脱硫吸收塔除雾器的性能特性参数分析(精)

合集下载

湿法烟气脱硫装置中除雾器的性能试验

湿法烟气脱硫装置中除雾器的性能试验

维普资讯
吸收塔 浆液 滤液 中 M 2 g 的测量 方法 是 : 试 验 在
期间 , 每隔一 定 时间采 集 一定量 的吸收塔浆 液 , 品 样
混合 均匀 后过 滤 , 用 原 子 吸 收分 光 光 度计 或 其 他 利
体积, 通过 分 析冷凝 液 中镁 离子 浓度 , 同时分 析试验
期 间吸 收塔浆 液滤 液 中镁离 子浓 度 , 通过 ( ) 可计 1式
中 图 分类 号 : T 1 3 XO .
文 献 标 识 码 : B
文 章 编 号 :0 9 0 2 2 0 )3 0 6— 2 10 —4 3 ( 0 6 0 —0 3 0
随着 电力工 业 的 迅 速 发 展 , 国 已有 许 多 电厂 我
冷 凝液 体积 , l m。
1 2 公 式 推 导 .
维普资讯
20 0 6年 6月
电 力 环 境
保 护
第2 2卷 第 3 期
湿 法 烟 气 脱 硫 装 置 中 除 雾 器 的 性 能 试 验
Pefr n e e p rme to GD e se ro ma c x e i n fF d mitr
× 10 U U ×l U ~ P E × V E
点法, 进行 等 速采 样 , 体 可 执 行 《 具 固定 污染 源 排 气
中颗 粒 物 测 定 与 气 态 污 染 物 采 样 方 法 》( B T G / 117 , 样 枪 和 冷 凝 装 置 前 的管 道都 应 有 加 热 措 65 ) 采
关键词 : 雾器; 能试验 ; 除 性 脱硫 装 置 ; G FD
Ab tac : e m e h d, pr cpl d n ie e t ch ialp obe s ab td s r t Th t o i i e an ot abl e nc r lm ou em it rpe or an e ex er e tf le ga n c s e r m f c p i n orf s m u

脱硫除雾器

脱硫除雾器

17
(2)除雾器临界烟气流速 在一定烟气流速范围内,除雾器对液滴分离的能力随 烟气流速增加而提高,但是当烟气流速超过一定数值后除 雾能力反而会下降,这一临界烟气流速称为除雾器的临界 烟气流速。 临界点的出现,主要是因为产生了雾沫的二次夹带所 造成的,即分离下来的雾沫,再次融入烟气中,被烟气带 走,其原因是: ①撞在叶片上的液滴由于自身动量过大 而破裂、飞溅;②气流冲刷叶片表面上的液膜,将其卷起、 带走。 为了达到一定的除雾效果,烟气流速非常重要,气流 最高速度不能超过临界速度,最低速度要保证能达到所要 求的最低除雾效率。
28
1.2可能导致结垢的原因
1.2.1设计方面 • 除雾器冲洗水压力不足:除雾器冲洗水压力是指冲洗时入 口母管处的压力, 一般要求大于0. 2Mpa。脱硫系统冲洗 水压力偏小,会使得冲洗效果得不到保证。 • 脱硫系统水平衡有问题:特别是机组低负荷运行时表现得 比较突出。很多设计将设备和轴承冷却、润滑、密封水全 部进入系统, 造成吸收塔高液位影响系统水平衡时, 运行 人员只得停止除雾器冲洗, 以防止吸收塔溢流; • 冲洗压力和流量控制及监测方式不正确:有些系统在除雾 器冲洗门前未设置冲洗水的流量和压力测点, 不能及时监 视和发现阀门内漏及冲洗水压力低, 难以保证冲洗效果。 除雾器差压不准,形同虚设, 起不到监视和报警作用。
23
五、除雾器的常见问题
• 1——除雾器的结垢、堵塞、坍塌
• 2——除雾器的热变形坍塌
24
1、除雾器的结垢堵塞坍塌
严重结垢, 会引起局部堵塞或整体塌陷, 有的 甚至将除雾器底部冲洗水管和支撑梁压断。 此问题主要出现在一级除雾器, 即下部的初级 除雾器, 使得除雾器局部滑动移位,甚至局部脱落。
25
12

玻璃钢脱硫塔技术参数

玻璃钢脱硫塔技术参数

玻璃钢脱硫塔技术参数
玻璃钢脱硫塔是一种广泛应用的环保设备,用于去除工业烟气中的硫化物。

其独特的玻璃钢材质和高效的设计使其在脱硫领域具有显著的优势。

以下是关于玻璃钢脱硫塔的技术参数的详细说明。

一、材质与结构
主体材料:玻璃钢
结构:多层复合结构,包括吸收层、喷淋层、除雾层等。

二、性能参数
脱硫效率:≥95%
适用烟气量:100,000-3,000,000 Nm³/h
入口烟气温度:≤180℃
出口烟气温度:≤50℃(正常工况)
压力损失:≤2000Pa
三、主要组件技术参数
喷淋层
设计喷嘴数量:根据实际需要定制
喷嘴流量:根据实际需要定制
喷嘴材质:耐腐蚀材料
吸收层
吸收剂:碱性溶液(如氢氧化钠)
溶液循环量:根据实际需要定制
除雾层
除雾器类型:纤维型或折流型
处理气量:根据实际需要定制
排渣系统
排渣方式:定期排渣或连续排渣
渣处理:回收或废弃
控制系统
控制方式:自动化控制或手动控制
传感器类型与数量:根据实际需要定制
四、操作与维护
操作压力:常压操作
维护周期:根据实际使用情况确定,一般为每年一次。

五、其他参数
外形尺寸:根据实际需要定制
重量:根据实际需要定制
电源与功率:根据实际需要定制
玻璃钢脱硫塔以其优良的性能和耐久性,广泛应用于电力、化工、冶金等行业的烟气处理。

其技术参数的合理选择和配置,是确保脱硫效果和设备稳定运行的关键。

脱硫塔出口液滴浓度测试及除雾器性能评价

脱硫塔出口液滴浓度测试及除雾器性能评价

45CHINA ENVIRONMENTAL PROTECTION INDUSTRY2018.4聚焦大气污染防治Focus on Air Pollution Prevention and Control脱硫塔出口液滴浓度测试及除雾器性能评价孟磊(大唐环境产业集团股份有限公司,北京 100097)摘 要:除雾器是脱硫塔重要组成部分,其性能的好坏直接影响脱硫塔出口颗粒物浓度。

脱硫塔出口液滴浓度是除雾器的主要性能指标之一。

文章研究了脱硫塔出口液滴测试方法及测试仪器,基于测试方法在不同类型电厂进行了现场测试。

结果表明,管束式除雾器与进口厂家的三层屋脊式除雾器性能相当,具有较好的除雾性能,但管束式除雾器阻力较大。

关键词:脱硫塔;除雾器;液滴;性能评价中图分类号:X701.3 文献标志码:A 文章编号:1006-5377(2018)04-0045-031 引言烟气经过脱硫塔后会携带液滴,液滴中包含可溶性盐类及烟尘等,排放到大气后,液滴中的盐类及烟尘颗粒析出从而形成固体颗粒物。

液滴的含量主要由除雾器的性能决定,除雾器性能好,携带液滴量少,脱硫塔出口粉尘 浓度排放就低,反之,脱硫塔出口粉尘浓度就会增加,甚至可能高于脱硫塔入口的粉尘值[1]。

除雾器是脱硫塔的关键组成部分,其性能直接影响脱硫塔协同除尘效果。

为了考察除雾器的性能,需要测试除雾器进、出口的液滴含量。

由于除雾器前烟气基本是饱和烟气,因此在除雾器前不进行测试,主要测试除雾器后的液滴含量,以此评价不同除雾器性能,从而为除雾器选型提供依据。

本文研究了脱硫塔出口液滴浓度的测试方法,并基于该测试方法对采用不同类型除雾器的机组进行了现场测试,并对测试数据进行了分析。

研究表明,该液滴测试方法可有效测量脱硫塔出口液滴浓度以及浆液滴浓度;进口三级屋脊式除雾器与管束式除雾器性能相当,但管束式除雾器阻力较大。

2 液滴测试方法2.1 液滴测试方法及采样系统脱硫塔除雾器出口等速采集液滴,同时记录测试期间的电厂锅炉实际运行参数,采集WFGD新鲜浆液,在实验室检测液滴样品和浆液样品中的镁离子含量,通过两者的比值折算得到烟气中的浆液滴含量;样品干燥并称重,可以计算得到液滴的含固量及液滴中的粉尘含量。

鼓泡脱硫塔除雾器除雾特性数值研究及实验验证

鼓泡脱硫塔除雾器除雾特性数值研究及实验验证

表 1 气相流场Байду номын сангаас本方程 Tab. 1 Basic equations of gas flow field
方程
ϕ Γϕ
S
连续性方程 1 0
0
动量方程 u j
μ
−∂p/∂x j + ∂/∂x j (μ∂u j /xi ) − ∂/∂x j (ρui′ui′)
由式(1)可见,由于雷诺应力项 ρui′ui′ 的存在, 该方程组是不闭合的。为了使描述湍流流动的方程
ε方程
ε μ + μi/σε
1/2Cε1 pijε /k − Cε 2ρε 2/k
1.2.3 离散相的计算
对于离散相(液滴相)运用拉格朗日方法对各个
颗粒方程进行积分求解,计算出颗粒的运动轨迹[8]。
直角坐标下的颗粒受力微分方程为
dup dt
= FD (u − up ) +
gx (ρp − ρ) ρp
η = Nt
(3)
Ne +Nt
式中:Nt 为被捕获的液滴颗粒数;Ne 为逃逸的液滴
颗粒数。
1.3 计算区域及边界条件
1.3.1 计算区域
冷态实验台上的除雾器性能实验验证了数值分析的结果。为 除雾器的设计和优化提供参考。
关键词:除雾器;除雾效率;两相流动;液滴粒径;数值模 拟;实验研究
0 引言
2005 年 4 月国华电力台山发电公司首台国产 600 MW 脱硫系统 2 号鼓泡脱硫塔(jet bubble reactor, JBR)投入运行,随着连续运行时间的增长,气气换 热器(gas gas heater,GGH)堵塞问题逐渐凸现,GGH 压差不断升高,最高可达 1 500 Pa 以上,严重时导 致增压风机失速、喘振,不得不开启旁路运行,影 响机组运行的安全性、经济性和环保效益。通过对 其结垢形成机制的研究和鼓泡脱硫塔反应控制特 性的实验室研究,确定除雾器后净烟气中小液滴含 量过高是造成 GGH 堵塞的主要原因,提高除雾器 的除雾效率是解决 GGH 堵塞问题的关键。

除雾器设计所需的数据参数:

除雾器设计所需的数据参数:

除雾器设计所需的数据参数:除雾器设计所需的数据参数:烟气量吸收塔直径烟气入口温度粉尘含量杂质成分及含量锅炉常规工作状态烟囱高度脱硫工艺支撑梁数量支撑梁间距人孔大小除雾器优化设计后所得到的相关参数:除雾器组装直径一级除雾器板片间距一级除雾器板片结构形式一级除雾器组件尺寸二级除雾器板片间距二级除雾器板片结构形式二级除雾器组件尺寸除雾器的设计直接影响到脱硫系统的脱硫效率。

除雾器的结构我们所说的除雾器主要指火电厂脱硫吸收塔中的除雾器除雾器包括除雾器本体,除雾器冲洗系统两大部分。

除雾器本体一般分为2层(即上下层结构),下层一般表述为一级除雾器,上层一般表述为二级除雾器。

一级除雾器板片之间的间距要比二级除雾器板片之间的间距大。

采用这种结构布局主要有2个原因,其一是利用一级除雾器除去粗颗粒,二级除雾器除去细颗粒;其二是因为一级除雾器获得的冲洗水是二级除雾器的4倍,而一级除雾器的除雾量也是二级的2~4倍。

假如一级除雾器的间距与二级除雾器的间距一样或者更小,那么就会出现2个问题:1.一级除雾器及其容易堵塞,经常导致脱硫系统无法运行;2.二级除雾器的存在将没有意义,起不到除雾效果。

除雾器冲洗系统一般选用4层,很多脱硫总包商为了节约成本采用3层,是极不可取的做法,因为除雾器冲洗水系统单层的成本仅仅占据脱硫系统总价的千分之一到千分之五,而它所起到的作用可能要站到整个脱硫系正常运行的20%~30%,多加一层除雾器是四两拨千斤的做法。

除雾器常用的板片结构形式可以有如下四种流线型2通道带钩板片流线型2通道不带钩板片折线型2通道板片折线型3通道板片除雾器的作用除雾器,就是除去水雾的设备。

除雾器的作用就是把气体中的水雾,水滴含量降至最低。

除雾器的种类也有很多,综合节能与环保等诸多因素考虑,折流板除雾器是最佳选择。

基于除雾器的功能和作用,它有很多拓展用途,例如除尘,除臭,物理方法去除各种离子等。

除雾器在烟气脱硫系统中的作用主要有以下几个方面:除去烟尘;除去水雾;除去浆液雾滴;除去弱酸离子;除雾器的有无,直接决定了脱硫效率,因为无论是水雾还是硫酸根离子,均含有硫元素,没有除雾器的收集,它们将直接排放到我们赖以生存的环境中,就会使脱硫系统大打折扣。

除雾器设计所需的数据参数:

除雾器设计所需的数据参数:

除雾器设计所需的数据参数:烟气量吸收塔直径烟气入口温度粉尘含量杂质成分及含量锅炉常规工作状态烟囱高度脱硫工艺支撑梁数量支撑梁间距人孔大小除雾器优化设计后所得到的相关参数:除雾器组装直径一级除雾器板片间距一级除雾器板片结构形式一级除雾器组件尺寸二级除雾器板片间距二级除雾器板片结构形式二级除雾器组件尺寸除雾器的设计直接影响到脱硫系统的脱硫效率。

除雾器的结构我们所说的除雾器主要指火电厂脱硫吸收塔中的除雾器除雾器包括除雾器本体,除雾器冲洗系统两大部分。

除雾器本体一般分为2层(即上下层结构),下层一般表述为一级除雾器,上层一般表述为二级除雾器。

一级除雾器板片之间的间距要比二级除雾器板片之间的间距大。

采用这种结构布局主要有2个原因,其一是利用一级除雾器除去粗颗粒,二级除雾器除去细颗粒;其二是因为一级除雾器获得的冲洗水是二级除雾器的4倍,而一级除雾器的除雾量也是二级的2~4倍。

假如一级除雾器的间距与二级除雾器的间距一样或者更小,那么就会出现2个问题:1.一级除雾器及其容易堵塞,经常导致脱硫系统无法运行;2.二级除雾器的存在将没有意义,起不到除雾效果。

除雾器冲洗系统一般选用4层,很多脱硫总包商为了节约成本采用3层,是极不可取的做法,因为除雾器冲洗水系统单层的成本仅仅占据脱硫系统总价的千分之一到千分之五,而它所起到的作用可能要站到整个脱硫系正常运行的20%~30%,多加一层除雾器是四两拨千斤的做法。

除雾器常用的板片结构形式可以有如下四种流线型2通道带钩板片流线型2通道不带钩板片折线型2通道板片折线型3通道板片除雾器的作用除雾器,就是除去水雾的设备。

除雾器的作用就是把气体中的水雾,水滴含量降至最低。

除雾器的种类也有很多,综合节能与环保等诸多因素考虑,折流板除雾器是最佳选择。

基于除雾器的功能和作用,它有很多拓展用途,例如除尘,除臭,物理方法去除各种离子等。

除雾器在烟气脱硫系统中的作用主要有以下几个方面:除去烟尘;除去水雾;除去浆液雾滴;除去弱酸离子;除雾器的有无,直接决定了脱硫效率,因为无论是水雾还是硫酸根离子,均含有硫元素,没有除雾器的收集,它们将直接排放到我们赖以生存的环境中,就会使脱硫系统大打折扣。

脱硫值班员技能试卷(第133套)

脱硫值班员技能试卷(第133套)

一、选择题(共 40 题,每题 1.0 分):【1】脱硫系统因故障长期停运后,应将吸收塔内的浆液先排到()存放。

A.事故浆液池B.灰场C.石灰石浆液池D.石膏浆液箱【2】GGH的高压水冲洗工作,至少应()进行一次,或根据实际运行情况进行。

A.每班B.每天C.每周D.每月【3】正常运行工况下,煤中含硫量的设定值应为()。

A.化验结果B.根据SO2排放浓度环保值自行设定C.领导通知D.根据SO2排放量确定【4】吸收塔内水的消耗主要是()。

A.由于吸收塔向地沟排水B.饱和烟气带水C.石膏含有结晶水D.排放石膏浆液【5】发生下述现象时,需要立即通知值长打开旁路烟气挡板,并停止FGD运行的是()。

A.GGH跳闸B.吸收塔搅拌器跳闸C.石灰石浆液泵跳闸D.氧化风机跳闸【6】-般认为将石灰石浆液加入吸收塔中和区或循环泵入口较为合理。

以下原因错误的是()。

A.可以保持中和区或循环泵出口浆液中有较高过剩Ca-C〇3浓度B.尽可能使烟气离开吸收塔前接触最大碱度的浆液C.可以很快降低吸收浆液的pH值D.可以提高Ca-CO3的利用率,有利于S〇2的吸收【7】LIFAC脱硫系统投用后,锅炉热效率会略有()。

A.不变B.降低C.提高D.不同系统不一样【8】当脱硫系统发生必须停运的故障时,应首先()。

A.打开FGD旁路烟气挡板B.关闭FGD人口烟气挡板C.关闭FGD出口烟气D.停运GGH【9】我们俗称的"三废"是指()。

A.废水、废气和废油B.废水、废气和废渣C.废油、废气和废热D.废水、废油和废热【10】脱硫塔内所有金属管道的腐蚀属于()。

A.全面腐蚀B.点腐蚀C.晶间腐蚀D.电化腐蚀【11】FGD正常运行时,各烟气挡板应处于()的位置。

A.FGD出、入口烟气挡板打开,旁路烟气挡板关闭B.FGD出、人口烟气挡板关闭,旁路烟气挡板打开C.FGD出、人口烟气挡板打开,旁路烟气挡板打开D.FGD出、入口烟气挡板关闭,旁路烟气挡板关闭【12】HJ/T179-2005《火电厂烟气脱硫工程技术规范石灰石/石灰一石膏法》规定,对安装有烟气换热器的脱硫系统,在设计工况下,其换热后烟气温度应不低于()℃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

脱硫吸收塔除雾器的性能特性参数分析
• 对于脱硫来说,目前用于衡量除雾性能的参数 主要是除雾后烟气中的雾滴含量。一般要求, 通过除雾器后雾滴含量一个冲洗周期内的平均 。 值小于75mg/Nm3 。该处的雾滴是指雾滴粒径 大于15μm的雾滴,烟气为标准干烟气。其取样 距离为离除雾器距离1-2m的范围内。 目前国内尚无脱硫系统除雾器性能测试标准,连 州电厂根据美国AE公司提供的资料采用以下方 法:
• 除雾器性能可用除雾效率来表示,除雾效率指除雾器在 单位时间内捕集到的液滴质量与进入除雾器液滴质量 的比值。除雾效率是考核除雾器性能的关键指标。影 响除雾效率的因素很多,主要包括:烟气流速、通过 。 除雾器断面气流分布的均匀性、叶片结构及叶片之间 的距离及除雾器布置等。运行中,除雾器叶片出现堵 塞,烟气通流面积减小,流速增加,造成除雾器差压 增大。另外,高流速烟气还会将大量浆液带入GGH, 造成GGH换热元件堵塞,影响烟气换热,造成净烟气 温度下降,使吸收塔尾部烟道及设备腐蚀速度加快。
脱硫吸收塔除雾器的性能特性参数分析
• (4)除雾器冲洗水压 除雾器水压一般根据冲洗喷嘴的特征及喷嘴与除雾器 之间的距离等因素确定(喷嘴与除雾器之间距离一般 ≤lm),冲洗水压低时,冲洗效果差。冲洗水压过高则 易增加烟气带水,同时降低叶片使用寿命。一般情况 。 下,第二级除雾器之间,每级除雾器正面(正对气流方 向)与背面的冲洗压力都不相同,第1级除雾器的冲洗 水压高于第2级除雾器,除雾器正面的水压应控制在 2.5×l05Pa以内,除雾器背面的冲洗水压应 >1.0×105Pa,具体的数值需根据工程的实际情况确定 。
脱硫吸收塔除雾器的性能特性参数分析
• 除雾器除雾效果较差,净烟气带水量大,烟囱 入口水平烟道排水管排水量大,造成净烟道、 GGH及低泄漏风机腐蚀非常严重, 组织检修 人员清理恢复,耗资大,施工风险大。因此, 在运行中发现净烟道排水管排水量增大,吸收 塔除雾器差压超过150 Pa时,应积极采取措施 ,加强除雾器冲洗,以免造成除雾器叶片大部 分堵塞,给检修工作带来了困难及给系统的安 全运行造成威胁。
脱硫吸收塔除雾器的性能特性参数分析
• 除雾器水压一般根据冲洗喷嘴的特征及喷嘴与除雾器 之间的距离等因素确定,冲洗水压低时,冲洗效果差 。冲洗水压过高则易增加烟气带水,同时降低叶片使 用寿命。一般情况下,第二级除雾器之间,每级除雾 器正面与背面的冲洗压力都不相同,第 1级除雾器的冲 。 洗水压高于第2级除雾器,除雾器正面的水压应控制在 2.5×l05Pa以内,除雾器背面的冲洗水压应 >1.0×105Pa,具体的数值需根据运行的实际情况确定 。选择除雾器冲水量除了需满足除雾器自身的要求外 ,还需考虑系统水平衡的要求,有些条件下需采用大 水量短时间冲洗,有时则采用小水量长时间冲洗,具 体冲水量需由工况条件确定,一般情况下除雾器断面 上瞬时冲洗耗水量约为1~4 m3/h。
脱硫吸收塔除雾器的性能特性参数分析
• (5)除雾器冲洗水量 选择除雾器冲水量除了需满足除雾器自身的要 求外,还需考虑系统水平衡的要求,有些条件 。 下需采用大水量短时间冲洗,有时则采用小水 量长时间冲洗,具体冲水量需由工况条件确定 ,一般情况下除雾器断面上瞬时冲洗耗水量约 为1~4m3/h。
脱硫吸收塔除雾器的性能特性参数分析
脱硫吸收塔除雾器的性能特性参数分析
• 2除雾器的特性参数 (1)除雾器临界分离粒径dcr 波形板除雾器利用液滴的惯性力进行分离,在一定的 气流流速下,粒径大的液滴惯性力大,易于分离,当 。 液滴粒径小到一定程度时,除雾器对液滴失去了分离 能力。除雾器临界分离粒径是指除雾器在一定气流流 速下能被完全分离的最小液滴粒径。除雾器临界分离 粒径越小,表示除雾器除雾能力越强。 应用于湿法脱硫系统屋脊式除雾器,其除雾器临界分 离粒径在20-30μm。
脱硫吸收塔除雾器的性能特性参数分析
• 除雾器差压是指烟气通过除雾器通道时所产生 的压力损失,系统差压越大,能耗就越高。除 雾系统差压的大小主要与烟气流速、叶片结构 、叶片间距及烟气带水负荷等因素有关。当除 。 雾器叶片上结垢严重时系统差压会明显提高, 大唐发电厂#3号吸收塔除雾器差压最高时达 314Pa(除雾器的差压一般要求小于200Pa), 后来差压有所下降,分析是加强除雾器冲洗的 结果,但停炉后检查除雾器,才发现除雾器片 部分坍塌造成差压下降,除雾器叶片大部分已 基本堵死。
脱硫吸收塔除雾器的性能特性参数分析
• I在除雾器出口烟道上用烟气采样仪采集烟气, 记录采样时间,同步测量烟气流速、标准干烟气 量、烟温、烟气含湿量、烟气含氧量等。 II在除雾器出口 ,用带加热采样管和尘分离器的 。 标准除尘设备对气体进行等速采样。采样体积 为5m3,采样后用超纯水对采样管和采样设备进 行反复冲洗,洗液倒入250ml容量瓶中定容。混 匀后用EDTA法测定Mg2 含量。
• (6)冲洗覆盖率 冲洗覆盖率是指冲洗水对除雾器断面的覆盖程 度。 式中:—冲洗覆盖率,; 。 n—为喷嘴数量,个; h—为冲洗喷嘴距除雾器表面的垂直距离,m; a—为喷射扩散角 A—为除雾器有效通流面积,m2; 根据不同工况条件,冲洗覆盖率一般可以选在 100%~300%之间。脱硫吸收塔除雾器的性 Nhomakorabea特性参数分析
• 除雾器的冲洗主要考不是压力,而是流量,把积淀在 除雾器上的积灰“带”下来,以达到目的。所说的除 雾器压差大是在冲洗后测得的还是冲洗时测得的,如 果是冲洗时测得的那应该很正常,压损大了自然所测 。 的压差必定大,如果是冲洗后测得的那得分析你们冲 洗管的布置和冲洗的程序,在设计冲洗的程序时是插 入吸收塔内的三层独立冲洗水管轮流冲洗,而不是几 层或一层同时一块冲。冲洗当然是一个喷嘴、一个喷 嘴的开启冲洗!若群冲的话,总流量大了,单个喷嘴 的流量以及总压力不能达到保证!而且同时吸收塔的 水位也比较难控制!若冲洗压力不够或水量小,导致 冲洗不通,反而使得流道更狭小。
脱硫吸收塔除雾器的性能特性参数分析
• 3除雾器的主要设计参数 (1)烟气流速 通过除雾器断面的烟气流速过高或过低都不利于除雾 器的正常运行,烟气流速过高易造成烟气二次带水, 。 从而降低除雾效率,同时流速高系统阻力大,能耗高 。通过除雾器断面的流速过低,不利于气液分离,同 样不利于提高除雾效率。此外设计的流速低,吸收塔 断面尺寸就会加大,投资也随之增加。设计烟气流速 应接近于临界流速。根据不同除雾器叶片结构及布置 形式,设计流速一般选定在3.5~5.5m/s之间。
• (7)除雾器冲洗周期 冲洗周期是指除雾器每次冲洗的时间间 隔。由于除雾器冲洗期间会导致烟气带 。 水量加大(一般为不冲洗时的3~5倍)。所 以冲洗不宜过于频繁,但也不能间隔太 长,否则易产生结垢现象,除雾器的冲 洗周期主要根据烟气特征及吸收剂确定 ,一般以不超过2h为宜。
脱硫吸收塔除雾器的性能特性参数分析
脱硫吸收塔除雾器的性能特性参数分析
• 通常,除雾器多设在吸收塔的顶部。若吸收塔 出口不设置除雾器,这不仅造成SO2的二次污 染,同时对烟囱的腐蚀也相当严重。所以在脱 硫塔顶部净化后烟气的出口应设有除雾器,通 常为二级除雾器,安装在塔的圆筒顶部或塔出 口的弯道后的平直烟道上。后者允许烟气流速 高于前者。对于除雾器应设置冲洗水,间歇冲 洗除雾器。净化除雾后烟气中残余的水分一般 不得超过100mg/m3,更不允许超过200mg/m3 ,否则含沾污和腐蚀GGH、烟道和风机。
脱硫吸收塔除雾器的性能特性参数分析
• (2)除雾器临界烟气流速 在一定烟速范围内,除雾器对液滴分离能力随烟气流 速增大而提高,但当烟气流速超过一定流速后除雾能 力下降,这一临界烟气流速称为除雾器临界烟气流速 。临界点的出现,是由于产生了雾沫的二次夹带所致 。 ,即分离下来的雾沫,再次被气流带走,其原因大致 是:①撞在叶片上的液滴由于自身动量过大而破裂、 飞溅;②气流冲刷叶片表面上的液膜,将其卷起、带 走。因此,为达到一定的除雾效果,必须控制流速在 一合适范围:最高速度不能超过临界气速;最低速度 要确保能达到所要求的最低除雾效率。
脱硫吸收塔除雾器的性能特性参数分析
• (3)除雾器的级数 级数的增加,除雾效率增大,而压力损失也随 之增大。除雾器的设计要以提高除雾效率和降 。 低阻力损失为宗旨。因此,单纯地追求除雾效 率而增加级数,却忽视了气流阻力损失的增加 ,其结果将使能量的损耗显著增加。现在的 WFGD系统采用两级除雾系统。
脱硫吸收塔除雾器的性能特性参数分析
• 采用波形板除雾器,波形板除雾器利用液滴的惯性力 进行分离,在一定的气流流速下,粒径大的液滴惯性 力大,易于分离,当液滴粒径小到一定程度时,除雾 器对液滴失去了分离能力。除雾器临界分离粒径是指 。 除雾器在一定气流流速下能被完全分离的最小液滴粒 径。除雾器临界分离粒径越小,表示除雾器除雾能力 越强。在一定烟速范围内,除雾器对液滴分离能力随 烟气流速增大而提高,但当烟气流速超过一定流速后 除雾能力下降。因此,为达到一定的除雾效果,必须 控制流速在一合适范围:最高速度不能超过临界烟气 流速;最低速度要确保能达到所要求的最低除雾效率 。
脱硫吸收塔除雾器的性能特性参数分析
• (2)除雾器叶片间距 叶片间距的大小,对除雾器除雾效率有很大影响。随着 叶片间距的增大除雾效率降低。板间距离的增大,使得 颗粒在通道中的流通面积变大,同时气流的速度方向变 化趋于平缓,而使得颗粒对气流的跟随性更好,易于随 着气流流出叶片通道而不被捕集,因此除雾效率降低。 。 除雾器叶片间距的选取对保证除雾效率,维持除雾系统 稳定运行至关重要。叶片间距大,除雾效率低,烟气带 水严重,易造成风机故障,导致整个系统非正常停运。 叶片间距选取过小,除加大能耗外,冲洗的效果也有所 下降,叶片上易结垢、堵塞,最终也会造成系统停运。 叶片间距根据系统烟气特征(流速、SO2含量、带水负荷 、粉尘浓度等)、吸收剂利用率、叶片结构等综合因素进 行选取。叶片间距一般设计在20~95mm。目前脱硫系统 中最常用的除雾器叶片间距大多在30~50mm。
脱硫吸收塔除雾器的性能特性参数分析
相关文档
最新文档