均值不等式求值的十种方法
用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。
要求能熟练地运用均值不等式求解一些函数的最值问题。
一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
二、函数()(0)bf x ax a b x =+>、图象及性质(1)函数()0)(>+=b a x bax x f 、图象: (2)函数()0)(>+=b a xbax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
用均值不等式求最值的类型及方法

用均值不等式求最值的类型及方法2013-5-15 一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一正、二定、三相等② 熟悉一个重要的不等式链:ba 112+2a b+≤≤222b a +(调几算平) 二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xbax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。
例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x (3)已知54x <,求函数14245y x x =-+-的最大值(4)求函数21(1)2(1)y x x x =+>-的最小值 解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x ≥2x ·1x =2;当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)(3)因450x -<,所以首先要“调整”符号,又1(42)45x x -- 不是常数,所以对42x -要进行拆、凑项5,5404x x <∴-> 11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+= 当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
2高三第一轮复习——用均值不等式求最值的类型及方法

高三第一轮复习——用均值不等式求最值的类型及方法均值不等式是《不等式》一章重要内容之一,是求函数最值的一个重要工具,也是高考常考的一个重要知识点。
要求能熟练地运用均值不等式求解一些函数的最值问题。
一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立; ④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a b+≤≤≤222b a +。
二、函数()(0)bf x ax a b x=+>、图象及性质 (1)函数()0)(>+=b a xbax x f 、图象如图: (2)函数()0)(>+=b a xbax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab ;②单调递增区间:(,-∞,)+∞;单调递减区间:(0,,[0). 三、用均值不等式求最值的常见类型类型Ⅰ:求几个正数和的最小值。
例1、求函数21(1)2(1)y x x x =+>-的最小值。
解析:21(1)2(1)y x x x =+>-21(1)1(1)2(1)x x x =-++>-21111(1)222(1)x x x x --=+++>-1≥312≥+52=,当且仅当211(1)22(1)x x x -=>-即2x =时,“=”号成立,故此函数最小值是52。
均值不等式方法及例题

均值不等式当且仅当a=b时等号成立)是一个重要的不等式,利用它可以求解函数最值问题。
对于有些题目,可以直接利用公式求解。
但是有些题目必须进行必要的变形才能利用均值不等式求解。
下面是一些常用的变形方法。
一、配凑1. 凑系数例1. 当时,求的最大值。
解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到为定值,故只需将凑上一个系数即可。
当且仅当,即x=2时取等号。
所以当x=2时,的最大值为8。
评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。
2. 凑项例2. 已知,求函数的最大值。
解析:由题意知,首先要调整符号,又不是定值,故需对进行凑项才能得到定值。
∵∴当且仅当,即时等号成立。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
3. 分离例3. 求的值域。
解析:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x+1)的项,再将其分离。
当,即时(当且仅当x=1时取“=”号)。
当,即时(当且仅当x=-3时取“=”号)。
∴的值域为。
评注:分式函数求最值,通常化成g(x)恒正或恒负的形式,然后运用均值不等式来求最值。
二、整体代换例4. 已知,求的最小值。
解法1:不妨将乘以1,而1用a+2b代换。
当且仅当时取等号,由即时,的最小值为。
解法2:将分子中的1用代换。
评注:本题巧妙运用“1”的代换,得到,而与的积为定值,即可用均值不等式求得的最小值。
三、换元例5. 求函数的最大值。
解析:变量代换,令,则当t=0时,y=0当时,当且仅当,即时取等号故。
评注:本题通过换元法使问题得到了简化,而且将问题转化为熟悉的分式型函数的求最值问题,从而为构造积为定值创造有利条件。
四、取平方例6. 求函数的最大值。
解析:注意到的和为定值。
又,所以当且仅当,即时取等号。
故。
评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。
均值不等式八种技巧

运用均值不等式的八类拼凑技巧一、 拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2求函数)01y x x =<<的最大值。
解:y ==。
因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭, 当且仅当()2212x x=-,即3x =时,上式取“=”。
故max 9y =。
评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。
例3 已知02x <<,求函数()264y x x =-的最大值。
解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。
当且仅当()2224x x=-,即x ==”。
故max3218827y ⨯=,又max 0,3y y >=。
二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件例4 设1x >-,求函数()()521x x y x ++=+的最小值。
解:()())14114415159111x x y x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥+=+++。
利用均值不等式求最值的方式

利用均值不等式求最值的方式均值不等式a b ab a b +≥>>200(,,当且仅当a =b 时等号成立)是一个重要的不等式,利用它能够求解函数最值问题。
关于有些题目,能够直接利用公式求解。
可是有些题目必需进行必要的变形才能利用均值不等式求解。
下面是一些经常使用的变形方式。
一、配凑1. 凑系数例1. 当04<<x 时,求y x x =-()82的最大值。
解析:由04<<x 知,820->x ,利用均值不等式求最值,必需和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2828x x +-=()为定值,故只需将y x x =-()82凑上一个系数即可。
y x x x x x x =-=-≤+-=()[()]()821228212282282· 当且仅当282x x =-,即x =2时取等号。
因此当x =2时,y x x =-()82的最大值为8。
评注:此题无法直接运用均值不等式求解,但凑系数后可取得和为定值,从而可利用均值不等式求最大值。
2. 凑项例2. 已知x <54,求函数f x x x ()=-+-42145的最大值。
解析:由题意知450x -<,第一要调整符号,又()42145x x --·不是定值,故需对42x -进行凑项才能取得定值。
∵x x <->54540, ∴f x x x x x ()()=-+-=--+-+42145541543 ≤---+=-+=2541543231()x x ·当且仅当54154-=-x x,即x =1时等号成立。
评注:此题需要调整项的符号,又要配凑项的系数,使其积为定值。
3. 分离例3. 求y x x x x =+++-271011()≠的值域。
解析:此题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
y x x x x x x x x =+++=+++++=++++227101151411415()()() 当x +>10,即x >-1时y x x ≥+++=214159()·(当且仅当x =1时取“=”号)。
均值不等式的证明方法及应用word文档良心出品
均值不等式的证明方法及应用摘要均值不等式在不等式理论中处于核心地位,是现代分析数学中应用最广泛的不等式之一。
应用均值不等式,可以使一些较难的问题得到简化处理。
本文首先系统全面地总结了均值不等式的十种证明方法,其中包括柯西法、数学归纳法、詹森不等式法、不等式法、几何法、排序法、均值变量替换法、构造概率模型法、逐次调整法、泰勒公式法;其次, 结合相关例题给出均值不等式在证明不等式、比较大小、求最值、证明极限的存在性、判断级数敛散性、证明积分不等式方面的应用。
关键词:均值不等式;数学归纳法;最值;极限;积分不等式页20共页1第PROOFS AND APPLICATIONS ON A VERAGE VALUE INEQUALIT YABSTRACTAverage value inequality occupies a core position in inequality theory and is one of themake inequality can modern mathematics. Using average inequalities most widely used insome difficult problems simple. In this paper, ten proof methods of average value inequalityinduction, mathematical method, summarized, including Cauchy are first systematicallyJensen inequality, inequality method, geometry method, sorting method, variable substitutionadjustment successive model method, constructing method of average value, probabilitymethod, Taylor formula method, respectively. Secondly, we give applications of average valueinequality combining the corresponding examples on comparing the size, solving maximumand minimum, proving the existence of the limit, judging convergence of series and provingintegral inequality.Key words average value inequality; mathematical induction; maximum and minimum;:limit; integral inequality页20共页2第目录前言--------------------------------------------------------------------- 41 均值不等式的证明方法--------------------------------------------------- 51.1 柯西法------------------------------------------------------------ 51.2 数学归纳法-------------------------------------------------------- 61.3 詹森不等式法------------------------------------------------------ 71.4 不等式法---------------------------------------------------------- 71.5 几何法------------------------------------------------------------ 81.6 排序法------------------------------------------------------------ 91.7 均值变量替换法---------------------------------------------------- 91.8 构造概率模型法---------------------------------------------------- 91.9 逐次调整法------------------------------------------------------- 101.10 泰勒公式法------------------------------------------------------ 102 均值不等式的应用------------------------------------------------------ 122.1 均值不等式在证明不等式中的应用----------------------------------- 122.2均值不等式在比较大小问题中的应用--------------------------------- 132.3 均值不等式在求最值问题中的应用----------------------------------- 132.3.1 均值不等式求最值时常见错误 --------------------------------- 14 2.3.2 均值不等式求最值“失效”时的对策 --------------------------- 16 2.4 均值不等式在证明极限的存在性时的应用----------------------------- 172.5 均值不等式在判断级数敛散性中的应用------------------------------- 192.6 均值不等式在证明积分不等式中的应用------------------------------- 193 结论------------------------------------------------------------------ 21参考文献:--------------------------------------------------------------- 22 致谢-------------------------------------------------------------------- 23页20共页3第前言不等式在数学的各个领域和科学技术中都是不可缺少的基本工具, 而均值不等式是重中之重. 通过学习均值不等式,不仅可以帮助我们解决一些实际问题,还可以培养逻辑推理论证能力和抽象思维能力,以及养成勤于思考、善于思考的良好学习习惯. 因此,研究均值不等式的证明方法及应用,是一个既有理论意义又有广泛现实意义的问题.均值不等式的证明及运用均值不等式来解决数学中的某些问题,在数学研究中历历可见. 如,比较大小、求函数的最值、证明不等式常利用均值不等式的方法进行解答.均值不等式还是高等数学中最基本的运算之一,作为最基本不等式,在解决高等数学问题中也发挥着重要的作用. 运用均值不等式可以使复杂的问题简单化,繁琐的问题清晰化.??1最先运用了均值不等式,证明了球和圆柱的相关问题.此后科著名数学家阿基米德学家们对均值不等式的证明方法进行了深入的研究,并在此基础上把均值不等式应用到了其他领域. 当前, 我国许多学者对均值不等式的证明方法及应用进行了大量的研究??8??142?.如,陈益琳在学生利用均值不等式解题时遇到的常见问题作了总结性的工作.??9冉凯对均值不等式在数学分析中的应用做了探讨. 均值不等式在解决许多问题中发挥着重要的作用.本文将对均值不等式的证明方法及应用进行归纳和总结.页20共页4第1 均值不等式的证明方法. ,我们给出均值不等式首先是个正数,则定理1 设a,...,,aan n12a??a?a??n12,1?1aaa??n n21n.上式当且仅当时等号成立a?aa??n12我们把以后简称均值不等式. 上述不等式我们称之为算术—几何平均不等式,a??a?a n12分别记做个数的算术平均数和几何平均数,和分别叫做这aaa?n n n12n??????)aa?AGAaa(G.式即为和,(1-1)nnnn.下面给出均值不等式的几种证明方法柯西法1.12. ,由于.,得有当时0?a0,a?a?2aa(a?a)??0a2n?21212211)aa??a)?(a?a?a?a?(a,当时4?n42241331aaa4aa?aa?2aa?4aa?2a.4433423112142)?aa?aaa?a)?(?(a?a?时,当8?n85413627.aaaa?8aaaa?a4aaaa?4aaa8448541123747825663n令次之后将会得到, 这样的步骤重复a?a??a??n1221?A?aa,a?a,a?;a???a?2nnnn?111?n2n有1nn A)?nnA?(2?1nA?aa?(aAa?a)aA??222nn1122n2即n n2?nna?a??a n12?a?aa.n n21n这个归纳法的证明是柯西首次提出的,我们将它称之为柯西法.页20共页5第1.2 数学归纳法证法一当时,不等式显然成立. 2n?假设当时,命题成立. kn?则当时,1k?n?a?a??a?a11?k2k.,a?aG?a?A1k?1K?1?2K?1k11k?因为具有全对称性,所以不妨设ai a?min{a|i?1,2,,k,k?1}a?max{a|i?1,2,,k,k?1}.,ii11k??????AA0a?a?aa?A?.于是以及显然 ,,1?11kK?1?K1k?K?11A(a?a?A)?aa. 1kKK?1?111?k?1所以(a?a??a?A)AA?kA(k?1)121?K1k?1K?1KK?1???A?1?K kkk)(a?a?Aa??a?2?11kKk?1.=)A?a??aa?(a k1K1k?112?k?k k?aa(a?a?AA)A,得即两边乘以1Kkkk??1112?1?KK?1?1k??GaAaa(aa)aaA(a??A)?.2K?k1k112kK?1k?11k?1?1K?A?G.从而,有11K??K??aGa)?A(. 所以,由数学归纳法,均值不等式对一切成立,即n nn 证法二当时,不等式显然成立;2?n假设当时成立.kn?k1?G?G?k?(k?1)a,于是则当有1n?k?k时,1??1kk?1k1k?111G?1)a?(k1k?1k?)??G(GaG(G?) kk22k1k?1kk?1k?k a?(k?1)Ga?(k?1)G11k??k11?1k?1k?)??)(A?(G .kk2k2k2k?G?(k?1)A?(k?1)GG?A.,所以所以1?k1?1k?k1?1?kk页20共页6第当且仅当且时等号成立. G1)(k?k?G?aa?G?1?k?1kkk?1k??.G a A(a)?由数学归纳法知,均值不等式对一切成立,即n nn1.3 詹森不等式法f(x)xII,对任意)若的凸函数为区间,上式引理1(Jensen不等?in???,则,且1?)n1,?0(i?2,,ii1?i nn????x)()f(?fx (1-3)iiii1i?i?1成立.下面利用詹森不等式证明均值不等式.a?0(i?1,2,n,)令由,于易令 ,,知在是凸函数.)(0,f(0)x)ln f(x)??x??(x?i1?,1有下式,则由引理?i na?a??a1ln(?n12.)a??ln?(ln a?ln a)?n21nn则?a?a?a11a ln(n21,)a ln(a(ln)?a?ln a?)?a?ln nn2121nnn因此1a??a?a a ln(n21)a?ln(a),nn21n即a?a??a n12,a?aa?n n21n aa?a??.当且仅当时等号成立n121.4 不等式法x?1?ex进行推导在均值不等式的证明中,可以运用一个特殊的不等式.xx e)?ef(x?f(x)应用迈克劳林展开式并取拉格朗日余项得:设,对1?xx2x1?xe?e?, 2页20共页7第x?.当因此, 时,等号成立,, 其中, .. x1e??00xx?00???1x?. 下面给出均值不等式的证明过程n?0?x.,使取一组数,.令A(1?x)a?xn1,2,,k?knkkk1?k x,可得全为零时,取等号)则由(e??(1x)x k kk111nnn??nx???k,AeAG?(a)??(1?x)A?nn??nknknn??1k?k?1k?1)G(aA(a)?.所以nn 1.5 几何法x ex G?y)e(G,可见这条切线,,作函数的图像它是凸曲线,并在点处作切线e?y n n G na ea i Gi .所因此,可以得以到见在函数的下面(图),0?e?)n,i?1,2,3,(11?n G n)??aa?a(ea n12nA eaea Gnnn21?nA?G e)((e?()?)?,,即且从上述证明中可知,,于是n nn G GGG nnnn G??a?a?a.时,等号成立当且仅当nn121-1图页20共页8第排序法1.6aaaaaaaaa n12112?n1211??xx??x?x,取其中的一个,做序列: ,…,,n112n?n1n2?GGGG nnnnaxaaxx nn2211???1?b?xxb?xb?,则,…,,,…,,排列. :n11n1?2n GbbGbG n2n1nn111???0?0x?x??x?则由排序原理可知不妨设..n12xxx2n1xxxx111n321??????x???x??n?x , 21n xxbxbbb2n3n112aaa aa??a?n21n????n21,,即aa?a?n n12GGG n nnn)(a(a)?GA.所以nn 1.7 均值变量替换法. 本节运用数学归纳和变量替换相结合的方法证明均值不等式. 易证时,不等式显然成立2n?. 假设当时,不等式成立kn?1?k?x)1,?A(i?2,,nx?axx必有一个,不全为零设则当,则1?n?k0?设时,.1ik?iii i1i?x?x?0, ,另一个为负,不妨设 ,由于为正)?x?A(A?x)Aaa?(?x)(A?x1i2?k?11211k?1211kk?从而(A?x?x)?a??a?A k?131k?12?(A?x?x)aaa k1k?11k42?3k?1kk1?Gaa1?k21??aaa.kk14?3k AA1k?k?1?1k?1k,即 .所以GA?GA?1?1kk?1?1k?k??a)?G(Aa aa?a??0x?成立.,)时取等号故原不等式当且仅当易证,(时即n12inn1.8 构造概率模型法首先给出证明过程中要用到的一个引理.页20共页9第有则存在,变量,并且数学期望引理2 设是一个随机EXX??22?,.41)(?EXEX)EX?E(ln X ln1.其中,建立概率模型,设随机变量的概率分布为,n,i?1,2,X0?a?)?aP(X ii n,由引理2可知111nnn???aaaa,,ln??ln aa lnln n n12iii n nn1ii?1?i?1a??a?an12.成立即a?a?a n n12n1.9 逐次调整法}a?min{a}a?max{a,a,...,aa易见中必存在最值数,不妨设,. in221i1a?(a?a)a22121不变.,但是增大.于是,用,即取代AGaa,a]?a[nn122122n)?a)(a(a?a11?2121a????(a?a),i3n n22n1i?)aa)(a?(a?2121a?a?aaa? .nn3n1n222n因此,次(有限次对于各个).,这种代换至多进行1-n aa?221)?aa??AAA?G?aaa?(A.nnnn2nn3nnnn12G?Aa?a??a时,当且仅当,取等号.即n1nn21.10 泰勒公式法1x log?(x)fa?1,x?0)(0?x处展开,有,将在设,则0?)??f''(x)xf(a02ln ax''(xf)2'0)?x)?(x)x?f(x)(x?xxf()?f(.00002因此有?',n2,)b),(i?1,?x(a,a?a,)xx)(x?()f(fx)?(x?f,n1,取000i0i n1?i nnn111???'a)(i?1,2,,?(fa()?()a?f)(aan)f.从而iiiii nnn1i?11i?i?页20共页10第??????'a()a)a)?(?a?f(a)?nf((a)?fnf故,iiiiii nnn11i??1i??11ii?1?ii1nn111)??a?a(a??n12aaa nnnnnn111)loglog???log?(log)(f()a?af,即.因此有n n21iiaaaa nnn11i?i?1111)a?a?(a?)a(a???a nn12n12)a(a?a)(a?aa1)?log?log(0?a loglog?,即 ,亦即nn n12n12aaaa na?a??a n21.,故有)1,n2,,0,a(?i?aa?a?n in12n页20共页11第2 均值不等式的应用2.1 均值不等式在证明不等式中的应用一般不等式的证明,常常考虑比较法,综合法,分析法,这是高中比较常用的方法,但有些不等式运用上述方法不好入手,故考虑均值不等式或者均值不等式与综合法相结合,这样处理,常常使复杂问题简单化,从而达到证明的目的.下面举几个例子予以说明.111. 且.求证例1已知为互不相等的正数,?b?c??a?c,a,b1abc?abc1111/b?1/c1/a?1/c1/a?1/b111???b??c??????a.证明bcacab222abc.故原不等式得证22b?a?b?1?aba?.证明例22222ab?2b??ba2b2a1??a1?.,证明由均值不等式得,,????2222ba??ab??1ab?原不等式得,即有,以上三式相加得,. bab?a?a?b1??22.证1,两弦和的半径为均与直径例3设圆交,记与和的交o CD?45CDEFEFABAB 2点分别为和Q,求证 .1?PD?QF2PC?QE?2P1?2图证明如图,设为弦的中点,连接,,则△为等腰直角三角形,POMCOCDMOM?12且.MOMP?222222222CO2?MO?)MC?MC)?(MPMCPDPC??(?)?MCMP?2(?MP)2(页20共页12第211??.??2??22??122. 同理,??QEQF2由均值不等式得,2222QF?PCPD?QE?QFQE?PD??PC?222222)??PDQF)?((PCQE?211?122.??22.即,原不等式得证1?QE?2PD?QF2PC? 2.2均值不等式在比较大小问题中的应用准确巧妙地运用均值不等式是快速解决这比较大小问题是高中数学中常见的问题,.类问题的关键ba?1之间试判断若,,,,例4lg R)Q?(lg a?lg b?bp lg a??lg RP,Q,1a?b?22.的大小关系由均值不等式,得解1.Pb?)b?lg a?lg Q?(lg a?lg21a?b.Q??lg b)abR?lg?lg?(lg a22.即由于,所以不能取等号,Pa?bQ?R?ba?,2.3 均值不等式在求最值问题中的应用是重要知识点解决一些取值范围问题时运用非常广泛,均值不等式在求函数最值,达到解,,我们应因题而宜地进行变换,并注意等号成立的条件在实际应用问题中之一.熟练运用该,利用熟悉知识求解是常用的解题技巧,,题的目的变换题目所给函数的形式.,对于提高思维的灵活性和严密性大有益处技巧例5求下列函数的值域:页20共页13第112;(1) (2). y?y?3x?x?2xx21122?x3x? =6y?3?2,解 (1)因为. 所以,. 值域为)6,+?[22xx2211?xy??2x??2时,(2)当. 0?x xx111-2?x??)?y?x??2???(x值域为,故时当,.??)]?[2,(-?,-20x?xxx . 的最大值求函数例6若,)x3x(8?3f(x)?2?0?x)3xx?(8?3????xf,的最大值是.解因为, 所以,故4x(8?3x?3fx) ??20??x24.使r h 和底面半径的比为何值时,例7制作容积一定的有盖圆柱形罐头, 当圆柱高)用的材料最省? (不计加工损耗VVV2V322222??????, 解 ,设圆当且仅当rr2???2?rh22r?Vr??32?2?S rrrr233???即圆柱形的高与底面此时有,故即 , 时, 材料最省. h2rrV?2?r2:1?h:r.使用的材料最省时,半径之比为2:1均值不等式求最值时常见错误2.3.1;(3)定正;(2)运用均值不等式解题是一项重要内容,运用这种方法有三个条件:(1)或不等式之间进行缩小, .在此运用过程中,往往需要对相关对象进行适当地放大、相等.,而且错误不易察觉,在此过程中,学生常常因为忽视条件成立而导致错误传递等变形.,就这一问题列举几个例子进行说明因此1??. 求的值域例81y?x??x1?x我们常常写成在解题时,分析111??31????1??12x??yx?1?x,1?1x?x?1x1????y?3,与1x?忽视均值不等式中,虽然.故但的积是常数,不一定是正数1?x1?x.下面给出正确解法因此解法是错误的的各项为“正”致错, .页20共页14第111???11?3??1?2y?x??x?x?1,当且仅时解当,当1 ?xx?11x?1x?1,即时等号成立; ?1x?2?x x?1111???1??x?1?y??x?211?1?x??,,所以,当时1?y?1?x1?x1?x1?x????. ?????,?13,当且仅当时取等号,所以原函数的值域为0?x2?5x的最小值.例9求?y24x?分析在解题时,我们常常写成22?4?1?5x1x122?2??2xy??x4??4?,22224?4?44xxx?x?1 22??x4,即2.可是在当且仅当中,这是不可,所以的最小值是3x??y2?y24?x能的,所以等号不成立,这个问题忽视均值不等式中等号成立条件.故原式的最小值不是2.下面给出正确解法.11122?y?x4??y??ty?t在(),中,令, 则解在易证4??tx2t?tt24x?152,,即当且仅当,取时上递增,所以的最小值是,?2?y2x??4)??[2,0xt??222号.”“?例10若正数满足,求的最大值.xyy,x6y?x?22yx???即,仅当且常常写成,当且解分析在题时,我们y?x6?x?2y?xy?? 2??xy其实很有道理, 4.初看起来可得时取号, 将其代入上式,,的最大值为2??xy”?“在用均值不等式求最值时,在各项为正的前提下,应先考虑定值,再考虑等号是否成立.2y?x??xy这个问题忽视了均值不等4.的最大值不是所以不是定值中但在,,y?x?xy??2??.下面给出正确解式中积或和是定值的条件.页20共页15第2392y1x?1??取此时)当且仅当时(解因, y?2x?3,yx?”“????2y?xxy???22222??9??. , 所以号?xy max22.3.2 均值不等式求最值“失效”时的对策.运用均值不等式是求最值的一种常用方法, 但由于其约束条件苛刻,在使用时往往顾此失彼,从而导致均值不等式“失效”. 下面例说几种常用的处理策略. 4.,求的最大值例11已知?xy?lg 1?0 ?x lg x从而有,因为,所以,解00??lg xx lg? 1?0 ?x??4??,44????y??2?lg x??lg x??14y??4?x??lg. 即即,当且仅当时等号成立,故?x 4y??max lg x1004??4lg x为定值,本题满足但因为,,所以此时不能直接应用均0?lg x 10 ?x?lg x值不等式,需将负数化正后再使用均值不等式.1????x0的最大值.例12求)x(1 ? 2y?x??2??21x1?2211x???????解,??12x1?2x???2x??y?x??8222??11y?x?. 故当且仅当,即时等号成立.x2?1?2x max48本题不是定值,但可通过平衡系数来满足和为定值.)2x?x?(164?y?a.13已知求的最小值,例0b?a???bba?646464??3??ba?b?b??3?y?a?6412?a?b,,解当且仅当??????bb?a?bbbaa?by?12.时等号成立,即.故4? 8a?b min页20共页16第64?a.但可通过添项、减项来满足积为定值不是定值本题 ,??bba?4?.,求的最小值例14 已知?x?y sin?0 ?x x sin33141??. 解5????y?sin x?sin x???2sin x??1x sin x sinsin x sin x??31. .故且,即当且仅当时等号成立5y?3??x sin1x?sin min x sin x sin44故可通过拆项来满足等号., 本题虽有为定值但不可能成立?sinsin x?xxx sinsin.成立的条件25xx??45???xf______.则15 已知,有例?x4?2x255??????. BAC1. 最小值最小值最大值1 最大值)D(442??21?x?2151?4x?x1?????????x?2x????1f,,解当且仅当??2x????2xx?2x2?42?22x??? . 时等号成立.故选即)(D3?x便可创造出使用均值不等式但对函数式进行分离,本题看似无法使用均值不等式,.的条件 2.4 均值不等式在证明极限的存在性时的应用需证明数列单调极限概念是高等数学中的重要概念,在证明数列极限的存在性时,.下面举例说明而在此过程中便运用了均值不等式的相关内容及数列有界..1n.例16证明重要极限的存在性e)?lim(1?n??n1n.}单调递增先证数列证明 {)?(1n1??11?1?a?a?1?aa??,,则由均值不等式,令得1n?n21n11111?(1?)?[(1).1???(1))?1](1?.nn1nnn?1n?个n个n11n?1)?(1?,即1n?nn?1页20共页17第11n?1n.所以)?? (1?)(1nn?11n}单调递增{.所以数列)(1?n1n}有上界{.再证数列)(1?n11nk?1({为正整数)}以下面的证明可以看到一个更强的命题:数列)(1?)??(1Mk nk为上界.11n?1k?1., 当先证不等式, 时)(1?)??(1k?n nkk设,.1a?a????a?a?a n2k?11?2k k?1k1knk1n?k?)?1?([(k?1)??(n?k)]?,由均值不等式1n?k?1n?1k?1n?1kn11n?1k1?n?11k?. ,因此,所以)?)?)?()(1(1(?k?1n?1nk11111nn?1nk?1.所以,,其次由有)?(1?)?)???1?1(1(1(1?)nnnnk11k?1n},的上界{.均是数列当时,任取一个正整数)M?(1?)(1?kn?k kn111nnk?1仍然成立时,不等式又数列{.}单调递增,所以,当)??(1(1?)?)(1kn?nnk111nnk?1(为正整数). 因此,对于数列 {恒有}, 任)(1?(1?))??(1)(n1,2?k nnk11k?1n}的上界均是数列意选定一个值,{.)?(1M?(1?)k kn11nn} 极限存在{.极限值单调有界,由单调有界定理,所以数列{数列} )?(1(1?)nn1n.,即为e)?lim(1?e n??x1n?1}极限存在且其极限是证明数列{.例17)?(1e n1n?1}{(1?)x?.证明令n n n??11)(n?n?1n1n11?n2?nn?21n?1n??([)(?)?]??().x2n?n?1n?nx1?21?nn????xx0?x有下界,则数列. 又,所以数列单调减少.nnn页20共页18第111??n1n?)1?(?)((l)?im?1?l1im. ??nnn??????nn11n, 所以因为和的极限都存在)?(1(1?)nn111??n1n?e?(1?(1?lim(1?)))??lim. ??nnn????n??n11?n 数列{.}极限存在且其极限是因此, )?(1e n n1?n lim.18 证明例??n:)有由均值不等式(1-1证明1????1?n?1n n n?n?n?n?11??n??个?2n2n?n?22, 1???nn2nn n?1lim?n?0?1.从而有 ,故n??n2.5 均值不等式在判断级数敛散性中的应用均值不等式的应用很广泛,在证明级数的敛散性时也有很重要的应用.????aaa.收敛,证明级数已知正项级数也收敛例191n?nn1n??n11a?0,由均值不等式,有因为,,已知级数证明)aaa?(?a)(n?1,2,n1n?1nn?n2????111????)aaa(a?a从而级数与都收敛,收敛,所以级数再由比也收敛,?aa收敛较判别法,知级数.1nnn?n?1n2221n??1n?1n?1n?1n?nn?12.6 均值不等式在证明积分不等式中的应用积分不等式是一种特殊的不等式,而均值不等式又是证明不等式的重要方法.因此,在积分不等式的证明中我们自然会想到运用均值不等式来进行证明. ??ba,上是正值可积的, ,在20例证明函数且,则nk?1,2,(f)x b0?a?页20共页19第??nnnn????.1111bbbb??????dxf(x)dx)?f()ff(x)?dx(x)dxxf(x)?f(x??????n1n221??????aaaa a??a?an12,证明有利用.a?a?a n n21n)xf()(xf(x)f???dx)xf()dx)dx(ffx(x n12aaa??f(x))xf(x)f(1??n.n21?bbbn12??????bbb n???dx))f(xdxff((x)dxx????n21aaa111????????nnn??)xf()x)f(xf(??b???????n12于是dx?????????bbba???dxx)ff(x)dxf(x)dx(??????????????n21aaa???????dxx(x)dx)f(ff(x)dx1??n21aaa,1?????bbb????bbb n???dxxdx)f(f(x)dx)f(x????n21aaa1111bbbb????????nnnn????. 即dx(x)f)?f(x)ff(x)dx?(xf(x)dx)?dxxf(??????nn2112??????aaaa1?1dx)(x ln f?.在上非负连续,证明例21设dx)(?xfe)(fx[0,1]00证明由题设知在上可积,将等分,作积分和n()fx[0,1][0,1]1nnn i1ii1??????)?lim(f)f(xdx. ,)f)?limlnln f(x)dx?lim(ln f(??nn nnn0??n0??n??n??1i?1i?1?i11nn11????n??)e?ef lim(?. 所以??1?i0??n??n??1?i a?a?...?a n12?a?aa得由均值不等??n i?1)f(limln n??i??n?dxx)ln f(n式,???.n n12n1nn i1i??n1dxx)f((f)?lim)f(lim???nnn0????nn??1?i1i?1?1dx)ln f(x?.故dx)e?(fx00页20共页20第3 结论均值不等式是数学中的重要内容,对培养数学思维发展有很大帮助.本文重在梳理均值不等式的相关证明方法和应用.如,运用均值不等式时,一定时刻谨记一正、二定、三相等原则,具体问题具体分析,有时可以通过转化达到运用均值不等式解题的目的.本文系统地归纳总结均值不等式的各种证明方法及其在具体解题分析和论证推理过程中的应用.通过本论文的撰写,更深刻地理解均值不等式在证明问题和解题中的重要作用.页20共页21第参考文献:[1]中译本(朱恩宽、李文铭等译):《阿基米德全集》[M]. 西安:陕西科学技术出版社,1998.[2]陈侃.算术-几何平均值不等式的证明[J].巢湖学院学报,2008,6(3):129-130.[3]熊桂武 .概率方法在不等式证明中的应用[J].重庆师范大学学报,2003,12:89-91.[4]敦茂.算术平均值与几何平均值不等式的各种证法[J].云梦学刊,1980,1(3):65-80.[5]Norman schaumberger.A coordinate approach to the AM-GM inequality[J].Mathematics Magazine,1991,64:273.[6]刘鸿雁.由Jensen不等式导出某些重要不等式[J].成都大学学报,2003,22(3):32-35.[7]匡继昌.常用不等式[M].济南:山东科学技术出版社,2004.[8]陈益琳.高中教学导练(高二)[M].北京:冶金工业出版社,2004.[9]冉凯.均值不等式在数学分析中的应用[J].青海师专学报,1997,4(2):35-38.[10]赵建勋.浅谈均值不等式的应用[J].高中数学教与学,2011,5(3):7-10.[11]蓝兴苹.均值不等式的推广与应用[J].云南民族大学学报,2006,15(4):22-24.[12]高飞、朱传桥《高中数学教与学》[M]. 济南:山东科学技术出版社,2007.[13]章国凤.均值不等式在高等数学中的应用[J].广西教育学院学报,2008,05(1):151-152.[14]陈复华.均值不等式在微积分中的应用及其它[J].湖北民族学院学报(自然科学版),1994,2(3):88-89.页20共页22第致谢毕业论文暂告收尾,这也意味着我在鞍山师范学院四年的学习生活既将结束。
用均值不等式最值的方法和技巧
用均值不等式最值的方法和技巧均值不等式是一个常用的不等式工具,在解决很多求最值问题时会起到很大的帮助。
它的核心思想是通过找到相应的均值来构造不等式,从而得到最值的估计。
下面,我将详细介绍均值不等式的方法和技巧。
1.算术平均-几何平均不等式(AM-GM不等式):AM-GM不等式是最常见的均值不等式,它表明对于任意非负实数x1,x2, ..., xn,有如下不等式成立:(x1 + x2 + ... + xn) / n ≥ √(x1 * x2 * ... * xn)这个不等式的意义在于,对于一组非负实数的和,取平均值一定大于等于这组数的乘积的正平方根。
这个不等式常常被用于证明其他数学结论的基础。
2.幂平均不等式:幂平均不等式是一组关于算术平均和几何平均之间关系的不等式。
对于任意非负实数x1, x2, ..., xn,以及实数p,q,有如下不等式成立:[(x1^p + x2^p + ... + xn^p) / n]^(1/p) ≥ [(x1^q + x2^q + ... + xn^q) / n]^(1/q)这个不等式是一个广义的不等式,AM-GM不等式就是其特例(p=q=1)。
使用幂平均不等式可以推导出很多常见的不等式,如柯西不等式、余弦不等式等。
3.杨辉不等式:杨辉不等式是一组与二项式系数相关的不等式。
对于任意自然数n,以及实数a,b,有如下不等式成立:(a+b)^n≥C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+...+C(n,n)*a^0*b^n这个不等式是二项式定理的推广,它可以用来证明其它不等式,如二项式不等式、二项式平均不等式等。
4.切比雪夫不等式:切比雪夫不等式是一组关于平均值和取值范围之间关系的不等式。
对于任意一组具有有限均值μ的实数x1, x2, ..., xn,有如下不等式成立:P(,x1-μ,≥k)≤(σ/k)^2其中,σ是x1, x2, ..., xn的标准差,即σ^2 = [(x1 - μ)^2 + (x2 - μ)^2 + ... + (xn - μ)^2] / n这个不等式的意义在于,对于平均值给定的一组数,其离平均值较远的数出现的概率是受标准差的限制的。
均值不等式求最值的常用技巧及习题(含解答:经典)
利用基本不等式求最值的常用技巧及练习题(含解答)(经典) 一.基本不等式的常用变形 1.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当 _____________时取“=”)若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当____________时取“=”)2.若0>ab ,则2≥+a b b a (当且仅当____________时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当_________时取“=”) 注:(1)当两个正数的积为定植时,可以求它们和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的重要条件“一正,二定,三取等” 二、利用基本不等式求最值的技巧: 技巧一:直接求: 例1 已知,x y R +∈,且满足134x y+=,则xy 的最大值为 ________。
解:因为x >0,y>0,所以234343x y x yxy+≥=(当且仅当34x y =,即x=6,y=8时取等号),于是13xy≤, 3.xy ∴≤,故xy 的最大值3. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 解:∵44log log 2x y += 2log 4=∴xy 即xy=1621211211==≥+∴xy y x y x 当且仅当x=y 时等号成立技巧二:配凑项求 例2:已知54x <,求函数14245y x x =-+-的最大值。
解:5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
用均值不等式求最值的方法和技巧
用均值不等式求最值的方法和技巧均值不等式是数学中常用的一种求最值的方法和技巧,它通过将数列中各个数的和与它们的平均值相比较,从而得到最值的估计。
本文将详细介绍均值不等式的定义、性质、应用以及解题步骤,以帮助读者更好地理解和运用这一重要的不等式求解问题。
一、均值不等式的定义均值不等式是数学中一类关于平均值的不等式,通常用来对一组具有其中一种关系的数值进行比较。
假设有n个非负实数a1、a2、…、an,则它们的平均值和它们的几何平均值之间存在以下关系:(a1+a2+…+an)/n ≥ √(a1*a2*…*an) 或(a1+a2+…+an)/n ≥(a1+a2+…+an)/n ≥ ∛(a1*a2*…*an)其中,等号当且仅当a1=a2=…=an时成立。
二、均值不等式的性质1.单变量均值不等式:对于任意n个非负实数a1、a2、…、an,有(a1^p+a2^p+…+an^p)/n ≥ [(a1+a2+…+an)/n]^p其中,p为实数且p≥12.双变量均值不等式:对于任意两个非负实数a和b以及实数p≥1,有[(a^p+b^p)/2]^1/p≥[(a^q+b^q)/2]^1/q其中,p≥q且p、q均不等于0。
3.形式化均值不等式:设f(x)是定义在[a,b]上的连续函数,则对于任意无穷个非负实数a1、a2、…,有f(∫(a1→∞)f(x)dx) ≤ ∫(a1→∞)f(x)dx/lna1其中,a1为自然对数的底数。
三、均值不等式的应用均值不等式在数学中有着广泛的应用,特别是在求最值、证明不等式和优化问题中。
以下是几个常见的应用场景:1.证明不等式:通过应用均值不等式,可以证明很多重要的不等式,如柯西不等式、霍尔德不等式和克劳斯不等式等。
2.求极值:通过应用均值不等式,可以求解一些极值问题,如求最大面积、最小周长和最优化问题等。
3.优化设计:在工程和经济学中,均值不等式可以帮助优化设计,如在材料使用、成本控制和资源分配等方面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
均值不等式求最值的十种方法————————————————————————————————作者:————————————————————————————————日期:用均值不等式求最值的方法和技巧一、几个重要的均值不等式①,、)(222222R b a b a ab ab b a ∈+≤⇔≥+当且仅当a = b 时,“=”号成立; ②,、)(222+∈⎪⎭⎫ ⎝⎛+≤⇔≥+R b a b a ab ab b a 当且仅当a = b 时,“=”号成立; ③,、、)(33333333+∈++≤⇔≥++R c b a c b a abc abc c b a 当且仅当a = b = c 时,“=”号成立;④)(3333+∈⎪⎭⎫ ⎝⎛++≤⇔≥++R c b a c b a abc abc c b a 、、 ,当且仅当a = b = c 时,“=”号成立.注:① 注意运用均值不等式求最值时的条件:一“正”、二“定”、三“等”;② 熟悉一个重要的不等式链:ba 112+2a bab +≤≤≤222b a +。
一、拼凑定和通过因式分解、纳入根号内、升幂等手段,变为“积”的形式,然后以均值不等式的取等条件为出发点,均分系数,拼凑定和,求积的最大值。
例1 (1) 当时,求(82)y x x =-的最大值。
(2) 已知01x <<,求函数321y x x x =--++的最大值。
解:()()()()()()222111111y xx x x x x x =-+++=+-=+-()()311111322241422327x x x x x x ++⎛⎫++- ⎪++=•••-≤=⎪ ⎪⎝⎭。
当且仅当112x x +=-,即13x =时,上式取“=”。
故max 3227y =。
评注:通过因式分解,将函数解析式由“和”的形式,变为“积”的形式,然后利用隐含的“定和”关系,求“积”的最大值。
例2 求函数()22101y xx x =-<<的最大值。
解:()()2242214122x x y x x x =-=•••-。
因()()32222221122122327x x x x x x ⎛⎫++- ⎪••-≤=⎪ ⎪ ⎪⎝⎭,当且仅当()2212x x =-,即63x =时,上式取“=”。
故max 239y =。
评注:将函数式中根号外的正变量移进根号内的目的是集中变元,为“拼凑定和”创造条件。
例3 已知02x <<,求函数()264y x x =-的最大值。
解:()()()222222236418244y xx x x x =-=⨯--()()3222324418818327x x x ⎡⎤+-+-⨯⎢⎥≤=⎢⎥⎣⎦。
当且仅当()2224x x =-,即233x =时,上式取“=”。
故max3218827y ⨯=,又max 3230,3y y >=。
二、 拼凑定积通过裂项、分子常数化、有理代换等手段,变为“和”的形式,然后以均值不等式的取等条件为出发点,配项凑定积,创造运用均值不等式的条件。
例4 (1)已知54x <,求函数14245y x x =-+-的最大值 (2)设1x >-,求函数()()521x x y x ++=+的最小值。
解:()()()141144152159111x x y x x x x x ++++⎡⎤⎡⎤⎣⎦⎣⎦==+++≥++=+++g 。
当且仅当1x =时,上式取“=”。
故min 9y =。
评注:有关分式的最值问题,若分子的次数高于分母的次数,则可考虑裂项,变为和的形式,然后“拼凑定积”,往往是十分方便的。
例5 已知1x >-,求函数()()22413x y x +=+的最大值。
解:1,10x x >-∴+>Q ,()()()()22412424342241414141x y x x x x +∴==≤=⨯+++++++++。
当且仅当1x =时,上式取“=”。
故max 3y =。
评注:有关的最值问题,若分子的次数低于分母的次数,可考虑改变原式的结构,将分子化为常数,再设法将分母“拼凑定积”。
例6 已知0x π<<,求函数2cos sin xy x-=的最小值。
解:因为0x π<<,所以022x π<<,令tan 2xt =,则0t >。
所以211cos 1131323sin sin 22222x t t ty t x x t t t -+=+=+=+≥=g 。
当且仅当1322tt =,即3,33t x π==时,上式取“=”。
故min 3y =。
评注:通过有理代换,化无理为有理,化三角为代数,从而化繁为简,化难为易,创造出运用均值不等式的环境。
三、利用均值不等式化归为其它不等式求解的问题。
例5、已知正数x y 、满足3xy x y =++,试求xy 、x y +的范围 四、拼凑常数降幂例7 若332,,a b a b R ++=∈,求证:2a b +≤。
分析:基本不等式等号成立的条件具有潜在的运用功能,它能在“等”与“不等”的互化中架设桥梁,能为解题提供信息,开辟捷径。
本题已知与要求证的条件是1a b ==,为解题提供了信息,发现应拼凑项,巧妙降次,迅速促成“等”与“不等”的辩证转化。
证明:33333333333333113113,113113a a a b b b ++≥=++≥=Q g g g g 。
()33463, 2.a b a b a b ∴++=≥+∴+≤当且仅当1a b ==时,上述各式取“=”, 故原不等式得证。
评注:本题借助取等号的条件,创造性地使用基本不等式,简洁明了。
例8 若332,,x y x y R ++=∈,求225x y xy ++的最大值。
解:333333311,311,311,x x x x y y y y x y x y ⨯⨯⨯≤++⨯⨯⨯≤++⨯⨯⨯≤++Q()()33333333221151775733x x y y x y x y x y xy ++++++++++∴++≤==。
当且仅当1a b ==时,上述各式取“=”,故225x y xy ++的最大值为7。
例9 已知,,0,1a b c abc >=,求证:333a b c ab bc ca ++≥++。
证明:333333131,131,131a b a b b c b c c a c a ++≥⨯••++≥⨯••++≥⨯••Q ,()()333323a b c ab bc ca ∴+++≥++,又322233ab bc ca a b c ++≥=Q , ()()3333333223,a b c ab bc ca a b c ab bc ca ∴+++≥+++∴++≥++。
当且仅当1a b c ===时,上述各式取“=”,故原不等式得证。
五、拼凑常数升幂例10 若,,a b c R +∈,且1a b c ++=,求证55543a b c +++++≤。
分析:已知与要求证的不等式都是关于,,a b c 的轮换对称式,容易发现等号成立的条件是13a b c ===,故应拼凑163,巧妙升次,迅速促成“等”与“不等”的辩证转化。
证明:()()()161616161616255,255,255333333a ab bc c +≤+++≤+++≤++Q gg g g g g , ()()1625553132.555433a b c a b c a b c ∴+++++≤+++=∴+++++≤g当且仅当13a b c ===时,上述各式取“=”,故原不等式得证。
例11 若2,,,a b a b R ++=∈,求证:332a b +≥。
证明:33333331111,31111,a a b b ⨯⨯≤++⨯⨯≤++Q gg ()3334a b a b ∴+≤++。
又332,2a b a b +=∴+≥Q 。
当且仅当1a b ==时,上述各式取“=”,故原不等式得证。
六、约分配凑通过“1”变换或添项进行拼凑,使分母能约去或分子能降次。
例12 已知28,,0,1x y x y>+=,求xy 的最小值。
解:222846446413223264y x y xxy xy xy x y x y x y ⎛⎫==+=++≥+= ⎪⎝⎭g g g 。
当且仅当2812x y ==时,即 4.16x y ==,上式取“=”,故()min 64xy =。
例13 已知01x <<,求函数411y x x=+-的最小值。
解:因为01x <<,所以10x ->。
所以()()414141159111x x y x x x x x x x x -⎛⎫=+=+-+=++≥⎡⎤ ⎪⎣⎦---⎝⎭。
当且仅当()411x x x x -=-时,即23x =,上式取“=”,故min 9y =。
例14 若,,a b c R +∈,求证()22212a b c a b c b c c a a b ++≥+++++。
分析:注意结构特征:要求证的不等式是关于,,a b c 的轮换对称式,当a b c ==时,等式成立。
此时22a ab c =+, 设()2a m b c +=,解得14m =,所以2a b c +应拼凑辅助式4b c+为拼凑的需要而添,解题可见眉目。
证明:2222222,2,2444444a b c a b c b c a b c a c a b c a ba b c b c b c c a c a a b a b +++++++≥=+≥=+≥=++++++Q g g g ()22212a b c a b c b c c a a b ∴++≥+++++。
当且仅当a b c ==时,上述各式取“=”,故原不等式得证。
七、引入参数拼凑某些复杂的问题难以观察出匹配的系数,但利用“等”与“定”的条件,建立方程组,解地待定系数,可开辟解题捷径。
例15 已知,,x y z R +∈,且1x y z ++=,求149x y z++的最小值。
解:设0λ>,故有()10x y z λ++-=。
()1491491491x y z x x x x y z x y z x y zλλλλλ⎛⎫⎛⎫⎛⎫∴++=+++++-=+++++- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 24612λλλλλλ≥++-=-。
当且仅当149,,x y z x y zλλλ===同时成立时上述不等式取“=”, 即123,,x y z λλλ===,代入1x y z ++=,解得36λ=,此时1236λλ-=,故149x y z++的最小值为36。
八、 引入对偶式拼凑根据已知不等式的结构,给不等式的一端匹配一个与之对偶的式子,然后一起参与运算,创造运用均值不等式的条件。