泰勒公式 迈克劳林 拉格朗日余项 课件
合集下载
第三节泰勒公式39页PPT

Q
(n n
1
)
(
)
f (n1) ( )
(n 1) !
(在x0与x之间 )
Pn(n1)(x)0,Rn(n1)(x) f(n1)(x)
Rn(x)f(n(n 1)1()!)(xx0)n1
Qn(n1)(x)(n1)!
(在x0与x之间 )
证毕!
上页 下页 返回 结束
p8(x)比 p2(x)在更大的范围内更接近余弦函数.
上页 下页 返回 结束
(1) 若f(x)在x0连续 , 则有 xl im x0 f(x)f(x0) 由极限和无穷小量间的关系
f(x)f(x0)
f(x)f(x0)
用常数代替函 数误差太大
(2) 若f(x)在x0可导 , 由微分有
f(x 0 x ) f(x 0 ) f(x 0 ) x
余项 公式
Rn(x)f(n (n 1)1())!(xx0)n1
① 称为 f ( x)的 n 阶泰勒公式
②
(
.
在
x
0与x
之间)
公式 ② 称为n 阶泰勒公式的拉格朗日余项 .
证明: Pn(x) R n(x)f(x)P n(x)
上页 下页 返回 结束
余其项中f ( :x R ) n (x Pf n)(( xx ) 0 f() n ( n 1f )1( )( x )!0 () x x f x( (0x n )n 0 )n) ( !1 x0f)②(2((x !x0 )(x 在x0)xn x0与0)R2 xn之(x间①) )
f(x)coxs
p1(x)
y1
y=1
令:p8(0)f(0),求出a0 1
p8 (0)f(0) a1 0
D3_3泰勒公式(PPT)-文档资料

称为麦克劳林( Maclaurin )公式 . 例1. 求 y ln cos x 在 x 处的带有拉格朗日余项 的2阶 4 泰勒公式. 解: 要求到3阶导数
目录
上页
下页
返回
结束
1 2 f ln ln 2, 2 4 2
2
f x tan x f 1 4
f ( x) f ( x0 ) f ( x0 )( x x0 )
x 的一次多项式
y
y f ( x)
p1 ( x)
特点:
f ( x0 ) f ( x0 )
O
x0 x
x
目录
上页
下页
返回
结束
为了提高精确度,我们考虑用n次多项式来近似 f ( x)
pn ( x) a0 a1 ( x x0 ) a2 ( x x0 ) 2 an ( x x0 ) n f x a0 f ( x0 ), 要求满足
3 5
f
(k )
f 0 1,
f 0 0, f 0 1,
π (0) sin k 2 4 f 0 0,
2 m 1 x x x sin x x (1) m1 R2m ( x) (2m 1) ! 3! 5!
f x sec x f 2, f x 2sec2 x tan x 4 2 1 ln cos x ln 2 x x 4 2 4 3 1 2 sec tan x 3 4
f ( x0 ) ( x x0 ) 2 f ( x0 ) f ( x0 )( x x0 ) 2! f (3) ( ) ( x x0 )3 3!
高等数学(第二版)上册课件:泰勒公式

分析
近 1.若在 x0点相交
似 程
Pn (x) f (x0)
度 越
2.若有相同的切线
来
越 好
Pn' (x) f ' (x0)
3.若弯曲方向相同
Pn'' (x) f '' (x0 )
y
y f (x)
0 x0
x
(1) 求 n 次近似多项式
Pn (x0) f (x0)
p'n (x0 )
f
' n
所以
f (x) 8 10(x 1) 9(x 1)2 6(x 1)3 (x 1)4
【例3.3.4】 求 f (x) ex2 的带有佩亚诺余项麦克劳林展开式
解
因为 ex 1 x x2 xn o(xn1)
2!
n!
用 x2代替公式中的 x,即得
ex2 1 x2 x4 x2n o(x2n2 )
2!
n!
【例3.3.1】 求 f (x) ex 的n阶麦克劳林展开式
解 由于 f ' (x) f ''(x) f (n) (x) ex,
所以 f '(0) f ''(0) f (n) (0) 1 ,
取拉格朗日余项,得麦克劳林展开式为
ex 1 x x2 xn e x xn1
则误差 R(x)= f (x) P(x)
设函数 f (x)在含有 x0 的开区间 (a, b) 内具有直到 (n+1) 阶导数,P(x) 为
多项式函数
pn(x)
a 1
(x
x0
)
a2
(x
x0
)2
an(x x0)n
数学分析课件5.2泰勒公式1.48MB

0 . 03 12 . 03
100 % 0 . 25 %,
称这样的百分比为相对误差. 显然,轴长精度比键销 长的精度高得多. 一般地,有定义:
7
【数学分析课件】
Def : 若一个量 A 的近似值是 a ,则
叫做绝对误差,而
| A a |
.
a
100 % 叫做相对误差
对于函数 y f ( x ),若由 x 计算 y 时, x 有误差 x ,则
f ( x ) f ( 0 ) f ( 0 ) x o ( x ),
从而
即一次多项式
一阶近似 .
f ( x ) f ( 0 ) f ( 0 ) x .
P1 ( x ) f ( 0 ) f ( 0 ) x 是 f ( x ) 在 x 0 点的
P1 ( 0 ) f ( 0 ), P1 ' ( 0 ) f ( 0 ).
3
) 5 . 08
【数学分析课件】 5
2.误差估计
——是估计近似值与精确值的差 例如:设计一根轴长度120毫米,加工后量得120.03毫米, 误差为 | 120 120 . 03 | 0 . 03 毫米. 设计一个键销长度12毫米,加工后量得12.03毫米, 误差为 | 12 12 . 03 | 0 . 03 毫米. 称这种误差为绝对误差,表明了一个量与它的近似值之间 的差值,反映了某种近似程度.
f ( x ) f ( x 0 ) f ( x 0 )( x x 0 )
f
(n)
f ( x 0 ) 2!
n
( x x0 )
2
( x0 )
n!
( x x0 )
《泰勒公式》PPT课件

Rn ( x)
M (n 1) !
x x0
n1
二、泰勒定理
f (x)
f (x0 )
f ( x0 )( x
x0)
f ( x0 ) ( x 2!
x0 )2
Hale Waihona Puke f (n)( x0 ) ( x n!
x0 )n
Rn ( x)
其中
Rn ( x)
f (n1) ( )
( (n 1) !
x
x0
)n1
(
)
(n 1)! (n 1)!
在x与x0之间
二、泰勒定理
若 f (x)在包含 x0的某开区间 (a,b) 内具有
直 到 n 1 阶的导数 , 则当 x (a , b) 时, 有
f (x)
f (x0)
f ( x0 )( x
x0)
f ( x0 ) ( x 2!
x0 )2
f (n)( x0 ) ( x n!
如何确定Pn ( x)?——确定系数a0 , a1 , , an
f (k ) ( x0 ) Pn(k ) ( x0 ) (k 0,1, 2, , n)
设
函
数
f
(
x
)在
含
有
x
的
0
开
区
间(
a
,
b
)内
具
有
1至
(
n
1)阶
导
数
f ( x0 ) Pn ( x0 ) a0
f ( x0 ) Pn ( x0 ) a1
x0 )n
Rn ( x)
①
其中
Rn ( x)
f (n1) ( )
考研高数总复习泰勒公式(讲义)PPT课件

即,泰勒公式是一阶微分近似式和拉氏公式的 推广
2.取 x0 0,
在0 与x 之间,令 x (0 1)
则余项
Rn ( x)
f (n1) (x) x n1
(n 1)!
Foil 10
麦克劳林(Maclaurin)公式
f ( x) f (0) f (0)x f (0) x 2 f (n) (0) x n
误差 Rn ( x) f ( x) P:
1.若在 x 0 点相交
近
似 程
Pn ( x0 ) f ( x0 )
度 越
2.若有相同的切线
来 越
Pn( x0 ) f ( x0 )
好 3.若弯曲方向相同
Pn( x0 ) f ( x0 )
y
o
皮亚诺形式的余项
f (x)
n k0
f
(k)( x0 )( x k!
x0 )k
o[( x
x0 )n ]
Foil 9
注意:
1. 当n 0 时,泰勒公式变成拉氏中值公式
f ( x) f ( x0 ) f ( )( x x0 )
(在x
与
0
x之
间)
当 n=1 时,略去余项,得到一阶微分近似式
f (x) f (x0 ) f '(x)(x x0 )
注 意 到 f ( x ) (n1) e x
代入公式,得
e x 1 x x 2 x n e x x n1 (0 1).
2!
n! (n 1)!
Foil 13
由公式可知
ex 1 x x2 xn
2!
n!
估计误差 (设 x 0)
Rn ( x)
ex x n1 (n 1)!
2.取 x0 0,
在0 与x 之间,令 x (0 1)
则余项
Rn ( x)
f (n1) (x) x n1
(n 1)!
Foil 10
麦克劳林(Maclaurin)公式
f ( x) f (0) f (0)x f (0) x 2 f (n) (0) x n
误差 Rn ( x) f ( x) P:
1.若在 x 0 点相交
近
似 程
Pn ( x0 ) f ( x0 )
度 越
2.若有相同的切线
来 越
Pn( x0 ) f ( x0 )
好 3.若弯曲方向相同
Pn( x0 ) f ( x0 )
y
o
皮亚诺形式的余项
f (x)
n k0
f
(k)( x0 )( x k!
x0 )k
o[( x
x0 )n ]
Foil 9
注意:
1. 当n 0 时,泰勒公式变成拉氏中值公式
f ( x) f ( x0 ) f ( )( x x0 )
(在x
与
0
x之
间)
当 n=1 时,略去余项,得到一阶微分近似式
f (x) f (x0 ) f '(x)(x x0 )
注 意 到 f ( x ) (n1) e x
代入公式,得
e x 1 x x 2 x n e x x n1 (0 1).
2!
n! (n 1)!
Foil 13
由公式可知
ex 1 x x2 xn
2!
n!
估计误差 (设 x 0)
Rn ( x)
ex x n1 (n 1)!
泰勒公式ppt课件精选全文完整版

令n=2m,于是有
sin x
x
x3 3!
x5 5!
(1)m1 x2m1 (2m 1)
!
R2m
(
x)
其中 R2m (x)
s(in1()mxcos2(m2x1) ) x2m1 (0 1)
(2m 1) !
精选编辑ppt
18
机动 目录 上页 下页 返回 结束
类似地,可得
cos x
1 x2 2!
x4 4!
f (k)( x0 )
n!an f (n) ( x0 ). (k 0,1,2,, n)
代入 Pn ( x)中得
Pn ( x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2f(n)( x n!)(x
x0
)n
精选编辑ppt
10
机动 目录 上页 下页 返回 结束
三、泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x) 在含有 x0 的某个开区间(a, b) 内具有直到(n 1) 阶的导数,则
当 x在(a,b)内时, f ( x)可以表示为( x x0 )的一个 n次多项式与一个余项Rn ( x)之和:
f (x)
f ( x0 )
精选编辑ppt
16
机动 目录 上页 下页 返回 结束
例1:求函数 f (x) ex 的n阶麦克劳林展开式.
解:因为 f'x f''x fn x e x ,
所以 f0 f'0 f''0 fn 0 1 .
故
ex
1 x x2
sin x
x
x3 3!
x5 5!
(1)m1 x2m1 (2m 1)
!
R2m
(
x)
其中 R2m (x)
s(in1()mxcos2(m2x1) ) x2m1 (0 1)
(2m 1) !
精选编辑ppt
18
机动 目录 上页 下页 返回 结束
类似地,可得
cos x
1 x2 2!
x4 4!
f (k)( x0 )
n!an f (n) ( x0 ). (k 0,1,2,, n)
代入 Pn ( x)中得
Pn ( x)
f ( x0 )
f ( x0 )( x x0 )
f
( x0 2!
)
(
x
x0
)2f(n)( x n!)(x
x0
)n
精选编辑ppt
10
机动 目录 上页 下页 返回 结束
三、泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x) 在含有 x0 的某个开区间(a, b) 内具有直到(n 1) 阶的导数,则
当 x在(a,b)内时, f ( x)可以表示为( x x0 )的一个 n次多项式与一个余项Rn ( x)之和:
f (x)
f ( x0 )
精选编辑ppt
16
机动 目录 上页 下页 返回 结束
例1:求函数 f (x) ex 的n阶麦克劳林展开式.
解:因为 f'x f''x fn x e x ,
所以 f0 f'0 f''0 fn 0 1 .
故
ex
1 x x2
泰勒公式课件(修正)资料

Rn ( x0 x0 )n
) 0
Rn(2 ) (n 1)n(2 x0 )n1
(2 在 x0 与1 之间)
(n
Rn(n)(n ) 1)2(n
Rn(n)( x0 ) x0 ) 0
Rn(n1)( )
(n 1) !
( 在 x0 与xn 之间),
便可得到麦克劳林( Maclaurin )公式:
f (0) f (0)x f (0) x2 2!
f (n)(0) xn n!
由此得近似公式
f ( x) f (0) f (0)x f (0) x2 f (n)(0) xn
2!
n!
几个初等函数的麦克劳林公式:
(
x
1)n1
,
在 1与x之间.
注 1 泰勒公式的余项估计
用pn( x)代替f ( x)的误差为 Rn( x) f ( x) pn( x)
Rn( x)
f (n1)( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间).
当在 x0 的某邻域内 f (n1)( x) M(常数) 时 , 有
第三节
第三章
泰勒公式
一、泰勒(Taylor)公式 二 、麦克劳林(Maclaurin)公式
三 、泰勒公式的应用
一、泰勒(Taylor)公式
1. 泰勒公式的建立 回顾:设 f (x)在 x0 处可导,则
x 的一次 多项式
y
y f (x)
f ( x) f ( x0 ) f ( x0 )( x x0 )
pn(x) 的确定: pn( x) a0 a1( x x0 ) a2( x x0 )2 an( x x0 )n,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
n
Rn
(
x)
①
其中 Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间) ②
公式 ① 称为 的 n 阶泰勒公式 .
公式 ② 称为n 阶泰勒公式的拉格朗日余项 .
注意到 Rn (x) o[(x x0 )n ]
③
在不需要余项的精确表达式时 , 泰勒公式可写为
f
例1. 计算无理数 e 的近似值 , 使误差不超
过 解: 已知 的麦克劳林公式为
ex 1 x x2 x3 xn
2! 3!
n!
令x=1,得
11 1 1
e
2!
n ! (n 1) !
由于 0 e e 3, 欲使
(0 1) (0 1)
Rn (1)
(n
3 106
1) !
由计算可知当 n = 9 时上式成立 , 因此
pn(x)
pn(n) (x)
2 !a2 n(n 1)an (x x0 )n2 n!an
a0 pn (x0 ) f (x0 ),
a1 pn (x0) f (x0),
a2
1 2!
pn
(
x0
)
1 2!
f
(x0), , an
1 n!
pn(n)
(
x0
)
1 n!
f
(n) (x0 )
故
pn (x)
矛盾 ! 故 e 为无理数 .
其中余项
Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
o((x x0 )n )
( 在 x0 与x 之间)
当 x0 0 时为麦克劳林公式 .
2. 常用函数的麦克劳林公式
ex , ln(1 x), sin x, cos x, (1 x)
3. 泰勒公式的应用 (1) 近似计算
(2) 利用多项式逼近函数 , 例如 sin x
f (x0 )
f (x0)(x x0)
1 2!
f
( x0
)(x
x0 )2
1 n!
f (n) (x0 )(x x0 )n
2. 余项估计
令 Rn (x) f (x) pn (x)(称为余项) , 则有
Rn (x0 ) Rn (x0 ) Rn(n) (x0 ) 0 Rn (x)
(x x0 )n1
Rn(n1) ( )
(n 1) !
( 在 x0 与xn 之间)
Rn (x) f (x) pn (x)
( 在 x0 与x 之间)
pn(n1) (x) 0, Rn(n1) (x) f (n1) (x)
Rn (x)
f (n1) ( )
(n 1) !
(
x
x0
)n1
( 在 x0 与x 之间)
(0 1)
三、泰勒公式的应用
1. 在近似计算中的应用
f (x) f (0) f (0)x f (0) x2 f (n) (0) xn
2!
n!
误差
Rn (x)
M (n 1) !
x
n1
M 为 f (n1) (x) 在包含 0 , x 的某区间上的上界.
需解问题的类型: 1) 已知 x 和误差限 , 要求确定项数 n ; 2) 已知项数 n 和 x , 计算近似值并估计误差; 3) 已知项数 n 和误差限 , 确定公式中 x 的适用范围.
第三节 泰勒 ( Taylor )公式
理论分析
用多项式近似表示函数 — 应用
近似计算
一、泰勒公式的建立 二、几个初等函数的麦克劳林公式
三、泰勒公式的应用
一、泰勒公式的建立
在微分应用中已知近似公式 :
y
f (x) f (x0 ) f (x0 )(x x0 )
y f (x)
特点:
x 的一次多项式
(3) 其他应用
求极限 , 证明不等式 等.
思考与练习
计算
解: ex2 1 x2 1 x4 o(x4 ) 2!
cos x 1 x2 x4 o(x5) 2! 4!
ex2 2cos x 3 ( 1 2 1 )x4 o(x4 ) 2! 4!
原式
lim
x0
7 12
x4
o(x4 ) x4
Rn (x) Rn (x0 ) (x x0 )n1 0
(n
Rn (1) 1)(1
x0
)n
(1 在 x0 与x 之间)
Rn (1) Rn (x0 ) (n 1)(1 x0 )n 0
Rn(2 ) (n 1)n(2 x0 )n1
(2 在 x0 与 1 之间)
(n
Rn(n) (n ) Rn(n) (x0 ) 1)2(n x0 ) 0
f (x0 ) f (x0 )
p1(x)
o x0 x
x
以直代曲
如何提高精度 ? 需要解决的问题
如何估计误差 ?
1. 求 n 次近似多项式
要求:
令 pn (x) a0 a1(x x0 ) a2 (x x0 )2 an (x x0 )n
则 pn (x)
a1 2a2 (x x0 ) n an (x x0 )n1
n!
xn Rn (x)
其中
Rn (x)
(
1)(
(n 1) !
n) (1
x) n1 xn1
(0 1)
已知
f
(k) (x)
(1)k
1
(k 1)! (1 x)k
(k 1,2,)
类似可得
ln(1
x)
x
x2 2
x3 3
(1)n1
xn n
Rn (x)
其中
Rn (x)
(1)n xn1
n 1 (1 x)n1
当在 x0 的某邻域内 f (n1) (x) M 时
Rn (x)
M (n 1)!
x
x0
n1
Rn (x) o((x x0 )n ) (x x0 )
泰勒中值定理 :
阶的导数 , 则当
时, 有
f
(x0 )
f
(x0 )(x x0 )
f
( x0 2!
)
(
x
x0
)2
f
(n) (x0 n!
)
(
x
x0
(n 1) !
(x x0 )n1
( 在 x0 与
x
之间)
二、几个初等函数的麦克劳林公式
f (k) (x) ex , f (k) (0) 1 (k 1, 2,)
ex
1
x
x2 2!
x3 3!
xn n!
Rn (x)
其中
f (k) (x) sin(x k )
2
f
(k)
(0)
sin
k
2
x2
o(x
2
)
原式 (xlim(01n)112)(!196
nx)2(1o(
x2
xx)2)n1x3n921
(0 1)
3. 利用泰勒公式证明不等式
例4. 证明
证:
1
1 x (1 x)2
1 x 1 1 (1 1)x2 2 2! 2 2
1
1 (1
1)( 1
2)(1
x)
5 2
x3
3! 2 2 2
e 11 1 1 2.718281
2! 9!
说明: 注意舍入误差对计算结果的影响.
本例 e 11 1 1 2! 9!
若每项四舍五入到小数点后 6 位,则
各项舍入误差之和不超过 7 0.5106, 总误差为 7 0.5106 106 5106 这时得到的近似值不能保证误差不超过 106.
7 12
2. 证明 e 为无理数 .
证: e 11 1 1 e (0 1)
2!
n ! (n 1) !
两边同乘 n !
n!e = 整数 + e (0 1)
n 1 假设 e 为有理数 p ( p , q 为正整数) ,
q 则当 n q 时, 等式左边为整数;
当n 2 时, 等式右边不可能为整数.
0, (1)m1
,
k 2m (m 1,2,) k 2m 1
sin
x
x
x3 3!
x5 5!
(1)m1 x2m1 (2m 1) !
R2m (x)
其中 R2m (x)
s(in1()mxcos2(m2x1) ) x2m1
(2m 1) !
(0 1)
类似可得
cos x
1 x2 2!
x4 4!
(1)m
因此计算时中间结果应比精度要求多取一位 .
例2. 用近似公式
计算 cos x 的近似值,
使其精确到 0.005 , 试确定 x 的适用范围.
解: 近似公式的误差
R3(x)
x4 cos( x)
4!
x4 24
令
x 4 0.005
24
解得
x 0.588
即当 x 0.588 时, 由给定的近似公式计算的结果
1
x
x2
1
(1
x)
5 2
x3
2 8 16
(0 1)
( 11)x (1nx) (1x2 x)(xn10x)n1 (n 1) ! 2 8
(0 1)
内容小结
1. 泰勒公式
f (x0 )
f (x0 )(x x0 )
f
( x0 2!
)
(