第三章 随机信号分析 总结

合集下载

随机信号分析第3章随机信号的频域分析

随机信号分析第3章随机信号的频域分析

f1 ( ) cos3
2 1 f 3 ( ) 4 5 2 6
解:因为
1 f 2 ( ) ( 1) 2 2 2 4 f 4 ( ) 4 4 2 3
f1 ( ) 0
f 2 ( )
f 4 ( )
所以只有
非偶 在实数轴上有极点,
功率谱密度。
维纳—辛钦定理 若随机过程X(t)是平稳的,自相关函数绝对 可积,则自相关函数与功率谱密度构成一对付 氏变换,即: j
GX ( ) RX ( )e

d
2016/5/20
1 RX ( ) 2



GX ( )e
j
d
16
证明:
E[ X T ( ) ] 已知 GX ( ) 2T
xiT (t ) 为 t 的实函数时,其频谱满足
X iT () X iT () X iT () X iT ()
XT ( ) XT () XT () XT ()
1 1 2 GX ( ) lim E | X ( ) | lim E X T T ( ) X T ( ) T 2T T 2T 1 lim E X ( ) X T T ( ) G X ( ) T 2T
R X (t , t ) R X ( ) R X ( )
G ( ) R ( )e j d F R ( ) X X X 有: 1 j 1 RX ( ) G ( ) e d F GX ( ) X 2
第三章 随机信号频域分析
本章主要内容: 相关函数与功率谱密度的关系 互功率谱密度 功率谱的应用 白噪声的定义

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)

随机信号分析与处理(第2版)概述本文档介绍了随机信号分析与处理(第2版)的主要内容。

随机信号是一种在时间上或空间上具有随机性质的信号,在诸多领域中都有广泛的应用,如通信、图像处理、控制系统等。

随机信号的分析和处理对于了解其性质、提取有用信息以及设计有效的处理算法都是必不可少的。

主要内容第一章:随机信号的基本概念本章介绍了随机信号的基本概念和特性,包括随机信号的定义、概率密度函数、均值、方差等。

通过对随机信号的特性分析,可以为后续的分析和处理提供基础。

第二章:随机过程本章讨论了随机过程的定义和性质。

随机过程是一类具有随机性质的信号集合,其在时间上的取值不确定,但具有统计规律性。

通过对随机过程的分析,可以了解其演化规律和统计性质。

本章介绍了随机信号的表示与分解方法。

随机信号可以通过不同的数学模型进行表示,如傅里叶级数、傅里叶变换、小波变换等。

通过将随机信号进行分解,可以提取出其中的有用信息。

第四章:随机信号的功率谱密度本章研究了随机信号的功率谱密度。

功率谱密度描述了随机信号在频率域上的分布,通过分析功率谱密度可以获得随机信号的频率特性和频谱信息。

第五章:随机信号的相关与协方差本章讨论了随机信号的相关与协方差。

相关是用来描述随机信号之间的依赖关系,协方差是用来描述随机信号之间的线性关系。

通过分析随机信号的相关与协方差,可以研究信号之间的相关性和相关结构。

本章介绍了随机信号的滤波和平均处理方法。

滤波是用来抑制或增强随机信号中的某些频率分量,平均则是通过对多次采样的随机信号进行求平均来减小随机性。

第七章:随机信号的参数估计本章研究了随机信号的参数估计方法。

参数估计是通过对随机信号进行采样和分析,通过估计参数来了解信号的统计性质和特征。

第八章:随机信号的检测和估计本章讨论了随机信号的检测和估计方法。

检测是用来判断随机信号的存在或不存在,估计是通过对随机信号的采样和分析来估计信号的参数。

第九章:随机信号的最优滤波本章研究了随机信号的最优滤波方法,最优滤波是通过优化设计滤波器来最小化系统误差或最大化输出信噪比。

随机信号分析课程总结

随机信号分析课程总结

随机信号分析课程总结随着工业生产和社会经济的迅速发展,对工业生产过程中产生的各种复杂大时延信号提出了新的要求。

由于大时延信号中所包含的随机干扰信息往往十分丰富且数量巨大,从而使得原来常规的时域处理算法和存储技术受到了挑战,为了适应这种需求,各种各样的复合域处理方法和分析方法就应运而生,其中最主要的有:随机域滤波、时频局部均值化( FFT)、随机域插值( SAD)、自适应频谱分析( AFCA)等。

但是无论哪种处理方法都必须将实时采集到的时间序列转换成一个随机序列,然后再进行各种分析。

数学在工程科学中有很多应用,例如:计算机视觉,图像处理,金融市场分析,流体动力学,运筹学,医疗诊断,信号处理和许多其他的专业。

这里我们主要介绍的是其中信号处理的几个重要应用领域:signal processing,自动控制,生物医学和图像处理。

随机信号分析在信号处理应用领域中有三种不同的形式:信号通路模型、随机信号分析与其他信号分析。

这三种不同的应用领域都是建立在统计信号处理基础上,而不是建立在各种线性系统的数学理论基础上。

1、信号处理:信号调理是目前信号处理领域研究的热点之一,在很多高科技领域,如通信,雷达,卫星定位,遥感等等都需要有信号处理的手段来提取有用信息。

随机信号分析在其中也起到至关重要的作用,甚至比传统的方法更加重要。

现代化的系统正在进入网络化、智能化和多功能化阶段,而系统工程师们在设计这些系统时就已经开始考虑应该用什么方法来实现它们的控制和决策。

特别是一些对象,在单个元件或单一设备失效的情况下,根本无法实现预期的功能,甚至会造成灾难性的事故。

因此,我们要充分认识到时间序列处理和特征提取的重要性。

对大时延系统进行分析和综合,可以有效地预测其未来的行为。

但这里我们需要先把大时延系统描述成由一组时间序列组成的,尽管如此,大时延系统仍然可以具有“随机”的特征,在这一特征下,人们发明了随机信号分析的方法。

以下将对这些方面进行总结,并给出一个整体的框架,帮助读者理解随机信号分析在大时延系统中的应用。

随机信号分析第三章new

随机信号分析第三章new

因而,我们根据定义式,求得过程X (t) 的均值,自相关函数和均 方值分别为
mX (t ) E[ X (t )] E[ cos(0t )]
2 0
1 cos(0t ) d 0 2
过程X( t )的均值为“0”(常数),
R X (t1 , t 2 ) R X (t , t ) E[ X (t ) X (t )] E[ cos( 0 t ) cos( 0 (t ) )]
1 x(t ) x(t ) Rx ( ) lim T 2T

T
T
x(t ) x(t ) dt f ( )
其结果 f ( ) 是个确定的时间函数。
若对随机过程 X ( , t ) 求时间自相关,则
X (t ) X (t ) X (t ) X (t ) RX ( ) 1 T 1 lim T X (t ) X (t )dt Tlim 2T T 2T f ( , )
例3.1 设随机过程 X (t ) cos(0t )
式中, , 0 皆为常数, 是在 (0,2 )上均匀分布的随机变量。
试问: X( t )是否是平稳随机过程?为什么? 解:由题意可知,随机变量 的概率密度为
1 / 2 , f ( ) 0,
0 2 其他
1
说明
要按上述严平稳过程的定义来判断一个过程是否平稳? 是很困难的 一般在实用中,只要产生随机过程的主要物理条件,在 时间进程中不变化。则此过程就可以认为是平稳的。 另一方面,对有些非平稳过程,可以根据需要,如果它 在所观测的时间段内是平稳的,就可以视作这一时间段 上的平稳过程来处理。即在观测的有限时间段内,认为 是平稳过程。 一般在工程中,通常只在相关理论的范围内讨论过程的 平稳问题。即:讨论与过程的一、二阶矩有关的问题

随机信号分析基础第三章课后答案

随机信号分析基础第三章课后答案

第三章,平稳随机过程的n 维概率密度不随时间平移而变化的特性,反映在统计特征上就是其均值不随时间的变化而变化,mx 不是t 的函数。

同样均方值也应是常数。

(2)二维概率密度只与t1,t2的时间间隔有关,而与时间起点t1无关。

因此平稳过程的自相关函数仅是单变量tao 的函数。

则称他们是联合宽平稳的。

第三章Chapter 3 ==========================================3.2 随机过程()t X 为()()ΦωX +=t cos A t 0式中,A 具有瑞利分布,其概率密度为()02222>=-a eaa P a A ,σσ,()πΦ20,在上均匀分布,A Φ与是两个相互独立的随机变量,0ω为常数,试问X(t)是否为平稳过程。

解:由题意可得:()[]()()002121020222220002222=⇒+=*+=⎰⎰⎰⎰∞--∞φφωπσφπσφωX E πσσπd t cos da e a a dad eat cos a t a a ()()()[]()()()()()()[]()()()()()120212021202021202022212020220210120220222020100222222002010212121221122102122121212212122222222222222t t cos t t cos t t cos det t cos da e e a t t cos dea d t t cos t t cos a d ea d t cos t cos da eaadad e at cos a t cos a t t t t R a a a a a a a -=-⨯=-⨯-=-⨯⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫-∞+-=-⨯-=⎩⎨⎧⎭⎬⎫+++---=++=++==-∞∞---∞∞-∞--∞⎰⎰⎰⎰⎰⎰⎰⎰⎰ωσωσωσωωφφωωπσφπφωφωσφσπφωφωX X E σσσσπσπσσπXX )(,可见()[]t X E 与t 无关,()21t t R ,XX 与t 无关,只与()12t t -有关。

随机信号分析第三章

随机信号分析第三章

§ 3.1
平稳随机过程及其数字特征
一、平稳随机过程的基本概念
1.严平稳随机过程
一个随机过程X(t), 如果它的n维概率密度(或n维分 布函数)不随时间起点选择的不同而改变,则称X(t)是 严平稳随机过程。
p X ( x1 , x2 ,..., xn ; t1 , t 2 ,..., t n ) p X ( x1 , x2 ,..., xn ; t1 , t 2 ,..., t n )
2 *
则称X(t)为宽平稳过程(或称广义平稳过程) 严平稳过程只要均方值有界, 就是广义平稳的, 但反之则不一定。
两个随机过程平稳相依
当我们同时考虑两个平稳过程X(t)和Y(t)时,若它 们的互相关函数仅是单变量τ 的函数,即
R X Y (t1 , t 2 ) E[ X (t1 )Y (t 2 )] R XY ( ), t 2 t1 ,

(2)平稳过程X(t)的二维概率密度只与t1、 t2的时间间隔有关,而与时间起点t1无关。
p X ( x1 , x2 ; t1 , t2 ) p X ( x1 , x2 ;0, t2 t1 ) p( x1 , x2 ; )
所以与二维分布有关的数字特征仅是τ的函数, 而与t1,t2的本身取值无关
式中
1 x(t ) lim T 2T



x(t )dt
1 x(t ) x(t ) lim T 2T



x(t ) x(t )dt
分别称作X(t) 的时间均值和时间自相关函数。
各态历经过程
若X(t)的均值和自相关函数都具有各态历经性, 则称X(t)是宽各态历经过程。 若X(t)的所有统计平均特性和其样函数所有 相应的时间平均特性以概率为一相等, 则称X(t)为 严遍历过程或窄义遍历过程. 本章仅限于研究宽遍 历过程.如果不加特别说明,遍历过程即指宽遍历过 程. 不难看出,遍历过程必定是平稳过程,但平稳过 程不一定是遍历过程。 对于遍历过程,只要根据其一个样函数,便 可得到其数字特征。

随机信号分析第三章

随机信号分析第三章

E{ X (t + Δt )} → E{ X (t )}

m X (t + Δt ) → m X (t )
(3.2.10)
由此可以得出结论: 如果 X (t ) 均方连续,则其均值函数亦连续。(3.2.10)式也可以表示为
Δt →0
lim E{ X (t + Δt )} = E{ X (t )} = E{l ⋅ i ⋅ m X (t + Δt )}
(3.1.11)
假定系统是线性时不变的,由线性时不变的基本特性和两个基本定理可以看出,如果 X (t ) 是 严平稳的,则 Y (t ) 也是严平稳的。如果 X (t ) 是广义平稳的,则 Y (t ) 也是广义平稳的。
108
3.2 随机过程的导数与积分
与确定性过程一样,导数和积分是随机过程的两种重要的运算,而导数和积分又是以极限为基 础的。因此,本节首先介绍随机变量极限的概念,进而引入导数和积分的概念。随机变量的极限有 几种,我们只讨论其中最常用的一种,即均方极限,因此,我们讨论的导数和积分都是均方意义下 的导数和积分。
3.2.3 随机过程的导数
有了随机过程极限与连续性的定义后,我们就可以引入导数的概念。 1 导数的定义 定义:设随机过程 X (t ) ,如果下列极限存在,
l ⋅i ⋅m
Δt →∞
X (t + Δt ) − X (t ) Δt dX (t ) , 即 dt
(3.2.12)
则称此极限为随机过程 X (t ) 的导数,记为 X ′(t ) 或
以上两个定理是线性变换的两个基本定理,它给出了随机过程经过线性变换后,输出的均值和 相关函数的计算方法。 从两个定理可知,对于线性变换,输出的均值和相关函数可以分别由输入的均值和相关函数确 定。推广而言,对于线性变换,输出的 k 阶矩可以由输入的相应阶矩来确定。如

通信原理-第三章 随机信号分析

通信原理-第三章 随机信号分析

第三章随机信号分析随机过程平稳随机过程噪声随机过程通过系统3.1 随机过程通信过程就是信号和噪声通过系统的过程。

通信中信号特点:具有不可预知性——随机信号。

通信中噪声特点:具有不确定性——随机噪声。

统计学上:随机过程。

一、基本概念二、统计特性一、基本概念随机变量定义分布函数概率密度函数二维随机变量随机变量的数字特征数学期望方差协方差矩基本概念(续)随机过程设E是随机试验,S={e}是其样本空间,如果对于每一个e∈S,有一个时间t的实函数ξ(e,t) t ∈T与之对应,于是对于所有的e∈S,得到时间t的函数族。

该族时间t的函数称为随机过程,族中每个函数称为这个随机过程的样本函数。

ξ(t)={x(t),x2(t),……,x n(t),……}1x1(t),x2(t),……为样本函数基本概念(续)随机过程的一个实现每一个实现都是一个确定的时间函数,即样本。

随机过程其随机性体现在出现哪一个样本是不确定的。

随机过程没有确定的时间函数,只能从统计角度,用概率分布和数字特征来描述。

基本概念(续)二、统计特性概率分布数学期望方差协方差函数相关函数1.概率分布2.数学期望1[()](,)()E t xf x t dx a t ξ∞−∞==∫物理意义:表示随机过程的n 个样本函数曲线的摆动中心(平均值)3. 方差D(ξ (t )] = E{ξ (t ) − E[ξ (t )]} = σ (t )2 2物理意义:表示随机过程在某时刻t的取 值(随机变量)相对于该时刻的期望a(t) 的偏离程度4. 自相关函数R(t1 , t2 ) = E[ξ (t1 )ξ (t2 )] = ∫∞ −∞ −∞ 1 2 2∫∞x x f ( x1 , x2 ; t1 , t2 )dx1dx2物理意义:表示随机过程在两个时刻的 取值的关联程度, ξ(t)变化越平缓, 两个时刻取值的相关性越大,R值越大5.自协方差函数B(t1 , t2 ) = E{[ξ (t1 ) − a(t1 )][ξ (t2 ) − a(t2 )]} =∫ ∫−∞∞f 2 ( x1 , x2 ; t1 , t2 ) dx1dx2 x1 − a ( t1 ) ⎤ x2 − a ( t2 ) ⎤ ⎡ ⎡ ⎣ ⎦ ⎣ ⎦ −∞∞物理意义:表示随机过程在两个时刻间 的线性依从关系6.互协方差及互相关函数Bξη (t1 , t2 ) = E{[ξ (t1 ) − a (t1 )][η (t2 ) − a (t2 )]}Rξη (t1 , t2 ) = E[ξ (t1 )η (t2 )] = ∫∞−∞ −∞∫∞x1 y 2 f 2 ( x1 , y 2 ; t1 , t2 )dx1dy 23.2 平稳随机过程„ „ „ „定义 各态历经性 自相关函数 功率谱密度一、定义„„若随机过程的n维概率分布函数Fn ()和n维概 率密度函数fn ()与时间起点无关,则为平稳随 机过程 严平稳过程,狭义平稳过程f n ( x1 , x2 ,..., xn ; t1 , t2 ,..., tn ) = f n ( x1 , x2 ,..., xn ; t1 + τ , t2 + τ ,..., tn + τ )定义(续)a (t)Æa; σ2(t)Æ σ2; R(t1,t2)ÆR(τ)„ „ „ „一维分布与t无关: 二维分布只与τ有关 统计特性与时间起点无关 依据数字特征定义„宽平稳过程,广义平稳过程二、各态历经性设x (t)是ξ(t)的任一实现,ξ(t)的统计平均= x (t)的 1 T2 时间平均 a=a = x (t ) dtlim T ∫T →∞−T2σ =σ22=lim ∫T →∞T →∞1 TT2 2−T[ x (t ) − a ] 2 dtR (τ ) = R (τ ) = lim1 T∫2 −T 2Tx (t ) x (t + τ ) dt意义 : 随机过程中的任一实现都经历了随机过程的所有可能 状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 总结
对随机的东西只能作统计描述。

1).统计特性( 概率密度与概率分布);
2).数字特征( 均值、方差、相关函数等)。

节1 随机过程概念
一、随机过程定义
二、随机过程统计特性的描述
1.随机过程的概率分布函数
2.随机过程的概率密度函数
三、随机过程数字特征的描述
1、数学期望:
性质:① E[k] = k
② E[ξ(t) + k] = E[ξ(t)] + k
③ E[ kξ(t)] = k E[ξ(t)]
④ E[ξ
1(t) + …+ξ
n
(t)] = E[ξ
1
(t)] + …+E[ ξ
n
(t)]
⑤ ξ
1(t)与ξ
2
(t)统计独立时,E[ξ
1
(t)ξ
2
(t)] = E[ξ
1
(t)] E[ξ
2
(t)]
2、方差:
性质:① D[k] = 0
② D[ξ(t) + k] = D[ξ(t)]
③ D[kξ(t)] = K2 D[ξ(t)]
④ξ
1(t)ξ
2
(t)统计独立时, D[ξ
1
(t)+ξ
2
(t)] = D[ξ
1
(t)] + D[ξ
2
(t)]
3、相关函数和协方差函数
节2 平稳随机过程概念 一、定义:狭义平稳、广义平稳 广义平稳条件:
① 数学期望与方差是与时间无关的常数;
② 相关函数仅与时间间隔有关。

二、性能讨论
1、各态历经性(遍历性):其价值在于可从一次试验所获得的样本函数 x(t) 取时间平均来得到它的数字特征(统计特性)
2、相关函数R(τ)性质
① 对偶性(偶函数) R(τ)=E[ξ(t)ξ(t+τ)]=E[ξ(t
1-τ)ξ(t
1
)]= R(-τ)
② 递减性 E{[ξ(t) ±ξ(t+τ)]2}
= E[ξ2(t)±2 ξ(t) ξ(t+τ) + ξ2(t+τ) ]
= R(0)±2R(τ) + R(0) ≥ 0
∴R(0)≥±R(τ) R(0)≥|R(τ)|
即τ=0 处相关性最大
③ R(0)为 ξ ( t ) 的总平均功率。

④ R(∞)=E2{ξ(t)}为直流功率。

⑤ R(0) - R(∞)= E[ξ 2(t)]- E2[ξ(t)]=σ2为交流功率
3、功率谱密度Pξ(ω)
节3 几种常用的随机过程
一、高斯过程
定义: 任意n维分布服从正态分布的随机过程ξ(t)称为高斯过程(或正态随机过程)。

① 高斯过程统计特性是由一、二维数字特征[a
k, δ
k
2, b
jk
]决定的
②若高斯过程满足广义平稳条件,也将满足狭义平稳条件。

③若随机变量两两间互不相关,则各随机变量统计独立。

二、零均值窄带高斯过程
定义、零均值平稳高斯窄带过程
同相随机分量 ξ
c (t), 正交随机分量 ξ
s
(t)
结论:零均值窄带高斯平稳过程 ξ( t ) ,其同相分量 ξ
c ( t ) 和正交分量 ξ
s
( t )
同样是平稳高斯过程,均值为0,方差也相同( σξ2 ) , 且同一时刻的 ξc ( t ) , ξ ( t ) 互不相关,统计独立。

三、宽带随机过程——白噪声
定义:功率谱密度P ξ(ω)在整个频率域范围内都是均匀的噪声称为白噪声。

P ξ(ω)=n o /2 n o (瓦/赫兹)为单边功率谱密度 四、正弦波加窄带高斯过程
结论:正弦波加窄带高斯过程 r(t) ,其包络 z(t) 服从广义瑞利分布,信噪比很小时,它趋于瑞利分布;信噪比很大时,趋于高斯分布。

其相位Φ(t)分布较复杂,当信噪比由小变大时,其密度函数变化趋势为:由均匀到一个取值集中于Φ =0附近的函数。

节4 随机过程的线性系统响应
1、均值: E[ξo (t)] = aH(0)
2、自相关函数:
()[输入广义平稳,则输出广义平稳 3、功率谱密度:
4、ξo (t)的分布:若ξi (t)为高斯过程,则无限多个正态随机变量之和,仍为正态随机变量。

高斯随机过程通过线性系统仍为高斯随机过程。

()()]τξξτ+=+t t E t t R o o o ,2
|)ω()()(|)(ωττωξωτξH P d e R P i
o j o ==
−+∞

−∫。

相关文档
最新文档