高三数学三角函数复习教案

合集下载

高三数学一轮复习教学案:三角函数

高三数学一轮复习教学案:三角函数

三角函数1.了解任意角的概念、弧度的意义、正确进行弧度与角度的换算;理解任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;会利用单位圆中的三角函数线表示正弦、余弦、正切.2.掌握三角函数的公式(同角三角函数基本关系式、诱导公式、和、差角及倍角公式)及运用.3.能正确运用三角公式进行简单的三角函数式的化简、求值和条件等式及恒等式的证明.4.掌握正弦函数、余弦函数、正切函数的图象和性质;会用单位圆中的三角函数线画出正弦函数、正切函数的图象、并在此基础上由诱导公式画出余弦函数的图象.会用“五点法”画出正弦函数、余弦函数和)(sin ϕω+=x A y 的简图,理解ϕω、A 、的物理意义.5.会由已知三角函数值求角,并会用符号arcsinx ,arccosx ,arctanx 表示角.6.掌握正弦定理、余弦定理,并能初步运用它们解斜三角形,能利用计算器解决解三角形的计算问题.三角部分的知识是每年高考中必考的内容,近几年的高考对这部分知识的命题有如下特点:1.降低了对三角函数恒等变形的要求,加强了对三角函数图象和性质的考查.尤其是三角函数的最大值与最小值、周期.2.以小题为主.一般以选择题、填空题的形式出现,多数为基础题,难度属中档偏易.其次在解答题中多数是三角函数式的恒等变形,如运用三角公式进行化简、求值解决简单的综合题等.3.更加强调三角函数的工具性,加强了三角函数与其它知识的综合,如在解三角形、立体几何、平面解析几何中考查三角函数的知识.第1课时 任意角的三角函数一、角的概念的推广1.与角α终边相同的角的集合为 .2.与角α终边互为反向延长线的角的集合为 .3.轴线角(终边在坐标轴上的角)终边在x 轴上的角的集合为 ,终边在y 轴上的角的集合为 ,终边在坐标轴上的角的集合为 .4.象限角是指: .5.区间角是指: .6.弧度制的意义:圆周上弧长等于半径长的弧所对的圆心角的大小为1弧度的角,它将任意角的集合与实数集合之间建立了一一对应关系.7.弧度与角度互化:180º= 弧度,1º= 弧度,1弧度= ≈ º.8.弧长公式:l = ;扇形面积公式:S = .二、任意角的三角函数9.定义:设P(x, y)是角α终边上任意一点,且 |PO| =r ,则sin α= ; cos α= ;tan α= ;10.三角函数的符号与角所在象限的关系:1213的正弦线、余弦线、正切线.- + -+cos x , + + --sin x ,- + +-tan x ,x y O xy O x y O2α,2α ,3α的终边所在位置.解: ∵α是第二象限的角,∴k·360°+90°<α<k·360°+180°(k ∈Z ).(1)∵2k·360°+180°<2α<2k·360°+360°(k ∈Z ),∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上.(2)∵k·180°+45°<2α<k·180°+90°(k ∈Z ),当k=2n (n ∈Z )时,n·360°+45°<2α<n·360°+90°;当k=2n+1(n ∈Z )时,n·360°+225°<2α<n·360°+270°.∴2α是第一或第三象限的角.(3)∵k·120°+30°<3α<k·120°+60°(k ∈Z ),当k=3n (n ∈Z )时,n·360°+30°<3α<n·360°+60°;当k=3n+1(n ∈Z )时,n·360°+150°<3α<n·360°+180°;当k=3n+2(n ∈Z )时,n·360°+270°<3α<n·360°+300°.∴3α是第一或第二或第四象限的角.变式训练1:已知α是第三象限角,问3α是哪个象限的角?解: ∵α是第三象限角,∴180°+k·360°<α<270°+k·360°(k ∈Z ),60°+k·120°<3α<90°+k·120°.①当k=3m(m ∈Z )时,可得60°+m·360°<3α<90°+m·360°(m ∈Z ).故3α的终边在第一象限.②当k=3m+1 (m ∈Z )时,可得180°+m·360°<3α<210°+m·360°(m ∈Z ).故3α的终边在第三象限.③当k=3m+2 (m ∈Z )时,可得300°+m·360°<3α<330°+m·360°(m ∈Z ).故3α的终边在第四象限.综上可知,3α是第一、第三或第四象限的角. 例2. 在单位圆中画出适合下列条件的角α的终边的范围,并由此写出角α的集合:(1)sin α≥23;(2)cos α≤21-.解:(1)作直线y=23交单位圆于A 、B 两点,连结OA 、OB ,则OA 与OB 围成的区域即为角α的终边的范围,故满足条件的角α的集合为α|2k π+3π≤α≤2k π+32π,k ∈Z .(2)作直线x=21-交单位圆于C 、D 两点,连结OC 、OD ,则OC 与OD 围成的区域(图中阴影部分)即为角α终边的范围.故满足条件的角α的集合为⎭⎬⎫⎩⎨⎧∈+≤≤+Z k k k ,342322|ππαππα.变式训练2:求下列函数的定义域:(1)y=1cos 2-x ;(2)y=lg(3-4sin 2x ).解:(1)∵2cosx-1≥0,∴cosx≥21.由三角函数线画出x 满足条件的终边范围(如图阴影所示).∴x ∈⎥⎦⎤⎢⎣⎡+-32,32ππππk k (k ∈Z ).(2)∵3-4sin 2x >0,∴sin 2x <43,∴-23<sinx <23.利用三角函数线画出x 满足条件的终边范围(如右图阴影),∴x ∈(k π-3π,k π+3π)(k ∈Z ).例3. 已知角α的终边在直线3x+4y=0上,求sin α,cos α,tan α的值.解:∵角α的终边在直线3x+4y=0上,∴在角α的终边上任取一点P(4t,-3t) (t≠0),则x=4t,y=-3t,r=5)3()4(2222=-+=+t t y x |t|,当t >0时,r=5t, sin α=5353-=-=t t r y ,cos α=5454==t t r x , tan α=4343-=-=t t x y ; 当t <0时,r=-5t,sin α=5353=--=t t r y , cos α=5454-=-=t t rx , tan α=4343-=-=t t x y . 综上可知,t >0时,sin α=53-,cos α=54,tan α=43-; t <0时,sin α=53,cos α=-54,tan α=43-.变式训练3:已知角θ的终边经过点P ()(0),sin m m m θ≠=且,试判断角θ所在的象限,并求cos tan θθ和的值.解:由题意,得0,4r m m ==≠∴= 故角θ是第二或第三象限角.当m =,r =P 的坐标为(,cos tan x y r x θθ∴======当m =,r =P 的坐标为(,cos tan x y r x θθ∴======例4. 已知一扇形中心角为α,所在圆半径为R . (1) 若α3π=,R =2cm ,求扇形的弧长及该弧所在弓形面积;(2) 若扇形周长为一定值C(C>0),当α为何值时,该扇形面积最大,并求此最大值.解:(1)设弧长为l ,弓形面积为S 弓。

三角函数(一轮复习教案)

三角函数(一轮复习教案)

第三章三角函数 (1)第一节角的概念与任意角的三角函数 (2)第二节同角三角函数的基本关系式与诱导公式 (9)第三节三角函数的图象与性质 (16)第四节函数y=Asin(ωx+φ)的图象及三角函数模型的应用 (24)第五节和角公式 (37)第六节倍角公式与半角公式 (45)第七节正弦定理和余弦定理 (53)第八节正弦定理、余弦定理的应用举例 (61)第三章三角函数知识网络:学习重点:三角函数是高考命题的重点,分值约占10%~15%,一般是一个小题和一个大题,以中低档题为主.1.主要考查三角函数的图象与性质,简单的三角恒等变换,正、余弦定理及其应用,且题目常考常新.2.客观题主要涉及三角函数的求值,函数的图象及性质,解答题主要以三角变换为工具,综合考查函数的图象与性质;或以正、余弦定理为工具,结合三角变换考查解三角形的有关知识.3.高考命题中,本章常与平面向量相结合,既可以考查平面向量的运算,又可以考查三角函数式的化简和三角函数的性质,符合高考命题“要在知识点的交汇处命题”的要求.学法指导:1.立足基础,着眼于提高.立足课本,牢固掌握三角函数的概念、图象和性质;弄清每个公式成立的条件,公式间的内在联系及公式的变形、逆用等.要在灵、活、巧上下功夫,切不可死记硬背.2.突出数学思想方法.应深刻理解数与形的内在联系,理解众多三角公式的应用无一不体现等价转化思想.在解决三角函数的问题时仔细体会拆角、切化弦、三角函数归一的方法技能.3.抓住关键,三角函数的化简、求值中,要熟练掌握三角变换公式的应用,其中角的变换是解题的关键,注意已知与待求中角的关系,力争整体处理.4.注意三角函数与向量等内容的交汇渗透,这也是命题的热点之一.第一节 角的概念与任意角的三角函数学习目标:1.了解任意角的概念,了解弧度制的概念. 2.能进行弧度与角度的互化.3.理解任意角三角函数(正弦、余弦、正切)的定义 考点梳理:1.角的有关概念(1)从运动的角度看,角可分为正角、负角和零角. (2)从终边位置来看,可分为象限角与轴线角.(3)若β与α是终边相同的角,则β用α表示为β=2k π+α(k ∈Z ). 2.弧度与角度的互化 (1)1弧度的角长度等于半径长的弧所对的圆心角叫做1弧度的角. (2)角α的弧度数在半径为r 的圆中,弧长为l 的弧所对圆心角为αrad ,则α=lr. (3)角度与弧度的换算①n °=n π180rad ;②α rad =(180απ)°.(4)弧长、扇形面积的公式设扇形的弧长为l ,圆心角大小为α(rad),半径为r ,则l =rα,扇形的面积为S =12lr =12r 2α.3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=y x.(2)三角函数在各象限的符号一全正,二正弦,三正切,四余弦. 4.单位圆与三角函数线(1)单位圆:半径为1的圆叫做单位圆. (2)三角函数线. (3)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0). 思考:1.“角α为锐角”是“角α为第一象限角”的什么条件? 【提示】 充分不必要条件.2.终边在直线y =x 上的角的正弦值相等吗?【提示】 当角的终边一个在第一象限,一个在第三象限时,正弦值不相等. 学情自测:1.已知锐角α终边上一点A 的坐标是(2sin π3,2cos π3),则α弧度数是( )A .2 B.π3 C.π6 D.2π3【解析】 点A 的坐标为(3,1). ∴sin α=132+1=12,又α为锐角,∴α=π6.【答案】C12.(2012·江西高考)下列函数中,与函数y=定义域相同的函数为( )3xA .y =1sin x B .y =ln x xC .y =x e xD .y =sin x x【解析】 函数y =13x的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中,x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0},故选D.【答案】 D3.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角【解析】 由sin α<0,得α在第三、四象限或y 轴非正半轴上,又tan α>0,∴α在第三象限.【答案】 C4.弧长为3π,圆心角为135°的扇形半径为________,面积为________.【解析】 ∵l =3π,α=135°=3π4,∴r =l α=4,S =12lr =12×3π×4=6π.【答案】 4 6π5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴.若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.【解析】 由三角函数的定义,sin θ=y16+y2,又sin θ=-255<0,∴y <0且y 16+y2=-255, 解之得y =-8. 【答案】 -8 典例探究:例1(角的集合表示)(1)写出终边在直线y =3x 上的角的集合; (2)已知α是第三象限角,求α2所在的象限.【思路】(1)角的终边是射线,应分两种情况求解.(2)把α写成集合的形式,从而α2的集合形式也确定.【解答】 (1)当角的终边在第一象限时,角的集合为{α|α=2k π+π3,k ∈Z },当角的终边在第三象限时,角的集合为{α|α=2k π+43π,k ∈Z },故所求角的集合为{α|α=2k π+π3,k ∈Z }∪{α|α=2k π+43π,k ∈Z }={α|α=k π+π3,k ∈Z }.(2)∵2k π+π<α<2k π+32π(k ∈Z ),∴k π+π2<α2<k π+34π(k ∈Z ).当k =2n (n ∈Z )时,2n π+π2<α2<2n π+34π,α2是第二象限角, 当k =2n +1(n ∈Z )时,2n π+3π2<α2<2n π+74π,α2是第四象限角,综上知,当α是第三象限角时,α2是第二或第四象限角,变式训练1:若角θ的终边与π3角的终边相同,则在[0,2π)内终边与角θ3的终边相同的角为________.【解析】 ∵θ=π3+2k π(k ∈Z ),∴θ3=π9+23k π(k ∈Z ),当k =0,1,2时,θ3=π9,7π9,13π9.【答案】 π9,7π9,13π9例2(弧度制的应用)已知扇形的圆心角是α,半径为R ,弧长为l .(1)若α=60°,R =10 cm ,求扇形的弧长l . (2)若扇形的周长为20 cm ,当扇形的圆心角α为多少弧度时,这个扇形的面积最大?(3)若α=π3,R =2 cm ,求扇形的弧所在的弓形的面积.【思路】(1)可直接用弧长公式,但要注意用弧度制;(2)可用弧长或半径表示出扇形面积,然后确定其最大值时的半径和弧长,进而求出圆心角α;(3)利用S 弓=S 扇-S △,这样就需要求扇形的面积和三角形的面积.【解答】 (1)l =10×π3=10π3(cm).(2)由已知得:l +2R =20,所以S =12lR =12(20-2R )R =10R -R 2=-(R -5)2+25,所以R =5时,S 取得最大值25,此时l =10,α=2 rad. (3)设弓形面积为S 弓.由题知l =2π3cm ,S 弓=S 扇-S △=12×2π3×2-12×22×sin π3=(2π3-3)(cm 2)变式训练2:已知半径为10的圆O 中,弦AB 的长为10,(1)求弦AB 所对的圆心角α的大小;(2)求α所在的扇形弧长l 及弧所在的弓形的面积S . 【解】(1)在△AOB 中,AB =OA =OB =10,∴△AOB 为等边三角形.因此弦AB 所对的圆心角α=π3.(2)由扇形的弧长与扇形面积公式,得l =α·R =π3×10=103π,S 扇形=12R ·l =12α·R 2=50π3.又S △AOB =12·OA ·OB ·sin π3=25 3.∴弓形的面积S =S 扇形-S △AOB =50(π3-32).例3(三角函数的定义)(1)已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114C .-4D .4(2)已知角α的终边在直线3x +4y =0上,求sin α,cos α,tan α的值.【思路】(1)求出点P 到原点O 的距离,根据三角函数的定义求解.(2)在直线上设一点P (4t ,-3t ),求出点P 到原点O 的距离,根据三角函数的定义求解,由于点P 可在不同的象限内,所以需分类讨论.【解答】 (1)点P 到原点O 距离|OP |=m 2+9,∴cos α=m m 2+9=-45,∴⎩⎪⎨⎪⎧m 2=16m <0,∴m =-4.【答案】 C(2)在直线3x +4y =0上任取一点P (4t ,-3t )(t ≠0), 则x =4t ,y =-3t ,∴r =|PO |=x 2+y 2=4t 2+-3t 2=5|t |, 当t >0时,r =5t ,sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,r =-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34.综上可知,当t >0时,sin α=-35,cos α=45,tan α=-34.当t <0时,sin α=35,cos α=-45,tan α=-34.变式训练3:设90°<α<180°,角α的终边上一点为P (x ,5),且cos α=24x ,求4sin α-3tanα的值.【解】 ∵r =x 2+5,∴cos α=xx 2+5, 从而24x =xx 2+5,解得x =0或x =± 3. ∵90°<α<180°,∴x <0,因此x =- 3.则r =22,∴sin α=522=104,tan α=5-3=-153.故4sin α-3tan α=10+15.小结:一条规律三角函数值在各象限的符号规律概括为:一全正、二正弦、三正切、四余弦. 两个技巧1.在利用三角函数定义时,点P 可取终边上任一点,如有可能则取终边与单位圆的交点.2.利用单位圆和三角函数线是解简单三角不等式的常用技巧. 三点注意1.第一象限角、锐角、小于90°的角是三个不同的概念,前者是象限角,后两者是区间角.2.角度制与弧度制可利用180°=π rad进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.3.注意熟记0°~360°间特殊角的弧度表示,以方便解题.课后作业(十六) 角的概念与任意角的三角函数一、选择题图3-1-21.(2013·宁波模拟)如图3-1-2,在直角坐标系xOy 中,射线OP 交单位圆O 于点P ,若∠AOP =θ,则点P 的坐标是( )A .(cos θ,sin θ)B .(-cos θ,sin θ)C .(sin θ,cos θ)D .(-sin θ,cos θ)【解析】 设P (x ,y ),由三角函数定义知sin θ=y ,cos θ=x ,故点P 的坐标为(cos θ,sin θ).【答案】 A2.已知2弧度的圆心角所对的弦长为2,则这个圆心角所对的弧长是( )A .2B .sin 2 C.2sin 1D .2sin 1【解析】 由题设,圆弧的半径r =1sin 1,∴圆心角所对的弧长l =2r =2sin 1.【答案】 C3.(2013·海淀模拟)若α=k ·360°+θ,β=m ·360°-θ(k ,m ∈Z ),则角α与β的终边的位置关系是( )A .重合B .关于原点对称C .关于x 轴对称D .关于y 轴对称【解析】 由题意知角α与角θ的终边相同,角β与角-θ的终边相同,又角θ与角-θ的终边关于x 轴对称,故选C.【答案】 C4.若角α的终边在直线y =-2x 上,且sin α>0,则cos α和tan α的值分别为( )A.55,-2 B .-55,-12 C .-255,-2 D .-55,-2【解析】 由题意知,角α的终边在第二象限,在角α的终边上取点P (-1,2),则r =5,从而cos α=-15=-55,tan α=2-1=-2,故选D.【答案】 D5.(2013·昆明模拟)设α是第二象限角,P (x,4)为其终边上的一点,且cos α=15x ,则tan α=( )A.43B.34 C .-34 D .-43【解析】 由题意知x <0,r =x 2+16,∴cos α=x x 2+16=15x ,∴x 2=9,∴x =-3,∴tan α=-43.【答案】 D6.已知点P (sin 3π4,cos 34π)在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4 【解析】 由已知得P (22,-22),∴tan θ=-1且θ是第四象限角,∴θ=7π4. 【答案】 D二、填空题7.(2013·潍坊模拟)若角120°的终边上有一点(-4,a ),则a 的值是________. 【解析】 由题意知-a4=tan 120°,∴-a4=-3,∴a =4 3.【答案】 438.已知角α的终边落在直线y =-3x (x <0)上,则|sin α|sin α-|cos α|cos α=________.【解析】 因为角α的终边落在直线y =-3x (x <0)上, 所以角α是第二象限角,因此sin α>0,cos α<0, 故|sin α|sin α-|cos α|cos α=sin αsin α--cos αcos α=1+1=2. 【答案】 29.点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为________.【解析】 由题意知点Q 是角2π3的终边与单位圆的交点,设Q (x ,y ),则y =sin2π3=32,x =cos 2π3=-12,故Q (-12,32). 【答案】 (-12,32)三、解答题10.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,求sin θ+cos θ的值.【解】 ∵θ的终边过点(x ,-1)(x ≠0),∴tan θ=-1x,又tan θ=-x ,∴x 2=1,∴x =±1.当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0;当x =-1时,sin θ=-22,cos θ=-22,因此sin θ+cos θ=- 2.11.已知扇形OAB 的圆心角α为120°,半径长为6, (1)求AB 的长;(2)求AB 所在弓形的面积.【解】 (1)∵α=120°=2π3,r =6,∴AB 的长l =2π3×6=4π. (2)∵S 扇形OAB =12lr =12×4π×6=12π,S △ABO =12r 2·sin2π3=12×62×32=93, ∴S 弓形=S 扇形OAB -S △ABO =12π-9 3.12.角α终边上的点P 与A (a,2a )关于x 轴对称(a >0),角β终边上的点Q 与A 关于直线y =x 对称,求sin α·cos α+sin β·cos β+tan α·tan β的值.【解】 由题意得,点P 的坐标为(a ,-2a ), 点Q 的坐标为(2a ,a ).所以,sin α=-2a a 2+-2a 2=-25,cos α=a a 2+-2a 2=15, tan α=-2aa=-2,sin β=a 2a 2+a 2=15, cos β=2a 2a 2+a 2=25, tan β=a 2a =12,故有sin α·cos α+sin β·cos β+tan α·tan β =-25·15+15·25+(-2)×12=-1.第二节 同角三角函数的基本关系式与诱导公式学习目标:1.理解同角三角函数的基本关系式:sin 2x +cos 2x =1,sin x cos x=tan x .2.能利用单位圆中的三角函数线推导出π2±α,π±α的正弦、余弦、正切的诱导公式.考点梳理:1.同角三角函数的基本关系式(1)平方关系:sin 2α+cos 2α=1.(2)商数关系:tan α=sin αcos α(α≠π2+k π,k ∈Z ).组数 一 二 三四五 角 α+2k π(k∈Z ) -αα+(2k +1)π(k ∈Z )α+π2-α+π2正弦 sin α -sin_α -sin_α cos_α cos_α 余弦 cos α cos_α -cos_α -sin_α sin_α正切 tan α-tan_α tan_α口诀函数名不变符号看象限思考:1.有人说sin(kπ-α)=sin(π-α)=sin α(k∈Z),你认为正确吗?【提示】不正确.当k=2n(n∈Z)时,sin(kπ-α)=sin(2nπ-α)=-sin α;当k =2n +1(n ∈Z )时,sin(k π-α)=sin(2n π+π-α)=sin(π-α)=sin α. 2.sin(-π-α)如何使用诱导公式变形?【提示】 sin(-π-α)=-sin(π+α)=sin α.学情自测:1.已知cos(α-π)=-513,且α是第四象限角,则sin α=( )A .-1213 B.1213 C.512 D .±1213【解析】 ∵cos(α-π)=cos(π-α)=-cos α=-513,∴cos α=513,又α是第四象限角,∴sin α<0,则sin α=-1-cos 2α=-1213.【答案】 A2.已知sin(π+θ)=-3cos(2π-θ),|θ|<π2,则θ等于( )A .-π6B .-π3 C.π6 D.π3【解析】 由sin(π+θ)=-3cos(2π-θ)得 -sin θ=-3cos θ, ∴tan θ=3,又|θ|<π2,∴θ=π3,故选D.【答案】 D3.sin 585°的值为( )A .-22 B.22 C .-32 D.32【解析】 sin 585°=sin(360°+225°)=sin 225°=sin(180°+45°)=-sin 45°=-22.【答案】 A4.若cos α=-35且α∈(π,3π2),则tan α=( )A.34B.43 C .-34 D .-43【解析】 ∵cos α=-35,且α∈(π,3π2),∴sin α=-1-cos 2α=-1--352=-45,∴tan α=sin αcos α=43.【答案】 B5.(2012·辽宁高考)已知sin α-cos α=2,α∈(0,π),则sin 2α=( )A .-1B .-22 C.22 D .1【解析】 因为sin α-cos α=2,所以1-2sin αcos α=2,即sin 2α=-1.【答案】A典例探究:例1(同角三角函数关系式的应用)(1)(2013·潍坊模拟)已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是( )A.25 B .-25C .-2D .2 (2)(2013·银川模拟)已知α∈(π,3π2),tan α=2,则cos α=________.【思路】 (1)先根据已知条件求得tan α,再把所求式变为用tan α表示的式子求解;(2)切化弦,结合sin 2α+cos 2α=1求解.【解答】 (1)由sin α+3cos α3cos α-sin α=5,得tan α+33-tan α=5,即tan α=2.所以sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=25. (2)依题意得⎩⎪⎨⎪⎧tan α=sin αcos α=2,sin 2α+cos 2α=1,由此解得cos 2α=15;又α∈(π,3π2),因此cos α=-55.【答案】 (1)A (2)-55, 变式训练1:(2012·大纲全国卷)已知α为第二象限角,sin α=35,则sin 2α=( )A .-2425B .-1225 C.1225 D.2425【解析】 ∵α为第二象限角且sin α=35,∴cos α=-1-sin 2α=-45,∴sin 2α=2sin α·cos α=2×35×(-45)=-2425.【答案】 A例2(诱导公式的应用) (1)已知tan α=2,sin α+cos α<0,则sin 2π-α·sin π+α·cos π+αsin 3π-α·cos π+α=________.(2)已知α为第三象限角,f (α)=sin α-π2·cos 3π2+α·tan π-αtan -α-π·sin -α-π,①化简f (α);②若cos(α-3π2)=15,求f (α)的值.【思路】(1)先利用诱导公式对原式进行化简,再根据tan α=2,结合α的范围和同角三角函数关系式求解;(2)①直接利用诱导公式化简约分.②利用α在第三象限及同角三角函数关系的变形式得f (α).【解答】 (1)原式=-sin α·-sin α·-cos α-sin α·cos α=sin α,∵tan α=2>0,∴α为第一象限角或第三象限角.又sin α+cos α<0,∴α为第三象限角,由tan α=sin αcos α=2,得sin α=2cos α代入sin 2α+cos 2α=1,解得sin α=-255.【答案】 -255(2)①f (α)=sin α-π2·cos 3π2+α·tan π-αtan -α-π·sin -α-π=-cos α·sin α·-tan α-tan α·sin α=-cos α.②∵cos(α-3π2)=15,∴-sin α=15,从而sin α=-15.又α为第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=265.变式训练2:(1)(2013·烟台模拟)sin 600°+tan 240°的值等于( )A .-32 B.32 C.3-12 D.3+12(2)(2013·台州模拟)已知f (x )=a sin(πx +α)+b cos(πx +β)+4(a ,b ,α,β为非零实数),若f (2 012)=5,则f (2 013)=( ) A .3 B .5 C .1 D .不能确定【解析】 (1)sin 600°+tan 240°=sin(360°+240°)+tan(180°+60°)=sin(180°+60°)+tan 60°=-sin 60°+tan 60°=-32+3=32.(2)∵f (2 012)=a sin(2 012π+α)+b cos(2 012π+β)+4 =a sin α+b cos β+4=5, ∴a sin α+b cos β=1,∴f (2 013)=a sin(2 013π+α)+b cos(2 013π+β)+4=-a sin α-b cos β+4=-(a sin α+b cos β)+4=-1+4=3. 【答案】 (1)B (2)A例3(sin α±cos α与sin α·cos α的关系)(2013·扬州模拟)已知-π<x <0,sin x +cos x =15.(1)求sin x -cos x 的值; (2)求sin 2x +2sin 2x1-tan x的值.【思路】(1)利用平方关系,设法沟通sin x -cos x 与sin x +cos x 的关系;(2)先利用倍角公式、商数关系式化为角x 的弦函数,再设法将所求式子用已知表示出来.【解答】(1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,整理得2sin x cos x =-2425.∵(sin x -cos x )2=1-2sin x cos x =4925.又∵-π<x <0,∴sin x <0,又sin x +cos x >0, ∴cos x >0,sin x -cos x <0,7 5.故sin x-cos x=-(2)sin 2x +2sin 2x 1-tan x =2sin x cos x +sin x 1-sin xcos x=2sin x cos x cos x +sin x cos x -sin x =-2425×1575=-24175.变式训练3:已知-π2<x <0,sin x +cos x =15.(1)求sin x -cos x 的值; (2)求tan x 的值.【解】(1)由sin x +cos x =15,平方得sin 2x +2sin x cos x +cos 2x =125,即2sin x cos x =-2425,∵(sin x -cos x )2=1-2sin x cos x =4925.又∵-π2<x <0,∴sin x <0,cos x >0,sin x -cos x <0,故sin x -cos x =-75.(2)由(1)得sin x -cos x =-75,故由⎩⎪⎨⎪⎧sin x +cos x =15sin x -cos x =-75,得sin x =-35,cos x =45,∴tan x =sin x cos x =-3545=-34.小结:一个口诀诱导公式的记忆口诀为:奇变偶不变,符号看象限. 两个防范1.利用诱导公式进行化简求值时,要注意函数名称和符号的确定.2.在利用同角三角函数的平方关系时,若开方,要注意判断三角函数值的符号.三种方法在求值与化简时,常用方法有:(1)弦切互化法:主要利用公式tan α=sin αcos α进行弦、切互化.(2)和积转换法:利用(sin θ±cos θ)2=1±2sin θcos θ的关系进行变形、转化.(3)巧用“1”的变换:1=sin 2θ+cos 2θ=cos 2θ(1+tan 2θ)=tan π4等.课后作业(十七) 同角三角函数的基本关系式与诱导公式一、选择题1.(2013·郑州模拟)记cos(-80°)=k ,那么tan 100°=( )A.1-k2kB .-1-k2kC.k1-k 2 D .-k1-k2【解析】 由cos(-80°)=k ,得cos 80°=k ,∴sin 80°=1-k 2,∴tan 100°=tan(180°-80°)=-tan 80°=-1-k2k.【答案】 B2.(2013·温州模拟)若cos(π2+θ)=32,且|θ|<π2,则tan θ=( )A .- 3 B.33 C .-33D.3 【解析】 ∵cos(π2+θ)=32,∴-sin θ=32,即sin θ=-32, ∵|θ|<π2,∴θ=-π3,∴tan θ=tan(-π3)=- 3.【答案】 A3.(2013·济南模拟)已知α∈(-π2,0),sin(-α-3π2)=55则sin(-π-α)=( )A.55B.255 C .-55 D .-255【解析】 ∵sin(-α-3π2)=-sin(3π2+α)=cos α=55,且α∈(-π2,0),∴sin α=-1-cos 2α=-1-525=-255, ∴sin(-π-α)=-sin(π+α)=sin α=-255.【答案】 D4.(2013·保定模拟)已知tan θ=2,则sin 2θ+sin θcos θ-2cos 2θ=( )A .-43 B.54 C .-34 D.45【解析】 sin 2θ+sin θcos θ-2cos 2θ=sin 2θ+sin θcos θ-2cos 2θsin 2θ+cos 2θ =tan 2θ+tan θ-2tan 2θ+1=4+2-24+1=45. 【答案】 D5.(2013·普宁模拟)若sin θ+cos θsin θ-cos θ=2,则sin θcos 3θ+cos θsin 3θ的值为( ) A .-81727 B.81727 C.82027 D .-82027【解析】 ∵sin θ+cos θsin θ-cos θ=2,∴sin θ=3cos θ,∴sin θcos 3θ+cos θsin 3θ=3cos 2θ+127cos 2θ=8227cos 2θ由⎩⎪⎨⎪⎧sin θ=3cos θ,sin 2θ+cos 2θ=1得cos 2θ=110,∴sin θcos 3θ+cos θsin 3θ=82027. 【答案】 C6.若sin α是5x 2-7x -6=0的根,则sin -α-3π2sin 3π2-αtan 22π-αcos π2-αcos π2+αsin π+α=( )A.35B.53C.45D.54【解析】 方程5x 2-7x -6=0的两根为x 1=-35,x 2=2,则sin α=-35.原式=cos α-cos αtan 2αsin α-sin α-sin α=-1sin α=53.【答案】 B 二、填空题7.已知sin(π4+α)=32,则sin(3π4-α)的值为________.【解析】 sin(3π4-α)=sin[π-(π4+α)]=sin(π4+α)=32.【答案】328.(2013·青岛模拟)已知tan α=2,则7sin 2α+3cos 2α=________.【解析】 7sin 2α+3cos 2α=7sin 2α+3cos 2αsin 2α+cos 2α=7tan 2α+3tan 2α+1=7×22+322+1=315. 【答案】 3159.已知sin(x +π6)=14,则sin(7π6+x )+cos 2(5π6-x )=________.【解析】 原式=-sin(π6+x )+cos 2(π6+x )=-14+(1-142)=1116.【答案】 1116三、解答题10.已知函数f (x )=1-sin x -3π2+cos x +π2+tan 34πcos x.(1)求函数y =f (x )的定义域;(2)设tan α=-43,求f (α)的值.【解】 (1)由cos x ≠0,得x ≠π2+k π,k ∈Z ,所以函数的定义域是{x |x ≠π2+k π,k ∈Z }.(2)∵tan α=-43,∴f (α)=1-sin α-3π2+cos α+π2+tan 34πcos α=1-cos α-sin α-1cos α=-cos α-sin αcos α=-1-tan α=13.11.已知tan(α+87π)=a .求证:sin 157π+α+3cos α-137πsin 207π-α-cos α+227π=a +3a +1. 【证明】 由已知得左边=sin[π+α+87π]+3cos[α+8π7-3π]sin[4π-α+87π]-cos[2π+α+87π]=-sin α+87π-3cos α+87π-sin α+87π-cos α+87π=tan α+87π+3tan α+87π+1=a +3a +1=右边,所以原等式成立.12.在△ABC 中,若sin(2π-A )=-2sin(π-B ),3cos A =-2cos(π-B ),求△ABC 的三个内角.【解】 由已知得⎩⎨⎧sin A =2sin B , ①3cos A =2cos B , ②①2+②2得2cos 2A =1,即cos A =22或cos A =-22.(1)当cos A =22时,cos B =32, 又A 、B 是三角形的内角,∴A =π4,B =π6,∴C =π-(A +B )=712π.(2)当cos A =-22时,cos B =-32. 又A 、B 是三角形的内角,∴A =34π,B =56π,不合题意.综上知,A =π4,B =π6,C =712π.第三节三角函数的图象与性质学习目标:1.能画出y=sin x,y=cos x,y=tan x的图象,了解三角函数的周期性.2.理解正弦函数、余弦函数在区间[0,2π]上的性质(如单调性、最大值和最小值以及与x 轴的交点等),理解正切函数在区间(-π2,π2)内的单调性.考点梳理:1.周期函数和最小正周期对于函数f (x ),如果存在一个非零常数T ,使得定义域内的每一个x 值,都满足f (x +T )=f (x ),那么函数f (x )就叫做周期函数,非零常数T 叫做这个函数的周期.若在所有周期中,存在一个最小的正数,那么这个最小的正数叫做f (x )的最小正周期.y =sin x y =cos x y =tan xπ1.是否每一个周期函数都有最小正周期?【提示】 不一定.如常数函数f (x )=a ,每一个非零数都是它的周期.2.正弦函数和余弦函数的图象的对称轴及对称中心与函数图象的关键点是什么关系? 【提示】 y =sin x 与y =cos x 的对称轴方程中的x 都是它们取得最大值或最小值时相应的x .对称中心的横坐标都是它们的零点. 学情自测:1.函数y =tan 3x 的定义域为( )A .{x |x ≠32π+3k π,k ∈Z }B .{x |x ≠π6+k π,k ∈Z }C .{x |x ≠-π6+k π,k ∈Z }D .{x |x ≠π6+k π3,k ∈Z }【解析】 由3x ≠π2+k π,k ∈Z 得x ≠π6+k π3,k ∈Z ,故选D.【答案】 D2.函数f (x )=2cos(x +5π2)是( ) A .最小正周期为2π的奇函数B .最小正周期为2π的偶函数C .最小正周期为2π的非奇非偶函数D .最小正周期为π的偶函数【解析】 f (x )=2cos(x +52π)=2cos(x +π2)=-2sin x ,故f (x )是最小正周期为2π的奇函数.【答案】 A3.(2012·福建高考)函数f (x )=sin(x -π4)的图象的一条对称轴是( ) A .x =π4 B .x =π2C .x =-π4D .x =-π2【解析】 法一 ∵正弦函数图象的对称轴过图象的最高点或最低点,故令x -π4=k π+π2,k ∈Z ,∴x =k π+3π4,k ∈Z . 取k =-1,则x =-π4. 法二 x =π4时,y =sin(π4-π4)=0,不合题意,排除A ;x =π2时,y =sin(π2-π4)=22,不合题意,排除B ;x =-π4时,y =sin(-π4-π4)=-1,符合题意,C 项正确;而x =-π2时,y =sin(-π2-π4)=-22,不合题意,故D 项也不正确. 【答案】 C 4.比较大小:sin(-π18)________sin(-π10). 【解析】 ∵-π2<-π10<-π18<0, ∴sin(-π18)>sin(-π10). 【答案】 >5.函数y =2-3cos(x +π4)的最大值为________,此时x =________. 【解析】 当cos(x +π4)=-1时,函数有最大值5, 此时,x +π4=π+2k π,k ∈Z , 即x =34π+2k π,k ∈Z . 【答案】 5 34π+2k π,k ∈Z 典例探究:例1(三角函数的定义域和值域)(1)(2012·山东高考)函数y =2sin(πx 6-π3)(0≤x ≤9)的最大值与最小值之和为( ) A .2- 3 B .0C .-1D .-1-3(2)函数y =1tan x -1的定义域为________. 【思路】(1)先确定πx 6-π3的范围,再数形结合求最值; (2)由tan x -1≠0且x ≠k π+π2,k ∈Z 求解. 【解答】 (1)∵0≤x ≤9,∴-π3≤π6x -π3≤7π6, ∴sin(π6x -π3)∈[-32,1]. ∴y ∈[-3,2],∴y max +y min =2- 3.(2)要使函数有意义,必须有⎩⎪⎨⎪⎧ tan x -1≠0,x ≠π2+k π,k ∈Z ,即⎩⎪⎨⎪⎧ x ≠π4+k π,k ∈Z ,x ≠π2+k π,k ∈Z .故函数的定义域为{x |x ≠π4+k π且x ≠π2+k π,k ∈Z }. 【答案】 (1)A (2){x |x ≠π4+k π且x ≠π2+k π,k ∈Z }, 变式训练1:(1)函数y =2sin x -1的定义域为________.(2)当x ∈[π6,7π6]时,函数y =3-sin x -2cos 2x 的最小值是________,最大值是________. 【解析】 (1)由2sin x -1≥0得sin x ≥12,∴2k π+π6≤x ≤2k π+5π6,k ∈Z , 故函数的定义域为[2k π+π6,2k π+56π](k ∈Z ). (2)∵x ∈[π6,76π] ∴-12≤sin x ≤1, 又y =3-sin x -2cos 2x =2sin 2x -sin x +1=2(sin x -14)2+78, ∴当sin x =14时,y min =78, 当sin x =1或-12时,y max =2. 【答案】 (1)[2k π+π6,2k π+5π6](k ∈Z ) (2)782 例2(三角函数的单调性)(2012·北京高考)已知函数f (x )=sin x -cos x sin 2x sin x. (1)求f (x )的定义域及最小正周期;(2)求f (x )的单调递减区间.【思路】(1)求定义域时考虑分母不为零,然后对f (x )解析式进行化简,转化成正弦型函数的形式,再求周期;(2)求单调递减区间时利用整体代换,把ωx +φ当作一个整体放入正弦的减区间内解出x即为减区间,不要忽略对定义域的考虑.【解答】(1)由sin x≠0得x≠kπ(k∈Z),故f(x)的定义域为{x∈R|x≠kπ,k∈Z}.因为f(x)=sin x-cos x sin 2xsin x=2cos x(sin x-cos x)=sin 2x -cos 2x -1=2sin(2x -π4)-1, 所以f (x )的最小正周期T =2π2=π. (2)函数y =sin x 的单调递减区间为[2k π+π2,2k π+3π2](k ∈Z ). 由2k π+π2≤2x -π4≤2k π+3π2,x ≠k π(k ∈Z ), 得k π+3π8≤x ≤k π+7π8(k ∈Z ). 所以f (x )的单调递减区间为[k π+3π8,k π+7π8](k ∈Z ). 变式训练2:(2013·武汉模拟)已知函数y =sin(π3-2x ),求: (1)函数的周期;(2)求函数在[-π,0]上的单调递减区间.【解】由y =sin(π3-2x )可化为y =-sin(2x -π3). (1)周期T =2πω=2π2=π. (2)令2k π-π2≤2x -π3≤2k π+π2,k ∈Z , 得k π-π12≤x ≤k π+5π12,k ∈Z . 所以x ∈R 时,y =sin(π3-2x )的减区间为[k π-π12,k π+5π12],k ∈Z . 取k =-1,0可得函数在[-π,0]上的单调递减区间为[-π,-7π12]和[-π12,0]. 例3(三角函数的奇偶性、周期性和对称性)设函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2),给出以下四个论断: ①它的最小正周期为π;②它的图象关于直线x =π12成轴对称图形; ③它的图象关于点(π3,0)成中心对称图形; ④在区间[-π6,0)上是增函数. 以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题________(用序号表示即可).【思路】本题是一个开放性题目,依据正弦函数的图象及单调性、周期性以及对称性逐一判断.【解答】若①、②成立,则ω=2ππ=2;令2·π12+φ=k π+π2,k ∈Z ,且|φ|<π2,故k =0,∴φ=π3.此时f (x )=sin(2x +π3),当x =π3时,sin(2x +π3)=sin π=0,∴f (x )的图象关于(π3,0)成中心对称;又f (x )在[-5π12,π12]上是增函数,∴在[-π6,0)上也是增函数,因此①②⇒③④,用类似的分析可得①③⇒②④.因此填①②⇒③④或①③⇒②④.【答案】①②⇒③④或①③⇒②④,变式训练3:已知函数f (x )=sin(πx -π2)-1,则下列说法正确的是( ) A .f (x )是周期为1的奇函数B .f (x )是周期为2的偶函数C .f (x )是周期为1的非奇非偶函数D .f (x )是周期为2的非奇非偶函数【解析】周期T =2ππ=2,f (x )=sin(πx -π2)-1=-cos πx -1,因此函数f (x )是偶函数,故选B.【答案】 B小结:两条性质1.若f (x )=A sin(ωx +φ)(A ,ω≠0),则(1)f (x )为偶函数的充要条件是φ=π2+k π(k ∈Z ); (2)f (x )为奇函数的充要条件是φ=k π(k ∈Z ).2.对称性:正、余弦函数的图象既是轴对称图形,又是中心对称图形且最值点在对称轴上,正切函数的图象只是中心对称图形.三种方法求三角函数值域(最值)的方法:(1)利用sin x 、cos x 的有界性;(2)化为y =A sin(ωx +φ)+k 的形式,逐步分析ωx +φ的范围,根据正弦函数单调性写出函数的值域;(3)换元法:把sin x 或cos x 看作一个整体,可化为求函数在区间上的值域(最值)问题.课后作业(十八) 三角函数的图象与性质一、选择题1.(2013·银川模拟)下列函数中,最小正周期为π,且图象关于直线x =π3对称的函数是( )A .y =2sin(2x +π3)B .y =2sin(2x -π6)C .y =2sin(x 2+π3) D .y =2sin(2x -π3) 【解析】根据函数的最小正周期为π,排除C ,又图象关于直线x =π3对称,则f (π3)=2或f (π3)=-2,代入检验知选B. 【答案】 B2.函数y =tan(π4-x )的定义域是( ) A .{x |x ≠π4} B .{x |x ≠-π4} C .{x |x ≠k π+π4,k ∈Z } D .{x |x ≠k π+3π4,k ∈Z }【解析】y =tan(π4-x )=-tan(x -π4),由x -π4≠π2+k π,k ∈Z ,得x ≠n π+3π4,k ∈Z ,故选D.【答案】 D3.函数y =sin 2x +sin x -1的值域为( )A .[-1,1]B .[-54,-1]C .[-54,1]D .[-1,54] 【解析】 f (x )=(sin x +12)2-54, ∵sin x ∈[-1,1],∴-54≤f (x )≤1, ∴f (x )的值域为[-54,1]. 【答案】 C4.(2013·日照质检)函数y =sin 2x 的图象向右平移φ(φ>0)个单位,得到的图象关于直线x =π6对称,则φ的最小值为( ) A.5π12 B.11π6 C.11π12D .以上都不对 【解析】 函数y =sin 2x 的图象平移后所得图象对应的函数解析式为y =sin 2(x -φ)=sin(2x -2φ),其图象关于x =π6对称,所以2·π6-2φ=k π+π2(k ∈Z ),解得φ=-k 2π-π12(k ∈Z ),故当k =-1时,φ的最小值为5π12. 【答案】 A5.(2013·北京模拟)已知函数f (x )=sin x +3cos x ,设a =f (π7),b =f (π6),c =f (π3),则a ,b ,c 的大小关系是( ) A .a <b <c B .c <a <bC .b <a <cD .b <c <a【解析】 ∵f (x )=sin x +3cos x =2sin(x +π3), ∴函数f (x )的图象关于直线x =π6对称,从而f (π3)=f (0), 又f (x )在[0,π6]上是增函数,∴f (0)<f (π7)<f (π6),即c <a <b . 【答案】 B6.已知函数f (x )=2sin(ωx +φ),x ∈R ,其中ω>0,-π<φ≤π.若f (x )的最小正周期为6π,,且当x =π2时,f (x )取得最大值,则( ) A .f (x )在区间[-2π,0]上是增函数B .f (x )在区间[-3π,-π]上是增函数C .f (x )在区间[3π,5π]上是减函数D .f (x )在区间[4π,6π]上是减函数【解析】 ∵T =6π,∴ω=2πT =2π6π=13, ∴13×π2+φ=2k π+π2, ∴φ=2k π+π3(k ∈Z ). ∵-π<φ≤π,∴令k =0得φ=π3.∴f (x )=2sin(x 3+π3). 令2k π-π2≤x 3+π3≤2k π+π2,k ∈Z ,则6k π-5π2≤x ≤6k π+π2,k ∈Z .易知f (x )在区间[-2π,0]上是增函数. 【答案】 A 二、填空题7.(2013·延吉模拟)已知f (x )=A sin(ωx +φ),f (α)=A ,f (β)=0,|α-β|的最小值为π3,则正数ω=________.【解析】 由|α-β|的最小值为π3知函数f (x )的周期T =43π,∴ω=2πT =32.【答案】 328.已知函数f (x )=3sin(ωx -π6)(ω>0)和g (x )=2cos(2x +φ)+1的图象的对称轴完全相同,若x ∈[0,π2],则f (x )的取值范围是________.【解析】 依题意得ω=2,所以f (x )=3sin(2x -π6).因为x ∈[0,π2],所以2x -π6∈[-π6,56π],所以sin(2x -π6)∈[-12,1],所以f (x )∈[-32,3].【答案】 [-32,3]9.已知函数f (x )=cos x sin x (x ∈R ),给出下列四个命题: ①若f (x 1)=-f (x 2),则x 1=-x 2; ②f (x )的最小正周期是2π;③f (x )在区间[-π4,π4]上是增函数;④f (x )的图象关于直线x =3π4对称.其中真命题是________.【解析】 f (x )=12sin 2x ,当x 1=0,x 2=π2时,f (x 1)=-f (x 2),但x 1≠-x 2,故①是假命题;f (x )的最小正周期为π,故②是假命题;当x ∈[-π4,π4]时,2x ∈[-π2,π2],故③是真命题;因为f (3π4)=12sin 32π=-12,故f (x )的图象关于直线x =34π对称,故④是真命题.【答案】 ③④ 三、解答题10.已知函数f (x )=sin x cos x +sin 2x ,(1)求f (π4)的值;(2)若x ∈[0,π2],求f (x )的最大值及相应的x 值.【解】 (1)∵f (x )=sin x cos x +sin 2x ,∴f (π4)=sin π4cos π4+sin 2π4=(22)2+(22)2=1.(2)f (x )=sin x cos x +sin 2x =12sin 2x +1-cos 2x 2=12(sin 2x -cos 2x )+12=22sin(2x -π4)+12, 由x ∈[0,π2]得2x -π4∈[-π4,3π4],所以,当2x -π4=π2,即x =38π时,f (x )取到最大值为2+12.11.设函数f (x )=sin(2x +φ)(-π<φ<0),y =f (x )图象的一条对称轴是直线x =π8, (1)求φ;(2)求函数y =f (x )的单调增区间.【解】 (1)∵直线x =π8是函数f (x )图象的一条对称轴,∴2×π8+φ=π2+k π,k ∈Z ,即φ=π4+k π,k ∈Z ,又-π<φ<0,∴φ=-34π.(2)由(1)知f (x )=sin(2x -34π),令-π2+2k π≤2x -34π≤π2+2k π,k ∈Z ,得π8+k π≤x ≤5π8+k π,k ∈Z . 因此y =f (x )的单调增区间为[π8+k π,58π+k π],k ∈Z .12.(2013·潍坊模拟)已知向量a =(A sin ωx ,A cos ωx ),b =(cos θ,sin θ),f (x )=a ·b +1,其中A >0,ω>0,θ为锐角.f (x )的图象的两个相邻对称中心的距离为π2,且当x =π12时,f (x )取得最大值3. (1)求f (x )的解析式;(2)将f (x )的图象先向下平移1个单位,再向左平移φ(φ>0)个单位得g (x )的图象,若g (x )为奇函数,求φ的最小值.【解】 (1)f (x )=a ·b +1=A sin ωx ·cos θ+A cos ωx ·sin θ+1=A sin(ωx +θ)+1,∵f (x )的图象的两个相邻对称中心的距离为π2,∴T =π=2πω,∴ω=2.∵当x =π12时,f (x )的最大值为3,∴A =3-1=2,且有2·π12+θ=2k π+π2(k ∈Z ).∴θ=2k π+π3,∵θ为锐角,∴θ=π3.∴f (x )=2sin(2x +π3)+1.(2)由题意可得g (x )的解析式为g (x )=2sin[2(x +φ)+π3],∵g (x )为奇函数,∴2φ+π3=k π,φ=k π2-π6(k ∈Z ),∵φ>0,∴当k =1时,φ取最小值π3.第四节 函数y =A sin(ωx +φ)的图象及三角函数模型的应用学习目标:1.了解函数y =A sin(ωx +φ)的物理意义;能画出y =A sin(ωx +φ)的图象,了解参数A ,ω,φ对函数图象变化的影响.2.了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题. 考点梳理:1.2.3.由(1)先平移后伸缩 (2)先伸缩后平移思考:1.五点作法作y =A sin(ωx +φ)的图象,首先确定哪些数据?【提示】 先确定ωx +φ,即先使ωx +φ等于0,π2,π,3π2,2π,然后求出x的值.2.在图象变换时运用“先平移后伸缩”与“先伸缩后平移”两种途径,向左或向右平移的单位个数为什么不一样?【提示】 可以看出,前者平移|φ|个单位,后者平移|φω|个单位,原因在于相位变换和周期变换都是针对变量x 而言的,因此在用这样的变换法作图象时一定要注意平移与伸缩的先后顺序,否则会出现错误. 学情自测:1.已知简谐运动f (x )=2sin(π3x +φ)(|φ|<π2)的图象经过点(0,1),则该简谐运动的最小正周期T 和初相φ分别为( )A .T =6,φ=π6B .T =6,φ=π3C .T =6π,φ=π6D .T =6π,φ=π3【解析】 由题意知f (0)=2sin φ=1,∴sin φ=12,又|φ|<π2,∴φ=π6,又T =6,故选A.【答案】 A2.把y =sin 12x 的图象上点的横坐标变为原来的2倍得到y =sin ωx 的图象,则ω的值为( )A .1B .4 C.14D .2【解析】 横坐标变为原来的2倍,则x 变为12x ,故得到的函数解析式为y =sin 14x ,故选C.【答案】 C3.将函数y =sin x 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再把所π10个单位,得到图象的函数解析式为( )得图象上所有的点向右平行移动A .y =sin(2x -π10)B .y =sin(2x -π20)C .y =sin(12x -π10)D .y =sin(12x -π20)【解析】 将y =sin x 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变)得到的图象解析式为y =sin 12x ,再把所得图象上所有点向右平移π10个单位,得到的图象解析式为y =sin 12(x -π10)=sin(12x -π20).【答案】 D4.已知函数y =A sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图3-4-1所示,则( )图3-4-1A .ω=1,φ=π6B .ω=1,φ=-π6C .ω=2,φ=π6D .ω=2,φ=-π6【解析】 由图象知A =1,T =4(712π-π3)=π,∴2πω=π,ω=2,排除A ,B ,再由2×π3+φ=π2,得φ=-π6. 【答案】 D5.(2012·安徽高考)要得到函数y =cos(2x +1)的图象,只要将函数y =cos 2x 的图象( )A .向左平移1个单位B .向右平移1个单位C .向左平移12个单位D .向右平移12个单位【解析】 ∵y =cos(2x +1)=cos 2(x +12),∴只要将函数y =cos 2x 的图象向左平移12个单位即可,故选C.【答案】 C 典例探究:例1(函数y =A sin(ωx +φ)的图象变换)(1)(2012·浙江高考)把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的图象是( )(2)(2013·大连模拟)设ω>0,函数y =sin(ωx +π3)+2的图象向右平移4π3个单位后与原图象重合,则ω的最小值是( )A.23B.43C.32D .3 【思路】(1)写出变换后的函数解析式,再根据图象变换找图象;(2)平移后与原图象重合,则平移量是周期的整数倍. 【解答】(1)y =cos 2x +1――→横坐标伸长2倍纵坐标不变y =cos x +1――→向左平移1个单位长度y =cos(x +1)+1――→向下平移1个单位长度y =cos(x +1).结合选项可知应选A.(2)设函数的周期为T ,由题意知kT =43π,k ∈Z ,∴T =4π3k ,∴ω=32k ,k ∈Z ,又ω>0,∴k =1时,ω有最小值32,故选C.【答案】 (1)A (2)C 变式训练1:(1)(2013·济南模拟)要得到函数y =sin(2x -π3)的图象,只需将函数y =sin 2x 的图象( )A .向左平移π12个单位B .向右平移π12个单位C .向左平移π6个单位D .向右平移π6个单位(2)(2013·青岛质检)将函数y =sin(x -π3)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得图象向左平移π3个单位,则所得函数图象对应的解析式为( )A .y =sin(12x -π3)B .y =sin(2x -π6)C .y =sin 12xD .y =sin(12x -π6)【解析】 (1)∵y =sin(2x -π3)=sin 2(x -π6),∴只需将函数y =sin 2x 的图象向右平移π6个单位即可.(2)将函数图象上所有点的横坐标伸长到原来的2倍得到y =sin(12x -π3)的图象,然后。

三角函数教案(高三数学教案)

三角函数教案(高三数学教案)

三角函数教案三角函数教案(精选4篇)三角函数教案篇11、锐角三角形中,任意两个内角的和都属于区间 ,且满足不等式:即:一角的正弦大于另一个角的余弦。

2、若 ,则 ,3、的图象的对称中心为 ( ),对称轴方程为。

4、的图象的对称中心为 ( ),对称轴方程为。

5、及的图象的对称中心为 ( )。

6、常用三角公式:有理公式: ;降次公式: , ;万能公式: , , (其中 )。

7、辅助角公式: ,其中。

辅助角的位置由坐标决定,即角的终边过点。

8、时, 。

9、。

其中为内切圆半径, 为外接圆半径。

特别地:直角中,设c为斜边,则内切圆半径 ,外接圆半径。

10、的图象的图象( 时,向左平移个单位, 时,向右平移个单位)。

11、解题时,条件中若有出现,则可设 ,则。

12、等腰三角形中,若且 ,则。

13、若等边三角形的边长为 ,则其中线长为 ,面积为。

14、 ;三角函数教案篇2二、复习要求1、三角函数的概念及象限角、弧度制等概念;2、三角公式,包括诱导公式,同角三角函数关系式和差倍半公式等;3、三角函数的图象及性质。

三、学习指导1、角的概念的推广。

从运动的角度,在旋转方向及旋转圈数上引进负角及大于3600的角。

这样一来,在直角坐标系中,当角的终边确定时,其大小不一定(通常把角的始边放在x轴正半轴上,角的顶点与原点重合,下同)。

为了把握这些角之间的联系,引进终边相同的角的概念,凡是与终边α相同的角,都可以表示成k·3600 α的形式,特例,终边在x轴上的角集合{α|α=k·1800,k∈z},终边在y轴上的角集合{α|α=k·1800 900,k∈z},终边在坐标轴上的角的集合{α|α=k·900,k∈z}。

在已知三角函数值的大小求角的大小时,通常先确定角的终边位置,然后再确定大小。

弧度制是角的度量的重要表示法,能正确地进行弧度与角度的换算,熟记特殊角的弧度制。

在弧度制下,扇形弧长公式l=|α|r,扇形面积公式 ,其中α为弧所对圆心角的弧度数。

三角函数教案优秀3篇

三角函数教案优秀3篇

三角函数教案优秀3篇角函数教学设计篇一教材分析:本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。

锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。

研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。

本章内容与已学#39;相似三角形#39;#39;勾股定理#39;等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。

学情分析:锐角三角函数的概念既是本章的难点,也是学习本章的关键。

难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号sinA、cosA、tanA表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。

至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。

第一课时教学目标:知识与技能:1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。

2、能根据正弦概念正确进行计算3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。

过程与方法:通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想,逐步培养学生会观察、比较、分析、概括等逻辑思维能力。

情感态度与价值观:引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯。

重难点:1.重点:理解认识正弦(sinA)概念,通过探究使学生知道当锐角固定时,它的对边与斜边的比值是固定值这一事实。

2.难点与关键:引导学生比较、分析并得出:对任意锐角,它的对边与斜边的比值是固定值的事实。

三角函数复习教案_整理

三角函数复习教案_整理

三角函数复习教案_整理三角函数是高中数学中的重要内容,也是后续学习高等数学、物理等学科的基础。

为了帮助学生复习和巩固三角函数的相关知识,特别整理了以下的教案。

一、知识概述1.三角函数的定义及性质:正弦函数、余弦函数、正切函数、余切函数等。

2.三角函数的周期性及相关计算公式。

3.三角函数的图像与性质。

4.三角函数的运算:和差化积、积化和差、倍角公式、半角公式等。

二、教学目标1.熟练掌握三角函数的定义及性质。

2.能够准确绘制三角函数的图像。

3.能够灵活运用三角函数的运算公式。

三、教学重点1.熟练掌握三角函数的图像与性质。

2.掌握三角函数的运算公式及其应用。

四、教学难点能够灵活运用三角函数的运算公式,解决实际问题。

五、教学方法1.板书法:结合图表将三角函数的定义、性质及运算公式进行清晰明了的呈现。

2.演示法:通过具体的例子和解题步骤,引导学生掌握运算的方法和技巧。

3.练习法:通过大量的练习,让学生熟练运用所学的知识和方法。

六、教学内容1.三角函数的定义及性质:(1)正弦函数的定义及性质。

(2)余弦函数的定义及性质。

(3)正切函数的定义及性质。

(4)余切函数的定义及性质。

2.三角函数的周期性及相关计算公式:(1)正弦函数的周期及其计算公式。

(2)余弦函数的周期及其计算公式。

(3)正切函数的周期及其计算公式。

3.三角函数的图像与性质:(1)正弦函数的图像及性质。

(2)余弦函数的图像及性质。

(3)正切函数的图像及性质。

4.三角函数的运算:(1)和差化积公式的推导与应用。

(2)积化和差公式的推导与应用。

(3)倍角公式的推导与应用。

(4)半角公式的推导与应用。

七、教学步骤1.引入新知识,复习前置知识。

2.讲解三角函数的定义及性质。

3.探讨三角函数的周期性及计算公式。

4.分析讨论三角函数的图像及性质。

5.结合具体例子,讲解三角函数的运算公式的推导与应用。

6.练习三角函数的计算与运用。

7.总结与复习。

八、教学辅助资料1.板书及教学用具:教师应准备白板、黑板、彩笔、粉笔等教学用具,及时记录关键公式和重点内容。

三角函数的复习教案

三角函数的复习教案

三角函数的复习教案教案标题:三角函数的复习教案教案目标:1. 复习学生对三角函数的基本概念和性质的理解。

2. 强化学生对三角函数的图像、周期、幅值和相位的掌握。

3. 提高学生解决与三角函数相关问题的能力。

4. 激发学生对数学的兴趣和学习动力。

教学资源:1. 教材:包括相关章节的教科书和练习册。

2. 多媒体设备:投影仪、电脑等。

3. 白板、彩色笔等。

教学过程:引入:1. 利用多媒体设备播放一个与三角函数相关的实际应用视频或图片,引起学生对三角函数的兴趣,并与他们讨论三角函数在现实生活中的应用。

概念复习:2. 回顾三角函数的基本定义:正弦函数、余弦函数和正切函数。

3. 通过示意图和实例,复习三角函数的图像、周期、幅值和相位的概念。

4. 引导学生回顾三角函数的性质,如奇偶性、周期性、对称性等。

图像练习:5. 在白板上绘制不同的三角函数图像,并要求学生根据图像确定函数的周期、幅值和相位。

6. 给学生一些练习题,要求他们根据函数的图像绘制出函数的表达式。

计算与问题解决:7. 给学生提供一些计算题和问题,要求他们运用三角函数的性质和公式进行计算和解决问题。

8. 强调解题过程中的思考方法和步骤,鼓励学生互相讨论和交流解题思路。

拓展应用:9. 提供一些拓展应用题,让学生运用三角函数解决实际问题,如测量高度、角度等。

10. 鼓励学生自主思考和探索,引导他们发现三角函数在不同学科和领域中的应用。

总结:11. 对本节课的内容进行总结,并强调三角函数的重要性和应用价值。

12. 鼓励学生继续深入学习和探索三角函数的更多应用和性质。

作业布置:13. 布置相关的练习题和作业,巩固学生对三角函数的理解和应用能力。

14. 鼓励学生在作业中提出问题和困惑,并在下节课中进行解答和讨论。

教案评估:15. 观察学生在课堂上的参与度和表现。

16. 收集学生完成的作业,评估他们对三角函数的掌握程度。

17. 针对学生的学习情况,进行个别辅导和指导。

高三数学总复习 专题二三角函数教学案

高三数学总复习 专题二三角函数教学案

芯衣州星海市涌泉学校赣榆县智贤中学高三数学总复习专题二第1讲三角函数〔1〕教学案教学内容:三角函数的图象与性质〔1〕教学目的:1三角函数的图象与解析式2.利用三角函数的图象与解析式教学重点:1.求三角函数的解析式;教学难点:三角函数的图象与解析式教学过程:一、知识点复习:1.必记的概念与定理(1)同角关系:sin2α+cos2α=1,=tanα.(2)诱导公式:在+α,k∈Z的诱导公式中“奇变偶不变,符号看象限〞.(3)三角函数的图象及常用性质函数y=sinx y=cosx y=tanx图象单调性在[-+2kπ,+2kπ](k∈Z)上单调递增;在[+2kπ,+2kπ](k∈Z)上单调递减在[-π+2kπ,2kπ](k∈Z)上单调递增;在[2kπ,π+2kπ](k∈Z)上单调递减在(-+kπ,+kπ)(k∈Z)上单调递增对称性对称中心:(kπ,0)(k∈Z);对称轴:x=+kπ(k∈Z)对称中心:(+kπ,0)(k∈Z);对称轴:x=kπ(k∈Z)对称中心:(,0)(k∈Z)2.记住几个常用的公式与结论对于函数y=Asin(ωx+φ)(A>0,ω>0)要记住下面几个常用结论:(1)定义域:R.(2)值域:[-A,A].当x=(k∈Z)时,y取最大值A;当x=(k∈Z)时,y取最小值-A.(3)周期性:周期函数,周期为.(4)单调性:单调递增区间是(k∈Z);单调递减区间是(k∈Z).(5)对称性:函数图象与x轴的交点是对称中心,即对称中心是(,0),对称轴与函数图象的交点纵坐标是函数的最值,即对称轴是直线x=,其中k∈Z.(6)函数y=Asin(ωx+φ)(A>0,ω>0)中,A影响函数图象的最高点和最低点,即函数的最值;ω影响函数图象每隔多少重复出现,即函数的周期;φ影响函数的初相.(7)对于函数y=Asin(ωx+φ)(A>0,ω>0)的图象,相邻的两个对称中心或者者两条对称轴相距半个周期;相邻的一个对称中心和一条对称轴相距周期的四分之一.复备栏3.需要关注的易错易混点三角函数图象平移问题(1)看平移要求:拿到这类问题,首先要看题目要求由哪个函数平移到哪个函数,这是判断挪动方向的关键点.(2)看挪动方向:在学习中,挪动的方向一般我们会记为“正向左,负向右〞,其实,这样不理解的记忆是很危险的.上述规那么不是简单地看y=Asin(ωx+φ)中φ的正负,而是和它的平移要求有关.正确地理解应该是:平移变换中,将x变换为x+φ,这时才是“正向左,负向右〞.(3)看挪动单位:在函数y=Asin(ωx+φ)中,周期变换和相位变换都是沿x轴方向的,所以ω和φ之间有一定的关系,φ是初相位,再经过ω的压缩,最后挪动的单位是||.二、根底训练:1.函数y=tan的定义域是________.解析:∵x-≠kπ+,∴x≠kπ+,k∈Z.答案:2.(2021·模拟)函数f(x)=sinxcosx的最小正周期是________.解析:由题知f(x)=sin2x,所以T==π.答案:π3.将函数y=2sinx的图象上每一点向右平移1个单位长度,再将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),得函数y=f(x)的图象,那么f(x)的解析式为________.解析:函数y=2sinx向右平移1个单位得y=2sin(x-1)=2sin,将所得图象上每一点的横坐标扩大为原来的倍(纵坐标保持不变),那么y=2sin,即y=2sin.答案:y=2sin4.(2021·模拟)函数f(x)=2sin,x∈[-π,0]的单调增区间为________.解析:当x-∈,k∈Z时,f(x)单调递增,又因为x∈[-π,0],故取k=0得x∈.答案:1三、例题教学:例1、(2021·模拟)假设函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<)的图象如下列图,这个函数的解析式为________.[解析]由题意知:周期T=2(-)=π,ω==2,设f(x)=Asin(2x+φ),点(,0)为五点作图中的第三点,所以2×+φ=π,即φ=.设f(x)=Asin(2x+),因为点(0,)在原函数的图象上,故Asin=,所以A=,综上知:f(x)=sin(2x+).[答案]f(x)=sin(2x+)变式训练:1.(2021·高考卷)函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,那么φ的值是________.解析:由题意,得sin=cos,因为0≤φ<π,所以φ=.答案:例2、2021·模拟)函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的图象如下列图,直线x=,x =是其两条对称轴.(1)求函数f(x)的解析式并写出函数的单调增区间;(2)假设f(α)=,且<α<,求f(+α)的值.[解](1)由题意,=-=,∴T=π,又ω>0,故ω=2,∴f(x)=2sin(2x+φ),由f()=2sin(+φ)=2,解得φ=2kπ-(k∈Z),又-<φ<,∴φ=-,∴f(x)=2sin(2x-),由2kπ-≤2x-≤2kπ+(k∈Z)知,kπ-≤x≤kπ+,(k∈Z),∴函数f(x)的单调增区间为[kπ-,kπ+](k∈Z).(2)依题意得:2sin(2α-)=,即sin(2α-)=,∵<α<,∴0<2α-<,∴cos(2α-)===,f(+α)=2sin[(2α-)+],∵sin[(2α-)+]=sin(2α-)cos+cos(2α-)sin=(+)=,∴f(+α)=.稳固练习:完成专题强化训练。

三角函数教学教案

三角函数教学教案

三角函数教学教案一、教学目标:1. 让学生理解三角函数的概念,掌握三角函数的基本性质和图像。

2. 培养学生运用三角函数解决实际问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容:1. 三角函数的概念和定义2. 三角函数的图像和性质3. 特殊角的三角函数值4. 三角函数的运算5. 三角函数在实际问题中的应用三、教学重点与难点:1. 重点:三角函数的概念、图像和性质,特殊角的三角函数值,三角函数的运算。

2. 难点:三角函数图像的分析和运用,实际问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生探索和发现三角函数的规律。

2. 利用多媒体课件,展示三角函数的图像和实际应用场景。

3. 开展小组讨论,培养学生的合作能力和口头表达能力。

4. 注重个体差异,给予学生个性化的指导和关爱。

五、教学过程:1. 导入新课:通过展示生活中常见的三角函数应用场景,激发学生的学习兴趣。

2. 知识讲解:讲解三角函数的概念、定义和图像,引导学生理解并掌握三角函数的基本性质。

3. 特殊角的三角函数值:让学生自主探究特殊角的三角函数值,培养学生的自主学习能力。

4. 三角函数的运算:通过例题讲解和练习,使学生掌握三角函数的运算方法。

5. 应用拓展:布置课后作业,让学生运用所学知识解决实际问题。

6. 课堂小结:对本节课的内容进行总结,强调重点和难点。

7. 课后反思:教师根据学生的反馈,调整教学方法,为下一节课做好准备。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,了解学生的学习状态和兴趣。

2. 作业评价:通过学生提交的作业,检查学生对课堂所学知识的掌握程度和应用能力。

3. 测试评价:定期进行小型测试,评估学生对三角函数知识的系统掌握情况。

4. 学生自评与互评:鼓励学生进行自我评价和同伴评价,促进学生自我反思和相互学习。

七、教学资源:1. 教材:选用适合学生水平的三角函数教材,提供系统的学习材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高三数学三角函数复习教案函数的知识是高中里面比较重要的知识,教师需要好的教案来教诲学生,今天作者在这里整理了一些高三数学三角函数复习教案,我们一起来看看吧!高三数学三角函数复习教案1“函数的单调性”教案【教学目标】【知识目标】:使学生从形与数两方面知道函数单调性的概念,学会利用函数图像知道和研究函数的性质,初步掌控利用函数图象和单调性定义判定、证明函数单调性的方法.【能力目标】通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生视察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力.【德育目标】通过知识的探究进程培养学生仔细视察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一样,从感性到理性的认知进程.【教学重点】函数单调性的概念、判定及证明. 函数的单调性是学生第一次接触用严格的逻辑语言证明函数的性质,并在今后解决初等函数的性质、求函数的值域、不等式及比较两个数的大小等方面有广泛的实际运用,【教学难点】归纳抽象函数单调性的定义以及根据定义证明函数的单调性. 由于判定或证明函数的单调性,常常要综合运用一些知识(如不等式、因式分解、配方及数形结合的思想方法等)所以判定或证明函数的单调性是本节课的难点.【教材分析】函数的单调性是函数的重要性质之一,它把自变量的变化方向和函数值的变化方向定性的联系在一起,所以本节课在教材中的作用以下(1)函数的单调性起着承前启后的作用。

一方面,初中数学的许多内容在解决函数的某些问题中得到了充分运用,函数的单调性与前一节内容函数的概念和图像知识的延续有密切的联系;函数的单调性一节中的知识是它和后面的函数奇偶性,合称为函数的简单性质,是今后研究指数函数、对数函数、幂函数及其他函数单调性的理论基础。

(2)函数的单调性是培养学生数学能力的良好题材,这节课通过对具体函数图像的归纳和抽象,概括出函数在某个区间上是增函数或减函数的准肯定义,明确指出函数的增减性是相对于某个区间来说的。

教材中判定函数的增减性,既有从图像上进行视察的直观方法,又有根据其定义进行逻辑推理的严格证明方法,最后将两种方法统一起来,形成根据视察图像得出料想结论,进而用推理证明料想的体系。

同时还要综合利用前面的知识解决函数单调性的一些问题,有利于学生数学能力的提高。

(3)函数的单调性有着广泛的实际运用。

在解决函数值域、定义域、不等式、比较两数大小等具体问题中均需用到函数的单调性;同时在这一节中利用函数图象来研究函数性质的数形结合思想将贯穿于我们全部数学教学。

因此“函数的单调性”在中学数学内容里占有十分重要的地位。

它体现了函数的变化趋势和变化特点,在利用函数观点解决问题中起着十分重要的作用,为培养创新意识和实践能力提供了重要方式和途径。

【学情分析】从学生的知识上看,学生已经学过一次函数,二次函数,反比例函数等简单函数,函数的概念及函数的表示,能画出一些简单函数的图像,从图像的直观变化,学生能粗略的得到函数增减性的定义,所以引入函数的单调性的定义应当是顺理成章的。

从学生现有的学习能力看,通过初中对函数的认识与实验,学生已具有了一定的视察事物的能力,积存了一些研究问题的体会,在一定程度上具有了抽象、概括的能力和语言转换能力。

从学生的心理学习心理上看,学生头脑中虽有一些函数性质的实物实例,但并没有上升为“概念”的水平,如何“定性”“定量”地描写函数性质是学生关注的问题,也是学习的重点问题。

函数的单调性是学生从已经学习的函数中比较容易发觉的一个性质,学生也容易产生共鸣,通过对照产生顿悟,期望获得这种学习的积极心向是学生学好本节课的情感基础。

但是如何运用数学符号将自然语言的描写提升为情势化的定义,学生接受起来比较困难?在教学中要多引导,让学生真正的知道函数单调性的定义。

【教学方法】教师是教学的主体、学生是学习的主体,通过双主体的教学模式方法:启示式教学法——以设问和疑问层层引导,激发学生,启示学生积极摸索,逐渐从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。

探究教学法——引导学生去疑;鼓励学生去探; 鼓励学生去思,培养学生的创造性思维和批评精神。

合作学习——通过组织小组讨论到达探究、归纳的目的。

【教学手段】运算机、投影仪.【教学进程】一、创设情境,引入课题(利用电脑展现)1. 如图为某市一天内的气温变化图:(1)视察这个气温变化图,说出气温在这一天内的变化情形.(2)怎样用数学语言刻画在这一天内“随着时间的增大,气温逐渐升高或降落”这一特点? 引导学生识图,捕捉信息,启示学生摸索. 问题:视察图形,能得到什么信息?预案:(1)当天的最高温度、最低温度以及何时到达; (2)在某时刻的温度;(3)某些时段温度升高,某些时段温度着落. 在生活中,我们关心很多数据的变化规律,了解这些数据的变化规律,是很有帮助的. 问题:还能举诞生活中其他的数据变化情形吗? 预案:股票价格、水位变化、心电图等等春兰股份线性图 . 水位变化图归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.〖设计意图〗由生活情境引入新课,激发爱好.二、归纳探索,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了一定的认识,但是没有严格的定义,今天我们的任务第一就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且视察自变量变化时,函数值有什么变化规律?(学生自己动手画,然后电脑显示下图) 预案:生:函数在全部定义域内 y随x的增大而增大;函数在全部定义域内 y随x的增大而减小. 师:函数的图像变化规律生:在y轴的的左侧y随x的增大而减小.在y轴的的右侧y随x的增大而增大。

师:我们学过区间的表示方法,如何用区间的概念来表述图像的变化规律生:在上 y随x的增大而增大,在上y随x的增大而减小. 师:这样表述就比较周密了,很好。

由上面的讨论可知,函数的单调性与自变量的范畴有关,一个函数并不一定在全部正义域内是单调函数,但在定义城的某个子集上可以是单调函数(3)函数的图像变化规律如何。

生:(1)定义域中的减函数。

(2)在上 y随x的增大而减小,在上y随x的增大而减小. 师:对于两种答案,哪种是正确的,为何?学生分组讨论。

从定义域,图像的角度推敲,也能够举反例引导学生进行分类描写 (增函数、减函数).并引导学生用区间明确描写函数的单调性从而让学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能根据自己的知道说说什么是增函数、减函数? 预案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数. 教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描写性的认识. 〖设计意图〗从图象直观感知函数单调性,完成对函数单调性的第一次认识.2.探究规律,理性认识问题1:下图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?(电脑显示,学生分组讨论) 学生的困难是难以肯定分界点的确切位置. 通过讨论,使学生感遭到用函数图象判定函数单调性虽然比较直观,但有时不够精确,需要结合解析式进行周密化、精确化的研究. 〖设计意图〗使学生体会到用数量大小关系严格表述函数单调性的必要性. 问题2:如何从解析式的角度说明在为增函数?预案:生:在给定区间内取两个数,例如1和2,由于12 22,所以在为增函数. 生:仅仅两个数的大小关系不能说明函数y=x2在区间[0,+∞)上为单调递增函数,应当举出无数个。

由于很多学生不能分清“无数”和“所有”的区分,所以许多学生对学生2的说法表示赞同。

生:函数 )无数个如(2)中的实数,明显f(x)也随x的增大而增大,是不是也能够说函数在区间上是增函数?可这与图象矛盾啊? 师:“无数个”能不能代表“所有”呢?比如:2、3、4、5……有无数个自然数都比大,那我们能不能说所有的自然数都比大呢?所以具体值获得再多,也不能代表所有的,摸索如何体现区间上的所有值。

引导学生利用字母表示数。

生:任取且 ,由于 ,即,所以在为增函数. 旧教材的定义在这里就可以归纳出来,但是人教B版新教材使用了自变量的增量和函数值的增量来表述,并为以后学习利用导数判定函数的单调性做准备,所以需进一步引导学生利用增量来定义函数的单调性。

(5)仿(4) 且,由图象可知,即给自变量一个增量 ,,函数值的增量所以在为增函数。

对于学生毛病的回答,引导学生分别用图形语言和文字语言进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量进一步寻求自变量的增量与函数值的增量之间的变化规律,判定函数单调性。

注意这里的“都有”是对应于“任意”的。

〖设计意图〗把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫. 3.抽象思维,形成概念问题:你能用准确的数学符号语言表述出增函数的定义吗? 师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义设函数的定义域为A,区间M A,如果取区间M中的任意两个值 ,当改变量时,都有,那么就称函数在区间M上是增函数,如图(1)当改变量时,都有,那么就称函数在区间M上是减函数,如图(2)(2)巩固概念(以下问题老师提问后,学生适当讨论后回答) 师:根据函数的单调性的定义摸索:由f(x)是增(减)函数且f(x1)x2),生:能。

由于定义中区间M中的任意两个值若,都有。

师:我们来比较一下增函数与减函数定义中的符号规范高三数学三角函数复习教案2解决三角函数的条件求值问题,通常从以下三个方面寻求突破:计划一:从角间关系中寻求突破.三角函数求值题常从角与角之间的关系入手,可以从所给角的特别关系中寻觅突破,再利用引诱公式及三角函数的有关变换公式解决,常把其三角函数值已知的“角”与所求三角函数式中“角”通过“变角”、“拼角”等手段化成相同的角.计划二:从函数关系中寻求突破.三角函数中,基本的两类为“切”和“弦”,解题时注意“化弦”和“化切”思想的运用.计划三:从结构特点寻求突破.视察题目条件与待求的式子的结构特点,或角的结构特点,从这些特点中寻求突破口,进行三角恒等变换,再进行求值.在三角函数求值题中我们应当注意以下几点:1. 利用同角三角函数关系及引诱公式进行化简、求值.证明时,要仔细视察题目的特点,注意培养视察,分析问题的能力,并注意解题后的总结,如“切割化弦”、“1的巧代”、sinx+cosx、sinx-cosx、sinxcosx这三个式子间的关系等.2. 要重视对遇到问题中的角,函数名称及其整体结构的分析,注意到公式挑选的恰当性,有利于缩短运算程序,提高解题效率.3. 在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范畴,并就不同的象限分别求出相应的值.4. 注意公式的变形使用,弦切互化,三角代换,消元等是三角变换的`重要方法,要尽量减少开方运算,谨慎肯定符号.5. 应重视的变换,这体现将未知转化为已知的思想方法,这是解决三角中关于角的变换问题常用的数学方法之一,三角函数的条件求值问题高三数学三角函数复习教案3三角函数的引诱公式一、指导思想与理论根据数学是一门培养人的思维,发展人的思维的重要学科。

相关文档
最新文档