多元回归和多重相关分析
多元统计分析的基本方法及应用

多元统计分析的基本方法及应用多元统计分析是一种基于多个变量的统计分析方法。
它是对各个变量之间关系进行分析,并进行统计推断和验证的过程。
多元统计分析涉及到多种统计方法和技术,包括多元回归分析、因子分析、聚类分析、判别分析、主成分分析、多维尺度分析等。
这些方法和技术可以用于数据挖掘、市场分析、信用风险评估、社会科学、心理学等领域的研究和应用。
一、多元回归分析多元回归分析是一种常用的统计工具,它可以通过控制一些其他变量,来了解某个变量与另一个变量的关系。
多元回归分析可以用来解决预测问题、描述性问题和推理性问题。
多元回归分析可以针对具有多个解释变量和一个目标变量的情况进行分析。
在多元回归分析中,常用的方法包括线性回归、非线性回归、逻辑回归等。
二、因子分析因子分析是一种多元统计方法,它可以用来描述一组变量或观测数据中的共同性和特征。
因子分析的基本思想是将多个相关变量归纳为一个因子或因子组合。
因子分析可以用于数据压缩、变量筛选和维度识别等方面。
当研究者需要解释多个变量间的关系时,因子分析可以起到非常有效的作用。
三、聚类分析聚类分析是一种基于数据相似性的分析技术。
它通过对数据集进行分类,寻找数据集内的同类数据,以及不同类别之间的差异。
聚类分析可以用于寻找规律、发现规律、识别群体、分类分析等方面。
聚类分析常用的方法包括层次聚类和K均值聚类。
四、判别分析判别分析是一种多元统计方法,它可以用来判别不同群体之间的差异。
这种方法可以用于市场研究、医学研究、生物学研究、工业控制等方面。
判别分析可以通过寻找差异来帮助研究者识别一组变量或因素,以及预测这些结果的影响因素,从而帮助他们更好地理解数据和结果。
五、主成分分析主成分分析是一种多元统计分析方法,它可以用来简化一组变量或因子数据。
这种方法通过对数据进行降维操作,找出影响数据最大的因素和变量组合,从而达到简化数据的目的。
主成分分析可以用于数据可视化、数据分析、特征提取等方面。
多元统计分析回归分析

03
多元线性回归分析
多元线性回归模型的建立
确定自变量和因变量
01
在建立多元线性回归模型时,首先需要明确哪些变量是自变量
(解释变量),哪些是因变量(响应变量)。
确定模型形式
02
根据研究目的和数据特征,选择合适的多元线性回归模型形式,
如线性、多项式、逻辑回归等。
确定模型参数
03
根据选择的模型形式,确定模型中的参数,如回归系数、截距
04
多元非线性回归分析
多元非线性回归模型的建立
确定因变量和自变量
首先需要确定回归分析中的因变量和自变量, 并收集相关数据。
确定模型形式
根据理论或经验,选择合适的非线性函数形式 来表示自变量与因变量之间的关系。
确定模型参数
根据数据,使用适当的方法确定模型中的参数。
多元非线性回归模型的参数估计
01
详细描述
在社会调查中,回归分析可以帮助研究者了解不同因素对人类行为的影响,例如 教育程度、收入、性别等因素对个人幸福感的影响。通过回归分析,可以揭示变 量之间的关联和因果关系,为政策制定和社会干预提供科学依据。
生物医学数据的回归分析
总结词
生物医学数据的回归分析是多元统计分析在生命科学领域的应用,用于研究生物标志物和疾病之间的 关系。
详细描述
在经济领域,回归分析被广泛应用于股票价格、通货膨胀率 、GDP等经济指标的分析和预测。通过建立回归模型,可以 分析不同经济变量之间的因果关系,为政策制定者和投资者 提供决策依据。
社会调查数据的回归分析
总结词
社会调查数据的回归分析是多元统计分析在社会科学领域的应用,用于研究社会 现象和人类行为。
特点
多元统计分析具有多维性、复杂性和实用性。它可以处理多个变量之间的交互 作用和综合效应,广泛应用于各个领域,如经济学、社会学、生物学等。
多元回归分析中的多重共线性及其解决方法

多元回归分析中的多重共线性及其解决方法在多元回归分析中,多重共线性是一个常见的问题,特别是在自变量之间存在高度相关性的情况下。
多重共线性指的是自变量之间存在线性相关性,这会造成回归模型的稳定性和可靠性下降,使得解释变量的效果难以准确估计。
本文将介绍多重共线性的原因及其解决方法。
一、多重共线性的原因多重共线性常常发生在自变量之间存在高度相关性的情况下,其主要原因有以下几点:1. 样本数据的问题:样本数据中可能存在过多的冗余信息,或者样本数据的分布不均匀,导致变量之间的相关性增加。
2. 选择自变量的问题:在构建回归模型时,选择了过多具有相似解释作用的自变量,这会增加自变量之间的相关性。
3. 数据采集的问题:数据采集过程中可能存在误差或者不完整数据,导致变量之间的相关性增加。
二、多重共线性的影响多重共线性会对多元回归模型的解释变量产生不良影响,主要表现在以下几个方面:1. 回归系数的不稳定性:多重共线性使得回归系数的估计不稳定,难以准确反映各个自变量对因变量的影响。
2. 系数估计值的无效性:多重共线性会导致回归系数估计偏离其真实值,使得对因变量的解释变得不可靠。
3. 预测的不准确性:多重共线性使得模型的解释能力下降,导致对未知数据的预测不准确。
三、多重共线性的解决方法针对多重共线性问题,我们可以采取以下几种方法来解决:1. 剔除相关变量:通过计算自变量之间的相关系数,发现高度相关的变量,选择其中一个作为代表,将其他相关变量剔除。
2. 主成分分析:主成分分析是一种降维技术,可以通过线性变换将原始自变量转化为一组互不相关的主成分,从而降低多重共线性造成的影响。
3. 岭回归:岭回归是一种改良的最小二乘法估计方法,通过在回归模型中加入一个惩罚项,使得回归系数的估计更加稳定。
4. 方差膨胀因子(VIF):VIF可以用来检测自变量之间的相关性程度,若某个自变量的VIF值大于10,则表明该自变量存在较高的共线性,需要进行处理。
实验二__多元线性回归模型和多重共线性范文

实验二__多元线性回归模型和多重共线性范文多元线性回归是一种常用的统计分析方法,用于研究多个自变量与一个因变量之间的关系。
在进行多元线性回归分析时,一个重要的问题是多重共线性。
多重共线性是指多个自变量之间存在高度相关性,这会导致回归模型的不稳定性,参数估计的不准确性,以及对自变量的解释能力下降等问题。
在进行多元线性回归分析之前,首先需要对自变量之间的相关性进行检验。
常用的方法有相关系数、方差膨胀因子(VIF)等。
相关系数用于衡量两个变量之间的线性关系,其值介于-1和1之间,接近于1表示高度正相关,接近于-1表示高度负相关。
VIF用于衡量一个自变量与其他自变量之间的相关性,其值大于1且越接近于1,表示相关性越强。
如果发现多个自变量之间存在高度相关性,即相关系数接近于1或VIF接近于1,就需采取措施来解决多重共线性问题。
一种常用的方法是通过增加样本量来消除多重共线性。
增加样本量可以提高模型的稳定性,减小参数估计的方差。
但是,增加样本量并不能彻底解决多重共线性问题,只能部分缓解。
另一种常用的方法是通过变量选择来解决多重共线性问题。
变量选择可以将高度相关的自变量从模型中剔除,保留与因变量高度相关的自变量。
常用的变量选择方法包括前向选择、逐步回归和岭回归等。
这些方法都是根据一定的准则逐步筛选变量,直到得到最佳模型为止。
在变量选择中,需要注意在变量剔除的过程中,要确保剩余变量之间的相关性尽可能小,以提高模型的稳定性和准确性。
此外,还可以通过变换变量来解决多重共线性问题。
变换变量可以通过对自变量进行平方项、交互项等操作,以减小相关性。
变换变量的方法需要根据实际情况来选择,具体操作可以参考相关的统计学方法教材。
总之,多元线性回归模型在实际应用中经常遇到多重共线性问题。
通过检验自变量之间的相关性,选择合适的变量和适当的变量变换方法,可以有效解决多重共线性问题,提高模型的稳定性和准确性。
在具体的研究中,应根据实际情况选择适合的方法来解决多重共线性问题,以确保回归分析结果的可靠性和有效性。
数据分析技术中常用的多元回归分析方法简介

数据分析技术中常用的多元回归分析方法简介多元回归分析是一种常用的数据分析技术,用于建立解释一个或多个自变量与一个或多个因变量之间关系的数学模型。
在实际应用中,多元回归分析可以帮助我们理解和预测因变量的变化情况,同时揭示自变量对因变量的影响程度和方向。
在多元回归分析中,我们通常会考虑多个自变量对一个因变量的影响。
这些自变量可以是连续变量,也可以是分类变量。
为了进行多元回归分析,我们需要收集包含自变量和因变量数据的样本,并建立一个数学模型来描述它们之间的关系。
常用的多元回归分析方法有以下几种:1. 线性回归分析:线性回归是最基本的多元回归分析方法之一。
它假设自变量和因变量之间的关系是线性的,即可以通过一条直线来描述。
线性回归可以用于预测新的因变量值或者探究自变量对因变量的影响程度和方向。
2. 多项式回归分析:多项式回归是线性回归的扩展形式,它允许通过非线性方程来描述自变量和因变量之间的关系。
多项式回归可以用于处理具有非线性关系的数据,通过增加自变量的幂次项,可以更好地拟合数据。
3. 逐步回归分析:逐步回归是一种渐进式的回归分析方法,它通过不断添加或删除自变量来选择最优的模型。
逐步回归可以帮助我们识别对因变量影响最显著的自变量,并且去除对模型没有贡献的自变量,以减少复杂度和提高预测准确性。
4. 岭回归分析:岭回归是一种用于处理共线性问题的回归方法。
共线性指的是自变量之间存在高度相关性,这会导致模型参数估计不稳定。
岭回归通过添加一个正则化项来缩小模型参数的值,从而减少共线性的影响。
5. 主成分回归分析:主成分回归结合了主成分分析和回归分析的方法,用于处理多重共线性问题。
主成分分析通过将自变量转换为一组无关的主成分来降维,然后进行回归分析。
这样可以减少自变量之间的相关性,并提高模型的解释力。
6. 逻辑回归分析:逻辑回归是一种广义线性回归,常用于处理二分类问题。
它通过对因变量进行逻辑变换,将线性回归的结果映射到一个[0, 1]的区间,表示某事件发生的概率。
回归分析与相关分析

回归分析与相关分析导言回归分析与相关分析是统计学中常用的两种分析方法,用于研究变量之间的关系。
在本文中,我们将对回归分析和相关分析进行详细探讨,并介绍它们的原理、应用和实例。
一、回归分析回归分析是通过建立一个数学模型来描述一个或多个自变量与因变量之间的关系。
它可以帮助我们预测因变量的取值,并理解自变量对因变量的影响程度。
1.1 简单线性回归简单线性回归是回归分析中最常见的一种方法,它假设自变量和因变量之间存在线性关系。
通过最小二乘法,我们可以得到最佳拟合直线,从而预测因变量的取值。
1.2 多元线性回归多元线性回归是对简单线性回归的拓展,它可以同时考虑多个自变量对因变量的影响。
通过最小二乘法,我们可以得到最佳的多元回归方程,从而预测因变量的取值。
1.3 逻辑回归逻辑回归是回归分析在分类问题上的一种应用。
它能够根据自变量的取值,预测因变量的类别。
逻辑回归常用于预测二分类问题,如预测一个学生是否会被大学录取。
二、相关分析相关分析是研究两个或多个变量之间相关关系的一种方法。
它可以帮助我们了解变量之间的关联程度,以及一个变量是否能够作为另一个变量的预测因子。
2.1 皮尔逊相关系数皮尔逊相关系数是一种衡量两个连续变量之间线性相关程度的统计量。
它的取值范围在-1到1之间,当相关系数接近1时,表示两个变量正相关;当相关系数接近-1时,表示两个变量负相关;当相关系数接近0时,表示两个变量无相关关系。
2.2 斯皮尔曼相关系数斯皮尔曼相关系数是一种衡量两个变量之间的非线性相关程度的统计量。
它的取值范围也在-1到1之间,但它适用于衡量非线性关系和顺序关系。
斯皮尔曼相关系数广泛应用于心理学和社会科学领域。
应用实例为了更好地理解回归分析与相关分析的应用,让我们通过一个实际案例来说明。
假设我们想研究某个国家的人均GDP与教育水平之间的关系。
我们收集了10个州的数据,包括每个州的人均GDP和受教育程度指数。
我们可以利用回归分析来建立一个数学模型,从而预测人均GDP与受教育水平之间的关系。
多元回归分析方法
多元回归分析方法一、简介多元回归分析是一种经济学和统计学中常用的分析方法,它可以用来研究多个自变量对一个因变量的影响关系。
在实际问题中,我们往往需要考虑多个因素对某个现象的影响,多元回归分析可以帮助我们揭示这种复杂关系。
二、回归模型回归分析基于回归模型,常见的多元回归模型可以表示为:Y = β0 + β1X1 + β2X2 + ... + βkXk + ε,其中Y是因变量,Xi是自变量,βi是对应的回归系数,ε是随机误差项。
回归系数反映了自变量对因变量的影响程度,通过对样本数据进行估计,我们可以得到回归系数的估计值。
三、数据收集与准备在进行多元回归分析之前,我们需要收集和准备相关的数据。
这包括确定因变量和自变量的测量指标,选择合适的样本规模,保证数据的有效性和可靠性。
同时,对于因变量和自变量之间可能存在的非线性关系,我们需要进行适当的变量转换或添加高阶项,以确保模型的拟合程度。
四、回归模型的选择在进行多元回归分析时,我们需要选择合适的回归模型。
这可以通过观察数据的分布情况、变量之间的关系以及领域知识来进行判断。
常见的回归模型包括线性回归、多项式回归和逻辑回归等。
选择合适的模型能够提高分析的准确性和可解释性。
五、模型拟合与评估在得到回归模型的估计值后,我们需要评估模型的拟合程度和预测能力。
常见的评估指标包括均方误差(MSE)、决定系数(R-squared)和F统计量等。
通过这些指标,我们可以判断模型的拟合优度和自变量的显著性,进而确定模型是否可靠以及变量是否具有统计显著性。
六、多重共线性检验多元回归分析中存在一个重要的问题,即多重共线性。
当自变量之间存在强相关关系时,容易导致模型估计结果的不稳定和不可靠。
因此,在进行多元回归分析之前,必须对自变量进行多重共线性的检验。
常用的方法包括方差膨胀因子(VIF)和特征值分解等。
七、模型解释与应用通过对多元回归模型的估计和评估,我们可以得到自变量对因变量的影响程度和方向,并进行合理的解释。
多元线性相关与回归分析
第三节 多元线性相关与回归分析一、标准的多元线性回归模型上一节介绍的一元线性回归分析所反映的是1个因变量与1个自变量之间的关系。
但是,在现实中,某一现象的变动常受多种现象变动的影响。
例如,消费除了受本期收入水平的影响外,还会受以往消费和收入水平的影响;一个工业企业利润额的大小除了与总产值多少有关外,还与成本、价格等有关。
这就是说,影响因变量的自变量通常不是一个,而是多个。
在许多场合,仅仅考虑单个变量是不够的,还需要就一个因变量与多个自变量的联系来进行考察,才能获得比较满意的结果。
这就产生了测定与分析多因素之间相关关系的问题。
研究在线性相关条件下,两个和两个以上自变量对一个因变量的数量变化关系,称为多元线性回归分析,表现这一数量关系的数学公式,称为多元线性回归模型。
多元线性回归模型是一元线性回归模型的扩展,其基本原理与一元线性回归模型相类似,只是在计算上比较麻烦一些而已。
限于本书的篇幅和程度,本节对于多元回归分析中与一元回归分析相类似的内容,仅给出必要的结论,不作进一步的论证。
只对某些多元回归分析所特有的问题作比较详细的说明。
多元线性回归模型总体回归函数的一般形式如下:t kt k t t u X X Y ++⋯++=βββ221 (7.51)上式假定因变量Y 与(k-1)个自变量之间的回归关系可以用线性函数来近似反映.式中,Y t 是变量Y 的第t个观测值;X jt 是第j 个自变量X j 的第t个观测值(j=1,2,……,k);u t 是随机误差项;β1,β2,… ,βk 是总体回归系数。
βj 表示在其他自变量保持不变的情况下,自变量X j 变动一个单位所引起的因变量Y 平均变动的数额,因而又叫做偏回归系数。
该式中,总体回归系数是未知的,必须利用有关的样本观测值来进行估计。
假设已给出了n个观测值,同时1ˆβ,2ˆβ…,k βˆ为总体回归系数的估计,则多元线性回归模型的样本回归函数如下:t kt k t t e X X Y ++⋯++=βββˆˆˆ221 (7.52) (t =1,2,…,n)式中,e t 是Y t 与其估计t Y ˆ之间的离差,即残差。
回归分析概念、相关、多元回归分析
都有显著的线性关系? 不一定。
进行单个自变量的显著性检验.
四、自变量的偏回归效果显著性检验 把在其它自变量对 线性回归基础上 对 的线性回归效果称做 对 的偏回归效果。
检验假设: 定理6.4.2 在m元正态线性模型下, 是 的 最小二乘估计量, 为残差平方和 估计量,则有:
其中
与 独立
是矩阵 主对角线上第
定理6.1.1 在定义6.1.1 的条件下 ,函数
是所有
的函数
中均值方差最小的函数 ,即对任意给定的函数
,总有
成立。
称 y E(Y x1, , xp )为回归函数. (Y,x1,…,xp)服从多元
在
的条件下
正态分布时,回归函数 为线性回归函数
y E(Y x1, , xp ) a0 a1x1 apxp
编号 1 2 3 4 5 6 7 8 9 10
X 820 780 720 867 690 787 934 679 639 820 Y 165 158 130 180 134 167 186 145 120 158 试问进食量与体重增量间有无相关关系?
实例 SPSS软件实现和结果分析 1. SPSS数据输入格式 10行2列
.940** 1.000
Sig. (2-tailed)
.000
.
N
10
10
**. Correlation is significant at the 0.01 level (2-tailed).
P=0.000<0.05, 拒绝原假设的证据较充分
结论:进食量与体重增量间有显著线性相关关系.
§4 多元线性回归分析
几何直观理解 数据散点图
4000
3800
多元回归公式多重共线性变量选择的计算方法
多元回归公式多重共线性变量选择的计算方法多元回归分析是一种常用的统计分析方法,用于研究多个自变量对因变量的影响关系。
然而,在多元回归分析中,可能会存在多个自变量之间的共线性问题,即自变量之间存在较高的线性相关性。
共线性会导致回归系数估计不准确,难以解释自变量的独立作用。
因此,选择合适的变量和解决多重共线性问题是进行多元回归分析的重要步骤。
为了解决多重共线性问题,研究者可以借助各种方法进行变量选择。
下面将介绍几种常用的计算方法。
1. 方差膨胀因子(VIF)法方差膨胀因子是用于判断多重共线性的常用指标。
它反映了每个自变量与其他自变量的线性关系程度。
计算VIF的方法是,对于第i个自变量,回归模型中除了自己以外的其他自变量作为解释变量进行回归分析,计算对应的R^2值。
然后,使用VIF=1/(1-R^2)计算方差膨胀因子。
通常,如果某个自变量的VIF值大于10,就表明存在高度共线性。
2. 特征值法特征值法是基于自变量矩阵的特征值和特征向量进行计算的方法。
首先,计算自变量矩阵的相关系数矩阵,然后对该矩阵进行特征值分解。
根据特征值的大小,可以判断出存在共线性的自变量。
如果某个特征值远大于其他特征值,就表明对应的自变量存在共线性。
3. 逐步回归法逐步回归法是一种逐步选择自变量的方法。
该方法分为前向选择和后向删除两个阶段。
在前向选择阶段,逐步添加自变量,每次选择与残差最相关的自变量加入模型。
在后向删除阶段,逐步删除对残差影响最小的自变量,直到模型中的自变量都显著。
4. 岭回归法岭回归法是一种通过加入正则化项来解决多重共线性问题的方法。
它通过控制正则化参数的大小,提高对共线性的抵抗能力。
岭回归法的核心是对回归系数进行缩减,使其趋近于零。
使用岭回归可以有效剔除共线性变量,得到更稳定的回归结果。
综上所述,多元回归公式多重共线性变量选择的计算方法有方差膨胀因子法、特征值法、逐步回归法和岭回归法等。
每种方法都有其特点和适用范围,研究者可以根据具体问题选择合适的方法进行变量选择,以获得可靠的回归结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Residual(SSE)
10
712.55525 71.25552
F = 51.96940 p-value = .0000
逐步回归法
是按一定的统计程序,经过多步拟合和检 验,从一系列的可供建立回归模型的自变 量中,逐步引入回归作用显著的自变量, 并从回归模型中逐步趋逐回归作用变得不 在显著的自变量,以最终求得“最优”回 归模型的技术.
X1(侨胞旅游人数) 4.917499 1.003854 4.899 .0006
X2(外国旅游人数) -15.762767 16.185008 -.974 .3531
(Constant)
6.825275 6.953243 .982 .3495
相关系数
可决系数 经调整的 可决系数 估计标准误差
Multiple R
SSE X1, X 2 , X 3 n 1 k
3962.4 - 3624.2
=
9.51
284.5 16 -1- 3
4. 5.
结F论F: 合 , 所同以批拒数绝对H利0 润额有显著的偏回归.
建立回归模型的步骤
找出被选变量 试建回归模型 评核回归模型 修改回归模型 解释并应用回归模型
第十四章 多元回归和多重相关 分析
研究多个变量之间的关系
多元线性回归方程 一个因变量和多个自变量
总体回归方程
Yi 0 1 X1i 2 X2i k X ki i
y123k 0 1 X1i 2 X2i k Xki
样本回归方程
yi b0 b1 X1i b2 X2i bk X ki ei
1. H0:
F
分子为引入第K个变量后可 解释变差的增加量,或者说 为引入第K个变量后不可解 释变差的减少量
3. 计算统计量F
SSR X1, X2 , X k SSR X1, X2 , X k 1 / 1
F=
SSE X1, X2 , X k / n 1 k
并非1,
0.05
F2,(33,1都2)等于3.4零9 .
SSR k
3962.4 3
3. F =
55.7
SST n - 1 - k 284.5 12
4. FF 所以拒绝H0
5. 结论: 总体回归方程通过总体检验 , 说明Y和诸自变量
之间存在显著回归 , 即认为所拟合的样本回归方程在总
偏检验:检验因变量Y与新引入回归方程 的自变量Xk是否有显著的偏相关关系
F分布
两个独立的 t分布被各
F分布的图形
自的自由度去除,所得 P 之商的比率服从F分布.
F(10,4)
它是一种非对称分布,图
F(10,10)
形的形状取决于分子和
分母的自由度.
F(10,50)
F
多元回归模型的总检验
1. H0: 1 2 k 0
H1: 并非所有的都为零
2. 据给定的
F
3. 根据样本资料计算统计量F
MSR
SSR k
y
y
2
k
F =
2
MSE SSE n 1 k y y n 1 k
4. 如果F F 则拒绝H0 , 否则接收H0
5. 得出结论:
多元回归模型的偏检验
体上有一定的意义 .
F检验的应用2----偏检验
Y: 利润额; X1:销售部 X2 :代销额
X3 :合同批数
1. H0: 3 0
H1: 3 0
2.
0.05
F
1,12 , 0.05
4.75
3. F SSR X1, X2 , X3 SSR X1, X2 / 1
.95511
R Square
.91223
Adjusted R Square .89468
Standard Error 8.44130
spss的输出结果续
Analysis of Variance(方差分析) DF(自由度) Sum of Squares Mean Square
Regression(SSR) 2 7406.21398 ? 3703.10699
y b0 b1 X1i b2 X2i bk X ki
多重可决系数和 多重相关系数
多重可决系数
r 2
y123k
y
y
2
SSR
y y 2 SST
多重相关系数
r r y123k
2 y123k
多重回归分析中的F检验
总检验:检验某一因变量和k个自变量在 总体上是否有显著的线性关系
得出最优模型
回归和相关分析中应注意的 问题
要正确理解和对待变量之间的关系
– 定量分析之前应进行定性分析 – 相关关系和因果关系
利用回归方程预测时,自变量的取值范围 应在样本的取值范围之内
利用回归方程预测时,特别注意现在的 各项条件是否与建立回归方程时一致
4. 如果FF则拒绝H0 , 否则接收H0 分母为引入第K个变
5. 结论:
量后 不可解释变差
F检验的应用1----总检验
资料来自书中第486页
Y 7.7702 0.2022 X1 0.3209 X 2 0.3842 X 3
1. H0: 1 2 3 0
H0:
2. =
逐步回归法的基本原理
建模开始 据偏回归平方和从被选变量 中选择下一步引入的自变量
拟合新的多元回归方程 对回归模型进行总检验
逐步回归法的基本原理
对引入的新变
对原有的诸自变
量进行偏检验
量进行偏检验
决定:1。新模型是否有显著意义 2。新引入的自变量是否可被接纳 3。原有的自变量是否应被逐出去 4。是进行下一步回归还是终止
spss的输出结果(资料来自第 517页)
Equation Number 1 Dependent Variable.. 年外汇收入
------------------ Variables in the Equation ------------------
Variable ?
B SE B
T
Sig T