地区2018年的环境基础设施投资额的预测值为 =99+×9=(亿元). (2)利用模型②得到的预测值更可靠.理由如下: (i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–+上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利

多元线性回归实例分析

SPSS--回归-多元线性回归模型案例解析!(一) 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:

点击“分析”——回归——线性——进入如下图所示的界面:

将“销售量”作为“因变量”拖入因变量框内,将“车长,车宽,耗油率,车净重等10个自变量拖入自变量框内,如上图所示,在“方法”旁边,选择“逐步”,当然,你也可以选择其它的方式,如果你选择“进入”默认的方式,在分析结果中,将会得到如下图所示的结果:(所有的自变量,都会强行进入) 如果你选择“逐步”这个方法,将会得到如下图所示的结果:(将会根据预先设定的“F统计量的概率值进行筛选,最先进入回归方程的“自变量”应该是跟“因变量”关系最为密切,贡献最大的,如下图可以看出,车的价格和车轴跟因变量关系最为密切,符合判断条件的概率值必须小于0.05,当概率值大于等于0.1时将会被剔除)

多元线性回归例题与解析

作业: 在农作物害虫发生趋势的预报研究中,所涉及的5个自变量及因 变量的10组观测数据如下,试建立y对x1-x5的回归模型,指出那些变量对y有显著的线性贡献,贡献大小顺序。 x1 x2 x3 x4 x5 y 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930 7.600 3.864 1.599 0.342 2.423 1.104 (!)回归性方程显著性检验: 由Analysis of variance 表可知,其 r F P 的值0.0170小于0.05,则1 y x 与、2 x3x4x、5x之间具有显著性相关性;由R-square的值为0.9356可知该方程的拟合度高,(2)参数显著性检验:

a.由Parameter Estimates 表可知,对自变量x1。t 检验值为t=1.06,Pr t >的值等于 0.3479,大于0.05,故x1的系数为0,即x1未通过检验,去掉x1,再次运行程序。 b.结果表明所有变量的系数均通过检验,得到线性模型。 (3)拟合区间。 2350.75463 1.999640.33313 2.24781y x x x =--+ 故对y 有显著的线性贡献大小顺序为 325 x x x >>。 附件: data ex; input x1-x5 y@@; cards ; 9.200 2.732 1.471 0.332 1.138 1.155 9.100 3.732 1.820 0.112 0.828 1.146 8.600 4.882 1.872 0.383 2.131 1.841 10.233 3.968 1.587 0.181 1.349 1.356 5.600 3.732 1.841 0.297 1.815 0.863 5.367 4.236 1.873 0.063 1.352 0.903 6.133 3.146 1.987 0.280 1.647 0.114 8.200 4.646 1.615 0.379 4.565 0.898 8.800 4.378 1.543 0.744 2.073 1.930

第十二章 简单回归分析

第十二章简单回归分析习题 一、是非题 1.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互线性伴随变化关系. 2.对同一组资料,如相关分析算出的r越大,则回归分析算出的b值也越大. 3.对同一组资料,对r与b分别作假设检验,可得t r=t b 4.利用直线回归估计X值所对应的Y值的均数置信区间时,增大残差标准差可以减小区间长度. 5.如果直线相关系数r=0,则直线回归的SS残差必等于0. 二、选择题 1. 用最小二乘法确定直线回归方程的原则是各观察点距直线的( ). A.纵向距离之和最小 B. 纵向距离的平方和最小 C. 垂直距离之和最小D.垂直距离的平方和最小 E.纵向距离的平方和最大 2.Y=14十4X是1~7岁儿童以年龄(岁)估计体质量(市斤)的回归方程,若体质量换成位kg,则此方程( ) A 截距改变 B 回归系数改变 C 两者都改变 D 两者都不改变 E.相关系数改变 4.直线回归系数假设检验,其自由度为( ) A.n B. n-1

C.n-2 D. 2n-1 E.2(n-1) 5.当r=0时,Y=a+b X回归方程中( ) A a必大于零 B a必大于X C a必等于零 D a必大于Y E a必等于b 6.在多元线性回归分析中,反应变量总离均差平方和可以分解为两部分,残差是指( ). A.观察值与估计值之差B.观察值与平均值之差 C.估计值与平均值的平方和之差D.观察值与平均值之差的平方和E.观察值与估计值之差的平方和 三、筒答题 1.用什么方法考察回归直线是否正确? 2.简述回归系数方差分析Y的平方和与自由度的分解. 3. 举例说明如何用直线回归方程进行预测和控制? 4. 直线回归分析时怎样确定自变量和因变量? 5. 简述曲线回归常用的几种曲线形式.

SPSS多元线性回归分析实例操作步骤

SPSS 统计分析 多元线性回归分析方法操作与分析 实验目的: 引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。 实验变量: 以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。 实验方法:多元线性回归分析法 软件: 操作过程: 第一步:导入Excel数据文件 1.open data document——open data——open;

2. Opening excel data source——OK. 第二步: 1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method 选择Stepwise.

进入如下界面: 2.点击右侧Statistics,勾选Regression Coefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewise diagnostics默认;接着选择Model fit、Collinearity diagnotics;点击Continue.

3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的Standardized Residual Plots(标准化残差图)中的Histogram、Normal probability plot;点击Continue.

非线性回归分析(常见曲线与方程)

非线性回归分析 回归分析中,当研究的因果关系只涉及因变量和一个自变量时,叫做一元回归分析;当研究的因果关系涉及因变量和两个或两个以上自变量时,叫做多元回归分析。此外,回归分析中,又依据描述自变量与因变量之间因果关系的函数表达式是线性的还是非线性的,分为线性回归分析和非线性回归分析。通常线性回归分析法是最基本的分析方法,遇到非线性回归问题可以借助数学手段化为线性回归问题处理 两个现象变量之间的相关关系并非线性关系,而呈现某种非线性的曲线关系,如:双曲线、二次曲线、三次曲线、幂函数曲线、指数函数曲线(Gompertz)、S型曲线(Logistic)对数曲线、指数曲线等,以这些 变量之间的曲线相关关系,拟合相应的回归曲线,建立非线性回归方程,进行回归分析称为非线性回归分析 常见非线性规划曲线 1.双曲线1b a yx 2.二次曲线 3.三次曲线 4.幂函数曲线 5.指数函数曲线(Gompertz) 6.倒指数曲线y=a b/ x e 其中 a>0, 7.S型曲线(Logistic) y 1 abe x 8.对数曲线y=a+blogx,x>0 b x 9.指数曲线y=ae 其中参数a>0 1.回归: (1)确定回归系数的命令 [beta,r,J]=nlinfit(x,y,’model’,beta0) (2)非线性回归命令:nlintool(x,y,’model’,beta0,alpha) 2.预测和预测误差估计: [Y,DELTA]=nlpredci(’model’,x,beta,r,J) 求nlinfit或lintool所得的回归函数在x处的预测值Y及预测值的显著性水平为1-alpha的置信区间Y,DELTA. 例2观测物体降落的距离s与时间t的关系,得到数据如下表,求s 关于t的回归方程s?a btct2. t(s)1/302/303/304/305/306/307/30 s(cm)11.8615.6720.6026.6933.7141.9351.13 t(s)8/309/3010/3011/3012/3013/3014/30 s(cm)61.4972.9085.4499.08113.77129.54146.48 解: b/x,建立M文件volum.m如下:e 1.对将要拟合的非线性模型y=a

相关文档
最新文档