概率论与数理统计第一章复习题解答

合集下载

《概率论与数理统计》第01章习题解答

《概率论与数理统计》第01章习题解答

第一章 随机事件及其概率第1章1、解:(1){}2,3,4,5,6,7S = (2){} ,4,3,2=S (3){} ,,,TTH TH H S =(4){}6,5,4,3,2,1,,T T T T T T HT HH S =2、设A , B 是两个事件,已知81)(,21)(,41)(===AB P B P A P ,求)(B A P ,)(B A P ,)(AB P ,)])([(AB B A P 解:81)(,21)(,41)(===AB P B P A P ∴)()()()(AB P B P A P B A P -+= 85812141=-+=)()()(AB P B P B A P -=838121=-=87811)(1)(=-=-=AB P AB P)])([(AB B A P )]()[(AB B A P -=)()(AB P B A P -= )(B A AB ⊂218185=-=3、解:用A 表示事件“取到的三位数不包含数字1”2518900998900)(191918=⨯⨯==C C C A P 4、在仅由0,1,2,3,4,5组成且每个数字至多出现一次的全体三位数字中,任取一个三位数,(1)该数是奇数的概率;(2)求该数大于330的概率。

解:用A 表示事件“取到的三位数是奇数”,用B 表示事件“取到的三位数大于330”(1) 455443)(2515141413⨯⨯⨯⨯==A C C C C A P =0.48 2) 455421452)(251514122512⨯⨯⨯⨯+⨯⨯=+=A C C C A C B P =0.48 5、袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率(1)4只中恰有2只白球,1只红球,1只黑球; (2)4只中至少有2只红球; (3)4只中没有白球解:用A 表示事件“4只中恰有2只白球,1只红球,1只黑球”(1)412131425)(C C C C A P ==495120=338(2)用B 表示事件“4只中至少有2只红球”16567)(4124418342824=++=C C C C C C B P 或4124838141)(C C C C B P +-==16567495201= (3)用C 表示事件“4只中没有白球”99749535)(41247===C C C P 6、解:用A 表示事件“某一特定的销售点得到k 张提货单”nkn k n MM C A P --=)1()( 7、解:用A 表示事件“3只球至少有1只配对”,B 表示事件“没有配对”(1)3212313)(=⨯⨯+=A P 或321231121)(=⨯⨯⨯⨯-=A P (2)31123112)(=⨯⨯⨯⨯=B P 8、(1)设1.0)(,3.0)(,5.0)(===AB P B P A P ,求(),(),(),(),P A B P B A P A B P A A B(),()P AB A B P A AB ;(2)袋中有6只白球,5只红球每次在袋中任取一只球,若取到白球,放回,并放入1只白球,若取到红球不放回也不再放回另外的球,连续取球四次,求第一、二次取到白球且第三、四次取到红球的概率。

《概率论与数理统计》习题及答案__第一章解析

《概率论与数理统计》习题及答案__第一章解析
16•设P(A) =0.7, R A-B)毛.3PB# 0.2,求P(AB)与P(AB).
解0. P A - B > P (A ) P (A B=)0.—7 P,B
所以
P(AB)=0.4,

p(AE) =0.6;
0.2二P(B) -P(AB)二P(B) -0.4.
所以
P(B)=0.6
p(AB)=1-p(aU b)=1-p(a)-p(b)p(ab)=0.1
A ={e1,e3,65}。
S
二{(1,1),
(1,2),
(1,3),(
:1,4),(
1,5),(
1,6)
(2,1),
(2,2),
(2,3),
(2, 4),
(2,5),
(2,6)
(3,1),
(3,2),
(3,3),
(3,4),
(3,5),
(3,6)
(4,1),
(4, 2),
(4,3),
(4, 4),
2 2
共3!种,故基本事件总数为C7C53^1260,而A中的基本事件只有一个,
解2七个字母中有两个E,两个C,把七个字母排成一排,称为不尽相异 元素的全排列。一般地,设有n个元素,其中第一种元素有 山个,第二种元素
有n2个…,第k种元素有nk个(ni5k二n),将这n个元素排成一排
称为不尽相异元素的全排列。不同的排列总数为
n!
ni!n?!入!’
对于本题有
2!2!
10•从0,1,2,|||,9等10个数字中,任意选出不同的三个数字,试求下列事 件的概率:A二,三个数字中不含0和5'A2二,三个数字中不含0或5'A3二
'三个数字中含0但不含5'

李贤平-《概率论与数理统计-第一章》答案

李贤平-《概率论与数理统计-第一章》答案
20、袋中有n只球,记有号码 ,求下列事件的概率:(1)任意取出两球,号码为1,2;(2)任意取出3球,没有号码1;(30任意取出5球,号码1,2,3,中至少出现一个。
21、袋中装有 号的球各一只,采用(1)有放回;(1)不放回方式摸球,试求在第k次摸球时首次摸到1号球的概率。
24、从52张扑克牌中任意抽取13张来,问有5张黑桃,3张红心,3张方块,2张草花的概率。
.
14、解:若取出的号码是按严格上升次序排列,则n个号码必然全不相同, 。N个不同号码可产生 种不同的排列,其中只有一个是按严格上升次序的排列,也就是说,一种组合对应一种严格上升排列,所以共有 种按严格上升次序的排列。总可能场合数为 ,故题中欲求的概率为 .
16、解:因为不放回,所以n个数不重复。从 中取出m-1个数,从 中取出 个数,数M一定取出,把这n个数按大小次序重新排列,则必有 。故 。当 或 时,概率 .
28、解:设x,y分别为此二人到达时间,则yF N E
。显然,此二人到达时间8
与由上述条件决定的正方形CDEF内和M H
点是一一对应的(如图)。7D
设A表事件“其中一人必须等另外一人的C G
时间1/2小时以上“,则A发生意味着满足如下0 7 8 x
不等式 。由几何概率得,
事件A的概率等于ΔGDH及ΔFMN的面积之和与正方形CDEF的面积之比,所以
18、解:有利场合是,先从6双中取出一双,其两只全取出;再从剩下的5双中取出两双,从其每双中取出一只。所以欲求的概率为
19、解:(1)有利场合是,先从n双中取出2r双,再从每双中取出一只。
(2)有利场合是,先从n双中取出一双,其两只全取出,再从剩下的 双中取出 双,从鞭每双中取出一只。
.
(3) .

《概率论与数理统计》习题及答案

《概率论与数理统计》习题及答案

概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。

2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。

3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。

4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。

5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。

6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。

7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。

8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。

9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。

10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。

11、设B A ,是两事件,则B A ,的差事件为 。

12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。

13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。

14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。

15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。

16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。

17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。

概率论与数理统计第一章课后习题详解

概率论与数理统计第一章课后习题详解

概率论与数理统计习题第一章习题1-1(P 7)1.解:(1)}18,4,3{,⋯=Ω (2)}1|),{22<+=Ωy x y x ( (3) {=Ωt |t},10N t ∈≥(本题答案由经济1101班童婷婷提供) 2.AB 表示只有一件次品,-A 表示没有次品,-B 表示至少有一件次品。

(本题答案由经济1101班童婷婷提供) 3.解:(1)A 1∪A 2=“前两次至少有一次击中目标”;(2)2A =“第二次未击中目标”; (3)A 1A 2A 3=“前三次均击中目标”;(4)A 1⋃A 2⋃A 3=“前三次射击中至少有一次击中目标”; (5)A 3-A 2=“第三次击中但第二次未击中”; (6)A 32A =“第三次击中但第二次未击中”; (7)12A A =“前两次均未击中”; (8)12A A =“前两次均未击中”;(9)(A 1A 2)⋃(A 2A 3)⋃(A 3A 1)=“三次射击中至少有两次击中目标”.(本题答案由陈丽娜同学提供)4.解: (1)ABC(2)ABC(3) ABC (4) A B C(5) ABC (6) AB BC AC (7) A B C (8) (AB) (AC) (BC)(本题答案由丁汉同学提供)5.解: (1)A=BC(2)A =B C(本题答案由房晋同学提供)习题1-2(P 11)6.解:设A=“从中任取两只球为颜色不同的球”,则:112538P(A)=/15/28C C C =(本题答案由顾夏玲同学提供)7.解: (1)组成实验的样本点总数为340C ,组成事件(1)所包含的样本点数为 12337C C ,所以P 1=12337340C C C ⋅ ≈0.2022 (2)组成事件(2)所包含的样本点数为33C ,所以P 2=33340C C ≈0.0001(3)组成事件(3)所包含的样本点数为337C ,所以 P 3=337340C C ≈0.7864 (4)事件(4)的对立事件,即事件A=“三件全为正品”所包含的样本点数为337C ,所以P 4=1-P(A)=1-337340C C ≈0.2136(5)组成事件(5)所包含的样本点数为2133373C C C ⋅+,所以P 5=2133373340+C C C C ⋅ ≈0.01134 (本题答案由金向男同学提供)8.解:(1)组成实验的样本点总数为410A ,末位先考虑有五种选择,首位除去0,有8种选择。

概率论与数理统计答案第一章

概率论与数理统计答案第一章

概率论第一章习题解答习题1.11. 写出下列随机试验的样本空间Ω及指定的事件:(1)袋中有3个红球和2个白球,现从袋中任取一个球,观察其颜色;(2)掷一枚硬币,设H 表示“出现正面”,T 表示“出现反面”.现将一枚硬币连掷两次,观察出现正、反面的情况,并用样本点表示事件A =“恰有一次出现正面”;(3)对某一目标进行射击,直到击中目标为止,观察其射击次数,并用样本点表示事件A =“射击次数不超过5次”;(4)生产某产品直到5件正品为止,观察记录生产该产品的总件数;(5)从编号a 、b 、c 、d 的四人中,随机抽取正式和列席代表各一人去参加一个会议,观察选举结果,并用样本点表示事件A =“编号为a 的人当选”.解:(1)Ω = {红色, 白色}; (2)Ω = {(H , H ), (H , T ), (T , H ), (T , T )},A = {(H , T ), (T , H )};(3)Ω = {1, 2, 3, …, n , …},A = {1, 2, 3, 4, 5}; (4)Ω = {5, 6, 7, …, n , …};(5)Ω = {(a , b ), (a , c ), (a , d ), (b , a ), (b , c ), (b , d ), (c , a ), (c , b ), (c , d ), (d , a ), (d , b ), (d , c )},A = {(a , b ), (a , c ), (a , d ), (b , a ), (c , a ), (d , a )}.2. 某射手射击目标4次,记事件A =“4次射击中至少有一次击中”,B =“4次射击中击中次数大于2”.试用文字描述事件A 与B . 解:A 表示4次射击都没有击中,B 表示4次射击中击中次数不超过2.3. 设A , B , C 为三个事件,试用事件的运算关系表示下列事件:(1)A , B , C 都发生;(2)A , B , C 都不发生;(3)A , B , C 中至少有一个发生;(4)A , B , C 中最多有一个发生;(5)A , B , C 中至少有两个发生;(6)A , B , C 中最多有两个发生.解:(1)ABC ; (2)C B A ; (3)A ∪B ∪C ; (4)C B A C B A C B A C B A U U U ;(5)ABC BC A AB U U U ; (6)ABC .4. 在一段时间内,某电话交换台接到呼唤的次数可能是0次,1次,2次,….记事件A n =“接到的呼唤次数小于n ”(n = 1, 2, …),试用事件的运算关系表示下列事件:(1)呼唤次数大于2;(2)呼唤次数在5到10次范围内;(3)呼唤次数与8的偏差大于2.解:(1)3A ; (2)A 11 − A 5; (3)116A A U .5. 证明:(1)Ω=−A B A AB U U )(; (2)AB B A B A B A =))()((U U U .证:(1)Ω==Ω===−A A B A A AB B A AB U U U U U U U U )()(;(2)U U U U U U A B A B B A B A B A B A ())(())()((==∅AB AB A A B A A B A ===U U U )())(.习题1.21. 设P (A ) = P (B ) = P (C ) = 1/4,P (AB ) = P (BC ) = 0,P (AC ) = 1/8,求A 、B 、C 三个事件至少有一个发生的概率.解:因P (AB ) = P (BC ) = 0,且ABC ⊂ AB ,有P (ABC ) = 0, 则8581414141)()()()()()()()(=−++=+−−−++=ABC P BC P AC P AB P C P B P A P C B A P U U . 2. 设P (A ) = 0.4,P (B ) = 0.5,P (A ∪B ) = 0.7,求P (A − B )及P (B − A ).解:因P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.4 + 0.5 − 0.7 = 0.2,则P (A − B ) = P (A ) − P (AB ) = 0.4 − 0.2 = 0.2,P (B − A ) = P (B ) − P (AB ) = 0.5 − 0.2 = 0.3.3. 某市有A , B , C 三种报纸发行.已知该市某一年龄段的市民中,有45%的人喜欢读A 报,34%的人喜欢读B 报,20%的人喜欢读C 报,10%的人同时喜欢读A 报和B 报,6%的人同时喜欢读A 报和C 报,4%的人同时喜欢读B 报和C 报,1%的人A , B , C 三种报纸都喜欢读.从该市这一年龄段的市民中任选一人,求下列事件的概率:(1)至少喜欢读一种报纸;(2)三种报纸都不喜欢;(3)只喜欢读A 报;(4)只喜欢读一种报纸.解:分别设A , B , C 表示此人喜欢读A , B , C 报,有P (A ) = 0.45,P (B ) = 0.34,P (C ) = 0.2,P (AB ) = 0.1,P (AC ) = 0.06,P (BC ) = 0.04,P (ABC ) = 0.01,(1)P (A ∪B ∪C ) = P (A ) + P (B ) + P (C ) − P (AB ) − P (AC ) − P (BC ) + P (ABC ) = 0.8;(2)2.0)(1)((=−==C B A P C B A P P U U U U ;(3)3.0)()()()()()()(=+−−=−=ABC P AC P AB P A P B A P B A P C B A P ;(4)因21.0)()()()()()()(=+−−=−=ABC P BC P AB P B P P B P B P ,11.0)()()()()()()(=+−−=−=ABC P BC P AC P C P BC A P C A P C B A P , 故62.0)()()()(=++=++C B A P C B A P C B A P C B A C B A C B A P .4. 连续抛掷一枚硬币3次,求既有正面又有反面出现的概率.解:样本点总数n = 2 3 = 8,事件A 中样本点数62313=+=C C k A ,则75.043)(===n k A P A . 5. 在分别写有2, 4, 6, 7, 8, 11, 12, 13的8张卡片中任取两张,把卡片上的两个数字组成一个分数,求所得分数为既约分数的概率.解:样本点总数2828==C n ,事件A 中样本点数18231315=+=C C C k A ,则6429.0149)(===n k A P A . 6. 一部5卷文集任意地排列在书架上,问卷号自左向右或自右向左恰好为1, 2, 3, 4, 5顺序的概率等于多少?解:样本点总数12055==A n ,事件A 中样本点数k A = 2,则0167.0601)(===n k A P A . 7. 10把钥匙中有3把能打开某一门锁,今任取两把,求能打开某该门锁的概率.解:样本点总数45210==C n ,事件A 中样本点数24231317=+=C C C k A ,则5333.0158)(===n k A P A . 8. 一副扑克牌有52张,进行不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异;(2)四张中只有两种花色. 解:样本点总数270725452==C n ,(1)事件A 1中样本点数285611131131131131==C C C C k A ,则1055.0208252197)(11===n k A P A ; (2)事件A 2表示两种花色各两张,或者一种1张一种3张,样本点数81120)2(113313213213242=+=C C C C C k A ,则2996.041651248)(22===n k A P A . 9. 口袋内装有2个伍分、3个贰分、5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率. 解:样本点总数252510==C n ,事件A 分三种情形:①两枚5分,三枚其它,②一枚5分,三枚2分,一枚1分,③一枚5分,两枚2分,两枚1分,样本点数1262523121533123822=++=C C C C C C C C k A ,则5.021)(===n k A P A . 方法二:10枚硬币总额2角1分,任取5枚若超过1角,那么剩下的5枚将不超过1角,可见事件A 中的样本点与A 中的样本点一一对应,即A k k =,则5.0)()(==A P A P .10.在10个数字0, 1, 2, …, 9中任取4个(不重复),能排成一个4位偶数的概率是多少(最好是更正为:排在一起,恰好排成一个4位偶数的概率是多少)?解:样本点总数5040410==A n ,事件A 的限制条件是个位是偶数,首位不是0,样本点数2296281814281911=+=A A A A A A k A ,则4556.09041)(===n k A P A . 11.一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算). 解:样本点总数n = 365 100,A 的对立事件A 表示所有学生生日都不在元旦,100364=A k , 则2399.036536411(1)(100=⎟⎠⎞⎜⎝⎛−=−=−=n k A P A P A .12.在 [0, 1] 区间内任取两个数,求两数乘积小于1/4的概率.解:设所取得两个数为x , y ,Ω = {(x , y ) | 0 < x < 1, 0 < y < 1},}1,10,10|),{(<<<<=y x y x A 有m (Ω) = 1,4034.042ln 23)41ln 4141(1)ln 41(411()(141141=−=−−=−=−=∫x x dx x A m 则5966.042ln 21)()(1(1)(=+=Ω−=−=m A m P A P . 习题1.31. 一只盒子有3只坏晶体管和7只好晶体管,在其中取二次,每次随机地取一只,作不放回抽样,发现第一只是好的,问另一只也是好的概率是多少?解:设A 表示第一只是好的,B 表示第二只是好的,当第一只是好的时,第二次抽取前有3只是坏的,6只是好的,则6667.03296)|(===A B P . 2. 某商场从生产同类产品的甲、乙两厂分别进货100件、150件,其中:甲厂的100件中有次品4件,乙厂的150件中有次品1件.现从这250件产品中任取一件,从产品标识上看它是甲厂生产的,求它是次品的概率.解:设A 表示甲厂产品,B 表示次品,故04.01004)|(==A B P . 3. 根据抽样调查资料,2000年某地城市职工家庭和农村居民家庭收入按人均收入划分的户数如下:户数 6000元以下 6000 ~ 12000元 12000元以上 合计城市职工 25 125 50 200 农村居民 120 132 48 300 合计 145 257 98 500 现从被调查的家庭中任选一户,已知其人均收入在6000元以下,试问这是一个城市职工家庭的概率是多少?解:设A 表示人均收入在6000元以下,B 表示城市职工家庭,故1724.014525)|(==A B P . 4. 某单位有92%的职工订阅报纸,93%的职工订阅杂志,在不订阅报纸的职工中仍有85%的职工订阅杂志,从单位中任找一名职工,求下列事件的概率:(1)该职工至少订阅报纸或杂志中一种;(2)该职工不订阅杂志,但是订阅报纸. 解:设A 表示订阅报纸,B 表示订阅杂志,有P (A ) = 0.92,P (B ) = 0.93,85.0|(=A B P , 则068.085.008.0)|()()(=×==A B P A P B A P ,862.0068.093.0)()()(=−=−=B A P B P AB P ,(1)P (A ∪B ) = P (A ) + P (B ) − P (AB ) = 0.92 + 0.93 − 0.068 = 0.988;(2)P (A − B ) = P (A ) − P (AB ) = 0.92 − 0.862 = 0.058.5. 某工厂有甲、乙、丙三个车间生产同一种产品,各个车间的产量分别占全厂产量的25%、35%、40%,各车间产品的次品率分别为5%、4%、2%.(1)求全厂产品的次品率;(2)如果从全厂产品中抽取一件产品,恰好是次品,问这件次品是甲、乙、丙车间生产的概率分别是多少?解:(1)任取一件产品,设A 1, A 2, A 3分别表示甲、乙、丙车间产品,B 表示次品,则P (B ) = P (A 1) P (B | A 1) + P (A 2) P (B | A 2) + P (A 3) P (B | A 3)= 0.25 × 0.05 + 0.35 × 0.04 + 0.4 × 0.02 = 0.0345;(2)3623.069250345.005.025.0)()|()()()()|(1111==×===B P A B P A P B P B A P B A P , 4058.069280345.004.035.0)()|()()()()|(2222==×===B P A B P A P B P B A P B A P , 2319.069160345.002.04.0)()|()()()()|(3333==×===B P A B P A P B P B A P B A P . 6. 有三个形状相同的罐,在第一罐中有两个白球和一个黑球;在第二个罐中有三个白球和一个黑球;在第三个罐中有两个白球和两个黑球.某人随机地取一罐,再从该罐中任取一球,试问这球是白球的概率有多少?解:设321,,A A A 分别表示第一、二、三罐,B 表示白球, 则6389.03623423143313231)|()()|()()|()()(332211==×+×+×=++=A B P A P A B P A P A B P A P B P . 7. 三部自动的机器生产同样的汽车零件,其中机器A 生产的占40%,机器B 生产的占25%,机器C 生产的占35%,平均说来,机器A 生产的零件有10%不合格,对于机器B 和C ,相应的百分数分别为5%和1%,如果从总产品中随机地抽取一个零件,发现为不合格,试问:(1)它是由机器A 生产出来的概率是多少?(2)它是由哪一部机器生产的可能性最大?解:设A 1, A 2, A 3分别表示机器A , B , C 生产的零件,D 表示不合格的零件,(1))|()()|()()|()()|()()()()|(3322111111A D P A P A D P A P A D P A P A D P A P D P D A P D A P ++== 7143.075056.004.001.035.005.025.01.04.01.04.0===×+×+××=; (2)2232.011225056.00125.0056.005.025.0)()()|(22===×==D P D A P D A P ,0625.01127056.00035.0056.001.035.0)()()|(33===×==D P D A P D A P , 则由机器A 生产的概率最大.8. 设P (A ) > 0,试证:)()(1)|(A P B P A B P −≥. 证:)()(1)()(11)(1)()()()()()()()()|(A P B P A P B P A P B P A P A P B A P B P A P A P AB P A B P −=−−=−+≥−+==U . 习题1.41. 一个工人看管三台机床,在一小时内机床不需要工人看管的概率分别为0.9、0.8、0.7,求在一小时内3台机床中最多有一台需要工人看管的概率.解:设A 1, A 2, A 3分别表示一小时内第一、二、三台机床不需要工人照管,可以认为A 1, A 2, A 3相互独立, 则概率为)()()()()(321321321321321321321321A A A P A A A P A A A P A A A P A A A A A A A A A A A A P +++=U U U)()()()()()()()()()()()(321321321321A P A P A P A P A P A P A P A P A P A P A P A P +++== 0.9 × 0.8 × 0.7 + 0.9 × 0.8 × 0.3 + 0.9 × 0.2 × 0.7 + 0.1 × 0.8 × 0.7 = 0.902.2. 电路由电池A 与两个并联的电池B 及C 串联而成,设电池A , B ,电路发生断电的概率. 解:设A , B , C 分别表示电池A , B , C 损坏,电路断电为事件A ∪BC ,则概率为P (A ∪BC ) = P (A ) + P (BC ) − P (ABC ) = P (A ) + P (B ) P (C ) − P (A ) P (B ) P (C ) = 0.3 + 0.2 × 0.2 − 0.3 × 0.2 × 0.2 = 0.328.方法二:设A , B , C 分别表示电池A , B , C 正常工作,系统正常工作为事件A (B ∪C ) = AB ∪AC , 则概率为1 − P (AB ∪AC ) = 1 − P (AB ) − P (AC ) + P (ABC )= 1 − P (A ) P (B ) − P (A ) P (C ) + P (A ) P (B ) P (C )= 1 − 0.7 × 0.8 − 0.7 × 0.8 + 0.7 × 0.8 × 0.8 = 0.328.3. 加工某一零件共需经过四道工序.设第一、二、三、四道工序的次品率分别为2%, 3%, 5%, 3%,假定各道工序是互不影响的,求加工出来的零件的次品率.解:设A 1, A 2, A 3, A 4分别表示第一、二、三、四道工序加工出合格品,有A 1, A 2, A 3, A 4相互独立,则概率为1 − P (A 1A 2A 3A 4) = 1 − P (A 1) P (A 2) P (A 3) P (A 4) = 1 − 0.98 × 0.97 × 0.95 × 0.97 = 0.1240.4. 抛掷一枚质地不均匀的硬币8次,设正面出现的概率为0.6,求下列事件的概率:(1)正好出现3次正面;(2)至多出现2次正面;(3)至少出现2次正面.解:将每次掷硬币看作一次试验,出现正面A ,反面A ;独立;P (A ) = 0.6.伯努利概型,n = 8,p = 0.6.(1)1239.04.06.0)3(53388=××=C P ; (2)0498.04.06.04.06.04.06.0)2()1()0(622871188008888=××+××+××=++C C C P P P ;(3)9915.04.06.04.06.01)1()0(17118800888=××−××−=−−C C P P .5. 设每次射击时命中率为0.2,问至少必须进行多少次独立射击才能使至少击中一次的概率不小于0.9?解:将每次射击看作一次试验,击中A ,没击中A ;独立;P (A ) = 0.2.伯努利概型,n 次试验,p = 0.2,则9.08.018.02.01)0(100≥−=××−=−n n n n C P ,即0.8 n ≤ 0.1,故32.108.0lg 1.0lg =≥n ,取n = 11.6. 一大批产品的优质品率为60%,从中任取10件,求下列事件的概率:(1)取到的10件产品中恰有5件优质品;(2)取到的10件产品中至少有5件优质品;(3)取到的10件产品中优质品的件数不少于4件且不多于8件.解:将取每件产品看作一次试验,优质品A ,非优质品A ;独立;P (A ) = 0.6.伯努利概型,n = 10,p = 0.6.(1)2007.04.06.0)5(5551010=××=C P ;(2)P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8) + P 10 (9) + P 10 (10)288103771046610555104.06.04.06.04.06.04.06.0××+××+××+××=C C C C8338.04.06.04.06.0010101019910=××+××+C C ;(3)P 10 (4) + P 10 (5) + P 10 (6) + P 10 (7) + P 10 (8)28810377104661055510644104.06.04.06.04.06.04.06.04.06.0××+××+××+××+××=C C C C C= 0.8989;7. 证明:若)|()|(B A P B A P =,则事件A 与B 独立. 证:因)(1)()()(1)()()()|()()()|(B P AB P A P B P B A P P B A P B A P B P AB P B A P −−=−−====, 则P (AB )[1 − P (B )] = P (B )[P (A ) − P (AB )],即P (AB ) − P (AB ) P (B ) = P (B ) P (A ) − P (B ) P (AB ), 故P (AB ) = P (A ) P (B ),A 与B 相互独立.复习题一1. 设P (A ) = 0.5,P (B ) = 0.6,问:(1)什么条件下P (AB )可以取最大值,其值是多少?(2)什么条件下P (AB )可以取得最小值,其值是多少?解:(1)当A ⊂ B 时P (AB ) 最大,P (AB ) = P (A ) = 0.5;(2)当A ∪B = Ω 时P (AB ) 最小,P (AB ) = P (A ) + P (B ) − P (A ∪B ) = 0.5 + 0.6 − 1 = 0.1.2. 一电梯开始上升时载有5名乘客,且这5人等可能地在8层楼的任何一层出电梯,求:(1)每层至多一人离开的概率;(2)至少有两人在同一层离开的概率;(3)只有一层有两人离开的概率.解:样本点总数是8取5次的可重排列,即n = 8 5 = 32768,(1)事件A 1中样本点数6720581==A k A ,则2051.0512105)(11===nk A P A ; (2)事件A 2是A 1的对立事件,则7949.0512407)(1)(12==−=A P A P ; (3)事件A 3表示有两人在同一层离开,而另外三人分别在3个不同楼层或者都在同一层离开,样本点数17360)(33173725183=+=C A A C A k A ,则5298.020481085)(33===n k A P A . 3. 从5副不同的手套中任取4只手套,求其中至少有两只手套配成一副的概率.解:样本点总数210410==C n ,A 的对立事件表示4只手套都不配套,801212121245==C C C C C k A , 则6190.021131(1)(==−=−=n k A P A P A . 4. 从1, 2, …, n 中任取两数,求所取两数之和为偶数的概率. 解:样本点总数为)1(212−=n n C n ,事件A 表示取得两个偶数或两个奇数,当n 为偶数时,共有2n 个偶数和2n 个奇数, 样本点数)2(41)12(22222−=−=+=n n n n C C k n n A ,则)1(22)(2−−==n n C k A P n A ; 当n 为偶数时,共有21−n 个偶数和21+n 个奇数, 样本点数2221221)1(41212121232121−=−⋅+⋅+−⋅−⋅=+=+−n n n n n C C k n n A ,则n n C k A P nA 21)(2−==. 5. 在中国象棋的棋盘上任意地放上一只红“车”及一只黑“车”,求它们正好可以一只吃掉另一只的概率.解:样本点总数4005290==C n ,事件A 中样本点数7652911021019=+=C C C C k A ,则1910.08917)(===n k A P A . 6. 某货运码头仅能容一船卸货,而甲、乙两船在码头卸货时间分别为1小时和2小时.设甲、乙两船在24小时内随时可能到达,求它们中任何一船都不需等待码头空出的概率.解:Ω = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24},A = {(x , y ) | 0 ≤ x < 24, 0 ≤ y < 24, x − y > 2或y − x > 1},有m (Ω) = 24 2 = 576,5.50622212321)(22=×+×=A m , 则8793.05765.506)()()(==Ω=m A m A P . 7. 从区间 [0, 1] 中任取三个数,求三数和不大于1的概率.解:Ω = {(x , y , z ) | 0 ≤ x , y , z ≤ 1},A = {(x , y , z ) | 0 ≤ x , y , z ≤ 1, x + y + z ≤ 1},有m (Ω) = 1,A 是一个三棱锥,6112131)(=××=A m ,则1667.061)()()(==Ω=m A m A P . 8. 已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率是多少?(假设男人和女人各占人数的一半.)解:设A 1, A 2分别表示男人和女人,B 表示色盲,则9524.021200025.05.005.05.005.05.0)|()()|()()|()()()()|(22111111==×+××=+==A B P A P A B P A P A B P A P B P B A P B A P . 9. 发报台分别以0.7和0.3的概率发出信号0和1(例如:分别用低电频和高电频表示).由于随机干扰的影响,当发出信号0时,接收台不一定收到0,而是以概率0.8和0.2收到信号0和1;同样地,当发报台发出信号1时,接收台以概率0.9和0.1收到信号1和0.试求:(1)接收台收到信号0的概率;(2)当接收台收到信号0时,发报台确是发出信号0的概率.解:设A 0, A 1分别表示发出信号0, 1,B 0, B 1表示收到信号0, 1,(1)P (B 0) = P (A 0) P (B 0 | A 0) + P (A 1) P (B 0 | A 1) = 0.7 × 0.8 + 0.3 × 0.1 = 0.59;(2)9492.0595659.08.07.0)()|()()()()|(000000000==×===B P A B P A P B P B A P B A P . 10.设A , B 独立,AB ⊂ D ,D B A ⊂,证明P (AD ) ≥ P (A ) P (D ).证:因AB ⊂ D ,有AB ⊂ AD ,则P (AD ) − P(AB ) = P (AD − AB ),B D ΩA因B A ⊂=U ,有D ⊂ A ∪B ,D − B ⊂ A ∪B − B ⊂ A ,则AD − AB = A (D − B ) = D − B ,故P (AD ) − P (AB ) = P (AD − AB ) = P (D − B ) ≥ P (A ) P (D − B ) ≥ P (A ) [P (D ) − P (B )],由于A , B 独立,有P (AB ) = P (A ) P (B ),故P (AD ) ≥ P (A ) P (D ).11.甲、乙、丙三人同时向一架飞机射击,他们击中目标的概率分别为0.4, 0.5, 0.7.假设飞机只有一人击中时,坠毁的概率为0.2,若2人击中,飞机坠毁的概率为0.6,而飞机被3人击中时一定坠毁.现在如果发现飞机已被击中坠毁,计算它是由三人同时击中的概率.解:结果:设B 表示目标被击毁,原因:设A 0, A 1, A 2, A 3分别表示无人、1人、2人、3人击中目标, 则)|()()|()()|()()|()()|()()()()|(332211003333A B P A P A B P A P A B P A P A B P A P A B P A P B P B A P B A P +++==, 且有P (B | A 0) = 0,P (B | A 1) = 0.2,P (B | A 2) = 0.6,P (B | A 3) = 1,又设C 1, C 2, C 3分别表示甲、乙、丙击中目标, 则09.03.05.06.0)()()()()(3213210=××===C P C P C P C C C P A P ,)()(3213213211C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P P P P C P P P P C P ++== 0.4 × 0.5 × 0.3 + 0.6 × 0.5 × 0.3 + 0.6 × 0.5 × 0.7 = 0.36,)()(3213213212C C C C C C C C C P A P U U =)()()()()()()()()(321321321C P C P P C P P C P P C P C P ++== 0.4 × 0.5 × 0.3 + 0.4 × 0.5 × 0.7 + 0.6 × 0.5 × 0.7 = 0.41,P (A 3) = P (C 1C 2C 3) = P (C 1) P (C 2) P (C 3) = 0.4 × 0.5 × 0.7 = 0.14, 故3057.0458.014.0114.06.041.02.036.0009.0114.0)|(3==×+×+×+××=B A P . 12.已知某种疾病患者的痊愈率为25%,为试验一种新药是否有效,把它给10个病人服用,且规定若10个病人中至少有4人治好则认为这种药有效,反之则认为无效.试求:(1)虽然新药有效,且把痊愈率提高到35%,但通过试验被否定的概率;(2)新药完全无效,但通过试验被认为有效的概率. 解:将每人服药看作一次试验,痊愈A ,没有痊愈A ;独立;(1)新药有效,痊愈率为0.35,即P (A ) = 0.35,伯努利概型,n = 10,p = 0.35,故概率为P 10 (0) + P 10 (1) + P 10 (2) + P 10 (3) 5138.065.035.065.035.065.035.065.035.0733108221091110100010=××+××+××+××=C C C C .(2)新药完全无效,痊愈率为0.25,即P (A ) = 0.25,伯努利概型,n = 10,p = 0.25,故所求概率为1 − P 10 (0) − P 10 (1) − P 10 (2) − P 10 (3)2241.075.025.075.025.075.025.075.025.01733108221091110100010=××−××−××−××−=C C C C .。

(完整版)概率论与数理统计课程第一章练习题及解答

(完整版)概率论与数理统计课程第一章练习题及解答概率论与数理统计课程第一章练习题及解答一、判断题(在每题后的括号中对的打“√”错的打“×” )1、若1()P A =,则A 与任一事件B 一定独立。

(√)2、概率论与数理统计是研究和揭示随机现象统计规律性的一门数学学科。

(√)3、样本空间是随机现象的数学模型。

(√)4、试验中每个基本事件发生的可能性相同的试验称为等可能概型。

(×)5、试验的样本空间只包含有限个元素的试验称为古典概型。

(×)6、实际推断原理就是“概率很小的事件在一次试验中实际上几乎是不发生的”。

(√)7、若S 为试验E 的样本空间,12,,,n B B B L 为E 的一组两两互不相容的事件,则称12,,,n B B B L 为样本空间S 的一个划分。

(×)8、若事件A 的发生对事件B 的发生的概率没有影响,即()()P B A P B =,称事件A 、B 独立。

(√) 9、若事件12,,,(2)n B B B n ≥L 相互独立,则其中任意(2)k k n ≤≤个事件也是相互独立的。

(√)10、若事件12,,,(2)n B B B n ≥L 相互独立,则将12,,,n B B B L 中任意多个事件换成它们的对立事件,所得的n 个事件仍相互独立。

(√)二、单选题1.设事件A 和B 相互独立,则()P A B =U ( C )A 、()()P A PB + B 、()()P A P B +C 、1()()P A P B -D 、1()()P A P B -2、设事件A 与B 相互独立,且0()1,0()1P A P B <<<<,则正确的是( A )A 、A 与AB +一定不独立 B 、A 与A B -一定不独立C 、A 与B A -一定独立D 、A 与AB 一定独立3、设当事件A 与B 同时发生时,事件C 必发生,则( B )A 、1()()()P C P A PB ≤+- B 、1()()()PC P A P B ≥+-C 、()()P C P AB =D 、()()P C P A B =U4、在电炉上安装了4个温控器,其显示温度的误差是随机的,在使用过程中,只要有两个温控器显示的温度不低于临界温度0t ,电炉就断电,以E 表示事件“电炉断电”,而(1)(2)(3)(4)T T T T ≤≤≤为4个温控器显示的按递增顺序排列的温度值,则事件E 等于()A 、(1)0{}T t ≥B 、(2)0{}T t ≥C 、(3)0{}T t ≥D 、(4)0{}T t ≥分析事件(4)0{}T t ≥表示至少有一个温控器显示的温度不低于临界温度0t ;事件(3)0{}T t ≥表示至少有两个温控器显示的温度不低于临界温度0t ,即(3)0{}E T t =≥,选C 。

概率论与数理统计习题解答第章 (1)

第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。

EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:0:μμ=H1:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。

概率论与数理统计第1章习题详解

概率论与数理统计第1章习题详解一、习题详解:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ;1.2 设A ,B ,C 为三事件, 用A;B;C 的运算关系表示下列各事件:(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ?; (3) A,B,C 中至少有一个发生; C B A ??; (4) A,B,C 中恰有一个发生;C B A C B A C BA ??; (5) A,B,C 中至少有两个发生; BC AC AB ??;(6) A,B,C 中至多有一个发生;C B C A B A ??; (7) A;B;C 中至多有两个发生;ABC ; (8) A,B,C 中恰有两个发生.C AB C B A BC A ?? ;注意:此类题目答案一般不唯一,有不同的表示方式。

概率论与数理统计第一章复习题解答

《概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:(1)记录一个班一次数学考试的平均分数(设以百分制记分)。

(2)生产产品直到有10件正品为止,记录生产产品的总件数。

(3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2件次品就停止检查,或检查了4件产品就停止检查,记录检查的结果。

(4)在单位圆内任意取一点,记录它的坐标。

解:(1)设该班有n人,则该班总成绩的可能值是0,1,2,……,100n。

故随机试验的样本空间S={i/n|i=0,1,2,……,100n}。

(2)随机试验的样本空间S={10,11,12,……}。

(3)以0表示检查到一个次品,1表示检查到一个正品,则随机试验的样本空间S={00,0100,0101,0110,0111,100,1010,1011,1100,1101,1110,1111}。

(4)随机试验的样本空间S={(x,y)|x2+y2<1}。

2、设A,B,C为三个事件,用A,B,C的运算关系表示下列各事件:(1)A发生,B 与C都不发生。

(2)A与B都发生,而C不发生。

(3)A,B,C中至少有一个发生。

(4)A,B,C都发生。

(5)A,B,C都不发生。

(6)A,B,C中不多于一个发生。

(7)A,B,C中不多于两个发生。

(8)A,B,C中至少有两个发生。

解:(1)A B C(2)AB C(3)A∪B∪C (4)ABC(5)A B C(6)A B C∪A B C∪A B C∪A B C(7)S-ABC (8)ABC∪AB C∪A B C∪A BC3、(1)设A,B,C为三个事件,且P(A)=P(B)=P(C)=1/4,P(AB)=P(BC)=0,P(AC)=1/8,求A,B,C至少有一个发生的概率。

(2)已知P(A)=1/2,P(B)=1/3,P(C)=1/5,P(AB)=1/10,P (AC)=1/15,P(BC)=1/20,P(ABC)=1/30,求A∪B,A B,A∪B∪C,A B C,A B C,A B∪C的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计第一章复习题解答概率论与数量统计》第一章习题解答1、写出下列随机试验的样本空间:( 1) 记录一个班一次数学考试的平均分数(设以百分制记分) 。

( 2)生产产品直到有10 件正品为止,记录生产产品的总件数。

( 3)对某工厂出厂的产品进行检查,合格的产品记上“正品”,不合格的记上“次品”,如连续查出了2 件次品就停止检查,或检查了4 件产品就停止检查,记录检查的结果。

(4)在单位圆内任意取一点,记录它的坐标。

解:(1)设该班有n人,则该班总成绩的可能值是0, 1, 2,……,100n。

故随机试验的样本空间S= {i/n|i=0,1,2, ……,100n }。

(2)随机试验的样本空间S= {10,11,12,……}。

( 3)以0 表示检查到一个次品, 1 表示检查到一个正品,则随机试验的样本空间S={ 00, 0100, 0101, 0110, 0111, 100, 1010, 1011, 1100, 1101, 1110, 1111}。

(4)随机试验的样本空间S= {(x,y ) |x2+y2<1}。

2、设A, B, C为三个事件,用A, B, C的运算关系表示下列各事件:(1)A发生,B与C都不发生。

(2)A与B都发生,而C不发生。

(3)A, B, C中至少有一个发生。

(4)A, B, C都发生。

(5)A, B, C都不发生。

(6)A, B, C中不多于一个发生。

(7)A, B, C中不多于两个发生。

(8)A, B, C中至少有两个发生。

解:(1) A BC (2) AB C (3) AU BU C (4) ABC(5)A BC(6) ABC U A B C U A B C U A B C(7) S-ABC (8) ABCJ AB C U A B C U A BC3、(1)设A, B, C 为三个事件,且P (A) =P( B) =P( C) =1/4 , P (AB =P (BC =0,P (AC) =1/8,求A,B, C至少有一个发生的概率。

(2)已知P (A) =1/2 , P (B) =1/3 , P (C) =1/5 , P (AB =1/10 , P (AC =1/15 , P( BC =1/20 , P( ABC =1/30 ,求AU B, AB , AU BU C, ABC , ABC, AB U C的概率。

(3)已知P (A) =1/2 , (i )若A, B 互不相容,求P ( A B ), (ii )若P (AB =1/8,求P (A B )。

解:(1)因为P (AB =0,所以P (ABC =0。

故P (AU BU C) =P (A)+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=3/4-1/8=5/8 。

(2)P (AU B) =P(A)+P(B)-P(AB)=1/2+1/3-1/10=11/15,P ( AB ) =1-P (AU B) = 4/15,P ( AU BU C ) =P ( A )+P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC)=1/2+1/3+1/5-1/10-1/15-1/20+1/30=51/60 ,P( A BC)=1- P (AU BU C) =3/20,P( A B C)=P ( AB) - P( ABC )=7/60 ,P( A B U C)=P ( A B) + P(C)- P( A B C)=4/15+1/5-7/60=7/20 。

(3) (i )因为A, B互不相容,所以AB=O, P (AB =0。

故P (A B)=P(A) -P (AB =1/2。

(ii ) P (A B) = P (A) -P (AB =1/2-1/8=3/8。

4、设A, B为两个事件。

(1)已知A B二A B,验证A=B(2)验证事件A和事件B恰有一个发生的概率为P( A) +P( B) -2P (AB。

证明:(1)A=A( BU B )二ABU A B 二ABU A B= (AU A) B=B(2)因为A B A B =①,所以P (A B U A B) = P (A B ) + P ( A B) -P(A B A B) = P (A B) + P ( A B) =P (A) -P (AB +P (B) -P (AB =P(A) +P (B) -2P (AB。

5、10片药片中有5片是安慰剂(1)从中任意抽取5片,求其中至少有2片是安慰剂的概率。

(2)从中每次取一片,作不放回抽样,求前3次都取到安慰剂的概率解:(1) p=1-c;/ G0-C;C;/G0(2) p=A57 A3。

6、在房间里有10个人,分别佩戴从1号到10号的纪念章,任选3人记录其纪念章的号码。

(1)求最小号码为5的概率。

(2)求最大号码为5的概率。

解:(1)从10人中任选3人的选法有%种。

要求最小号码为5,即有一个人的号码是5,其他两人的号码都在6到10之间。

故共有C;种不同的选法。

故最小号码为5的概率卩=雳/比。

(2)同理最大号码为5的概率p=C42/ Cw7、某油漆公司发出17桶油漆,其中白漆10桶、黑漆4桶、红漆3桶, 在搬运中所有标签脱落,交货人随意将这些油漆发给顾客。

问一个订货为4桶白漆、3桶黑漆和2桶红漆的顾客,能按所订颜色如数得到订货的概率是多少?解:p=c10 c:c37 C I97。

8在1500件产品中有400件次品、1100件正品。

任取200件。

(1)求恰有90件次品的概率。

(2)求至少有2件次品的概率。

解:(1)恰有90件次品的概率p=c400 CZ/ CZ。

(2)至少有 2 件次品的概率p=1- cX/ cZ- C;00 cZ/ C15000。

9、从5双不同的鞋子中任取4只。

问这4只鞋子中至少有两只配成一双的概率是多少?解:设A为事件“这4只鞋子中没有配成一双”,则事件“这4只鞋子中至少有两只配成一双”是A。

从10只鞋子中任取4只有A0种取法,事件A 的取法可以有10 (第一只的取法)X 8 (第二只的取法,和第一只一双的那一只也不能取了)X 6(第三只的取法)X4(第一只的取法)<故P (A)=16A;/ A4。

P (A)=1-P (A)=1-16 A;/A4。

10、在11张卡片上分别写上probability 这11个字母,从中任意连抽7张,求其排列结果为ability 的概率。

解:从11个字母中选取7个字母有A:种选法。

由于b和i各有两个, 故排列ability 共有4种不同的选法。

因此排列结果为ability 的概率p=4 / A;。

11、将 3 只球随机地放入 4 个杯子中去,求杯子中球的最大个数分别为 1, 2,3 的概率解:12、50只铆钉随机地取来用在 10 个部件上,其中有 3只铆钉强度太弱每个部件用 3 只铆钉。

若将 3 只强度太弱的铆钉都装在一个部件上,则这个部件强度就太弱。

问发生一个部件强度太弱的概率是多少?解:一个部件强度太弱的事件相当于从 50 只铆钉中随机地选出的 3 只铆钉恰好都是强度太弱的且装在了同一个部件上。

故p=C 110/ C 530 或 p=C 110 C 4277 / C 330 C 5300 。

13、一个俱乐部有 5 名一年级学生, 2 名二年级学生, 3名三年级学生, 2名四年级学生。

(1)在其中任选 4 名学生,求一、二、三、四年级的学生各一名的概率。

(2)在其中任选 5 名学生,求一、二、三、四年级的学生均包含在内的概率。

解:(1)在其中任选 4 名学生,求一、二、三、四年级的学生各一名的概率=C 5C 2 c 3c ;c ;/ C ;2。

(2)设事件 A 为“一年级有 2 名学生,其他年级各有一名” ,事件 B 为“二年级有 2 名学生,其他年级各有一名” ,事件 c 为“三年级有 2 名学生,其他年级各有一名”,事件D 为“四年级有2名学生,其他年级各有一名”,。

则A , B, C, D 两两不相容,且P (A )二C ;C 1C 3C 2/C ;2,P( B) =c ;c ;c 3c ;/G ; , P(C) =C ;C 1 C3 C 2/ CI 2 , P(D)二c ;c 2 cf c ;/C ;, 所以在其中任选5名学生,一、二、三、四年级的学生均包含在内的概率杯子中球的最大个数为 1 的概率 p= A 4 3/4 杯子中球的最大个数为 3 2 的概率 p=1-- A 41/4 3- A 43杯子中球的最大个数为 3 的概率 p= A 41/4=P( A) +P( B)+P( C)+P( D) =240/ c;2。

14、(1)已知P ( A) =0.3 , P (B) =0.4 , P (A B ) =0.5,求条件概率P (B|A U B )。

(2)已知P (A) =1/4 , P (B I A) =1/3 , P (A | B) =1/2,求P (AUB)。

解:(1)因为P (B|AU B ) =P( B( AU B )) /P (AU B ) , P (AU B ) =P (A) +P ( B ) -P (A B ) =1- P ( A) +1- P (B) -0.5=0.8 , P ( B(AU B )) =P (AB=P(A)-P (A B ) =070.5=0.2,所以P (B|AU B ) =0.25。

(2)因为P (B| A) =P (AB /P (A),所以P (AB =1/12。

又因为P (A|B) =P (AB /P (B),所以P (B) =1/6。

故P (AU B) =P (A) +P (B) -P (AB =1/3。

15、掷两颗骰子,已知两颗骰子点数之和为7,求其中有一颗为1点的概率(用两种方法)。

16、据以往资料表明,某一3 口之家,患某种传染病的概率有以下规律:P {孩子得病}=0.6 , P {母亲得病|孩子得病}=0.5 ,P {父亲得病|母亲及孩子得病}=0.4 ,求母亲及孩子得病但父亲未得病的概率。

解:设事件A为“孩子得病”,事件B为“母亲得病”,事件C为“父亲得病”,则要求的概率为P (AB C )。

由已知,P( A) =0.6 , P( B|A) =0.5 , P(C|AB) =0.4 ,所以P(AB C ) =P(AB P( C|AB) =P(A) P(B|A) : 1- P(C|AB)] =0.6 X 0.5 X 0.6=0.18。

17、已知在10件产品中有2件次品,在其中取两次,每次任取一件,作不放回抽样。

求下列事件的概率。

(1)两件都是正品。

(2)两件都是次品。

(3)—件是正品,一件是次品。

(4)第二次取出的是次品。

解:设事件A为“第一件是正品”,事件B为“第二件是正品”,则(1)两件都是正品的概率P (AB二C87C20 (或=P (A) P ( B|A) =4/5 X 7/9 )。

相关文档
最新文档