互斥事件和对立事件

合集下载

第10章概率专题1 互斥事件与对立事件及其概率-新教材高中数学必修(第二册)常考题型专题练习

第10章概率专题1 互斥事件与对立事件及其概率-新教材高中数学必修(第二册)常考题型专题练习

互斥事件与对立事件及其概率的算法【知识总结】1、互斥事件:指A∩B为不可能事件;事件A与事件B互斥,即事件A与事件B不能同时发生;A∩B=∅;P(A∪B)=P(A)+P(B)。

2、对立事件:A∩B为不可能事件,A∪B为必然事件;事件A与事件B对立,即事件A与事件B有且仅有一个发生;A∩B=∅,A∪B= ;概率计算P(A∪B)=1,P(A)=1-P(B)。

3、事件A与事件B互斥,事件A与事件B不一定对立;反之,事件A与事件B对立,事件A与事件B则一定互斥。

【巩固练习】1、某小组有5名男生和4名女生,从中任选4名同学参加“教师节”演讲比赛,则下列每对事件是对立事件的是()A.恰有2名男生与恰有4名男生B.至少有3名男生与全是男生C.至少有1名男生与全是女生D.至少有1名男生与至少有1名女生【答案】C【解析】“恰有2名男生”与“恰有4名男生”是互斥事件,但不是对立事件,排除A项;“至少有3名男生”与“全是男生”可以同时发生,不是互斥事件,排除B项;“至少有1名男生”与“全是女生”不可能同时发生,且必有一个发生,是对立事件,C项正确;“至少有1名男生”与“至少有1名女生”可以同时发生,不互斥,排除D项.故选:C.2、袋中装有白球3个,黑球4个,从中任取3个,下列各对事件中互为对立事件的是()A.恰有1个白球和全是白球B.至少有1个白球和全是黑球C.至少有1个白球和至少有2个白球D.至少有1个白球和至少有1个黑球【答案】B【解析】从白球3个,黑球4个中任取3个,共有四种可能,全是白球,两白一黑,一白两黑和全是黑球,故①恰有1个白球和全是白球,是互斥事件,但不是对立事件,②至少有1个白球和全是黑球是对立事件;③至少有1个白球和至少有2个白球不是互斥事件,④至少有1个白球和至少有1个黑球不是互斥事件,故选:B.3、甲:1A、2A是互斥事件;乙:1A、2A是对立事件,那么()A.甲是乙的充要条件B.甲是乙的充分但不必要条件C.甲是乙的必要但不充分条件D.甲既不是乙的充分条件,也不是乙的必要条件【答案】C【解析】当1A、2A是互斥事件时,1A、2A不一定是对立事件,所以甲是乙的非充分条件.当1A、2A是对立事件时,1A、2A一定是互斥事件,所以甲是乙的必要条件.所以甲是乙的必要非充分条件.故选C.4.学校将5个不同颜色的奖牌分给5个班,每班分得1个,则事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是()A.对立事件B.不可能事件C.互斥但不对立事件D.不是互斥事件【答案】C【解析】由题意,1班和2班不可能同时分得黄色的奖牌,因而这两个事件是互斥事件;又1班和2班可能都得不到黄色的奖牌,故这两个事件不是对立事件,所以事件“1班分得黄色的奖牌”与“2班分得黄色的奖牌”是互斥但不对立事件.故选:C5、从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.恰有一个红球与恰有二个红球D.至少有一个红球与至少有一个白球【答案】C【解析】从装有5个红球和3个白球的口袋内任取3个球,不同的取球情况共有以下几种:3个球全是红球;2个红球和1个白球;1个红球2个白球;3个全是白球.选项A中,事件“都是红球”是事件“至少有一个红球”的子事件;选项B中,事件“至少有一个红球”与事件“都是白球”是对立事件;选项D中,事件“至少有一个红球”与事件“至少有一个白球”的事件为“2个红球1个白球”与“1个红球2个白球”;选项C中,事件“恰有一个红球”与事件“恰有2个红球”互斥不对立,故选C.6、从装有两个红球和两个黑球的口袋里任取两个球,那么对立的两个事件是()A.“至少有一个黑球”与“都是黑球”B.“至少有一个黑球”与“至少有一个红球”C.“恰好有一个黑球”与“恰好有两个黑球”D.“至少有一个黑球”与“都是红球”【答案】D【解析】记两个黑球为,A B,两个红球为1,2,则任取两球的所有等可能结果为:A AB B AB,记事件A为“至少有一个黑球”,事件B为:“都是红球”,1,2,1,2,,12,7、一个射手进行一次射击,则事件“命中环数小于6环”的对立事件是()A.命中环数为7、8、9、10环B.命中环数为1、2、3、4、5、6环C.命中环数至少为6环D.命中环数至多为6环【答案】C【解析】根据对立事件的定义,可得一个射手进行一次射击,则事件:“命中环数小于6环”的对立事件是“命中环数至少是6环”,故选C.8、某人射击一次,设事件A:“击中环数小于4”;事件B:“击中环数大于4”;事件C:“击中环数不小于4”;事件D:“击中环数大于0且小于4”,则正确的关系是A.A和B为对立事件B.B和C为互斥事件C.C与D是对立事件D.B与D为互斥事件【答案】D【解析】由题意,A项中,事件“击中环数等于4环”可能发生,所以事件A和B为不是对立事件;B项中,事件B和C可能同时发生,所以事件B和C不是互斥事件;C项中,事件“击中环数等于0环”可能发生,所以事件C和D为不是对立事件;D项中,事件B:“击中环数大于4”与事件D:“击中环数大于0且小于4”,不可能同时发生,所以B与D为互斥事件,故选D.9、把红、黄、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四人,每个人分得一张,事件“甲分得红牌”与“乙分得红牌”()A.是对立事件B.是不可能事件C.是互斥但不对立事件D.不是互斥事件【答案】C【解析】显然两个事件不可能同时发生,但两者可能同时不发生,因为红牌可以分给丙、丁两人,综上,这两个事件为互斥但不对立事件.故选:C.10、一个人打靶时连续射击两次,事件“至少有一次中靶”的互斥事件是()A.至多有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶解析:选D事件“至少有一次中靶”包括“中靶一次”和“中靶两次”两种情况.由互斥事件的定义,可知“两次都不中靶”与之互斥.11、从1,2,3,…,7这7个数中任取两个数,其中:①恰有一个是偶数和恰有一个是奇数;②至少有一个是奇数和两个都是奇数;③至少有一个是奇数和两个都是偶数;④至少有一个是奇数和至少有一个是偶数.上述事件中,是对立事件的是()A.①B.②④C.③D.①③解析:选C “至少有一个是奇数”即“两个都是奇数或一奇一偶”,而从1,2,3,…,7这7个数中任取两个数,根据取到数的奇偶性知共有三种情况:“两个都是奇数”“一奇一偶”“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.故选C.12、对飞机连续射击两次,每次发射一枚炮弹.设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一枚炮弹击中飞机},D ={至少有一枚炮弹击中飞机},其中互为互斥事件的是__________;互为对立事件的是__________.【答案】A 与B 、A 与C ,B 与C 、B 与D ;B 与D .【解析】由于事件A 与B 不可能同时发生,故A 与B 是互斥事件;同理可得,A 与C ,B 与C 、B 与D 也是互斥事件.综上可得,A 与B 、A 与C ,B 与C 、B 与D 都是互斥事件.在上述互斥事件中,再根据B 、D 还满足B ∪D 为必然事件,故B 与D 是对立事件,故答案为A 与B 、A 与C ,B 与C 、B 与D ;B 与D .13、记事件A ={某人射击一次,中靶},且P (A )=0.92,则A 的对立事件是__________,它的概率值是__________.【答案】{某人射击一次,未中靶},0.08.【解析】事件A ={某人射击一次,中靶},则A 的对立事件是{某人射击一次,未中靶};又P (A )=0.92,故答案为:{某人射击一次,未中靶},0.08.14、如果事件A 与事件B 互斥,且()0.2P A =,()0.3P B =,则()P A B =.【答案】0.5【解析】()()0.20.3)0.5(P A P B P A B =+=+= 15、在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡解析:选A 至多有一张移动卡包含“一张移动卡,一张联通卡”“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,故选A.16、若A ,B 为互斥事件,P (A )=0.4,P (A ∪B )=0.7,则P (B )=________.解析:∵A ,B 为互斥事件,∴P (A ∪B )=P (A )+P (B ),∴P (B )=P (A ∪B )-P (A )=0.7-0.4=0.3.答案:0.317、已知随机事件A 和B 互斥,且()0.5P AUB =,()0.3P B =.则()P A =()A.0.5B.0.2C.0.7D.0.8【解析】(1)A 与B 互斥()()()P A B P A P B ∴=+本题正确选项:D18、已知随机事件,,A B C 中,A 与B 互斥,B 与C 对立,且()()0.3,0.6P A P C ==,则()P A B +=()A.0.3B.0.6C.0.7D.0.9【答案】C 【解析】因为()0.6P C =,事件B 与C 对立,所以()0.4P B =,又()0.3P A =,A 与B 互斥,所以()()()0.30.40.7P A B P A P B +=+=+=,故选C .19、设事件A ,B ,已知()15P A =,()13P B =,()815P A B = ,则A ,B 之间的关系一定为()A.两个任意事件B.互斥事件C.非互斥事件D.对立事件【答案】B()()()P A B P A P B ∴=+ A ∴.B 为互相斥事件故选:B .20、若随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2P A a =-,()45P B a =-,则实数a 的取值范围是()A.5,24⎛⎫ ⎪⎝⎭B.53,42⎛⎫ ⎪⎝⎭C.53,42⎡⎤⎢⎥⎣⎦D.54,43⎛⎤ ⎥⎝⎦【答案】D【解析】 随机事件A 、B 互斥,A 、B 发生的概率均不等于0,且分别为()2P A a =-,()45P B a =-,∴0()10()1()()1P A P B P A P B <<⎧⎪<<⎨⎪+⎩,即021*******a a a <-<⎧⎪<-<⎨⎪-⎩,故选:D .21、若A ,B 互为对立事件,其概率分别为P (A )=4x ,P (B )=1y,则x +y 的最小值为________.=9,当且仅当x =2y 时等号成立,故x +y 的最小值为9.答案:922、一只袋子中装有7个红玻璃球,3个绿玻璃球,从中无放回地任意抽取两次,每次只取一个,取得两个红玻璃球的概率为715,取得两个绿玻璃球的概率为115,则取得两个同色玻璃球的概率为________;至少取得一个红玻璃球的概率为________.解析:由于“取得两个红玻璃球”与“取得两个绿玻璃球”是互斥事件,取得两个同色玻璃由于事件A “至少取得一个红玻璃球”与事件B “取得两个绿玻璃球”是对立事件,则。

《互斥事件》 讲义

《互斥事件》 讲义

《互斥事件》讲义在概率统计的世界里,互斥事件是一个非常重要的概念。

理解互斥事件对于我们解决各种概率问题、预测随机现象以及做出合理的决策都具有关键意义。

接下来,就让我们一起深入探讨互斥事件的奥秘。

一、互斥事件的定义互斥事件,简单来说,就是指两个事件不能同时发生。

比如说,抛一枚硬币,正面朝上和反面朝上就是互斥事件,因为在一次抛硬币的过程中,不可能既正面朝上又反面朝上。

再比如,从一副扑克牌中抽一张牌,抽到红桃和抽到黑桃就是互斥事件,因为一张牌不可能既是红桃又是黑桃。

用数学语言来表示,如果事件 A 和事件 B 是互斥事件,那么它们的交集为空集,即A ∩ B =∅。

这意味着 A 和 B 没有共同的结果。

二、互斥事件与对立事件的区别在学习互斥事件的过程中,很多同学容易将其与对立事件混淆。

对立事件是一种特殊的互斥事件。

互斥事件只是说两个事件不能同时发生,但它们有可能都不发生;而对立事件不仅不能同时发生,而且必然有一个会发生。

举个例子,掷骰子,点数小于 3 和点数大于 3 是互斥事件,但不是对立事件,因为还有点数等于 3 的情况。

而点数小于 4 和点数大于等于 4 就是对立事件,因为骰子的点数要么小于 4,要么大于等于 4,没有其他可能。

三、互斥事件的概率计算既然互斥事件不能同时发生,那么在计算它们的概率时就有一些特殊的规则。

如果 A 和 B 是互斥事件,那么事件 A 或事件 B 发生的概率等于事件 A 的概率加上事件 B 的概率,即 P(A ∪ B) = P(A) + P(B) 。

例如,一个袋子里有 5 个红球和 3 个蓝球,从中随机摸一个球,摸到红球的概率是 5/8,摸到蓝球的概率是 3/8,因为摸到红球和摸到蓝球是互斥事件,所以摸到红球或蓝球的概率就是 5/8 + 3/8 = 1 。

再来看一个稍微复杂点的例子。

在一次抽奖活动中,一等奖的中奖概率是 001,二等奖的中奖概率是 005,三等奖的中奖概率是 01。

互斥事件的概率公式

互斥事件的概率公式

互斥事件的概率公式互斥事件是指事件 A 和事件 B 的交集为空,即 A∩B=。

互斥事件的概率可以用以下公式计算:P(A∪B) = P(A) + P(B) - P(A∩B)其中,A 和 B 为互斥事件,A∩B 表示事件 A 和事件 B 的并集,P(A) 表示事件 A 的概率,P(B) 表示事件 B 的概率,P(A∩B) 表示事件 A 和事件 B 的交集的概率。

互斥事件的概率和为 0,但对立事件的概率和为 1。

对立事件是指与事件 A 互斥的事件 B,即 A∩B=。

对立事件的概率可以用以下公式计算:P(B) = 1 - P(A∩B)在概率论中,互斥事件和对立事件是两种最基本的事件类型。

互斥事件的概率公式可以推导出其他许多事件的概率公式,例如等可能性事件的概率公式和必然事件的概率公式等。

拓展:1. 互斥事件和对立事件是概率论中最基本的事件类型之一。

在概率论中,我们可以用事件的概率来描述事件发生的可能性大小,而互斥事件和对立事件的概率公式则是计算事件发生可能性大小的基本公式。

2. 互斥事件和对立事件的概率和可以为 0 或 1,这取决于事件A 和事件B 的具体情况。

如果事件 A 和事件 B 是互斥的,则它们的交集为空,即 P(A∩B)=0。

如果事件 A 和事件 B 是对立事件,则它们的交集也为空,即 P(A∩B)=0。

如果事件 A 和事件 B 不是互斥事件或对立事件,则它们的交集的概率可以为 0 或 1。

3. 互斥事件和对立事件在概率论中有着广泛的应用。

例如,在赌博中,如果我们已知某个赌注是互斥事件,我们就可以计算出这个赌注的中奖概率,从而更好地决策是否参与这个赌注。

在统计学中,互斥事件和对立事件也是常用的概念,例如在抽样调查中,我们可以用互斥事件和对立事件来描述样本和总体之间的关系。

高中数学总结归纳 感悟互斥事件与对立事件

高中数学总结归纳 感悟互斥事件与对立事件

感悟互斥事件与对立事件在利用概率的性质时,一定要注意互斥事件与对立事件的区别与联系,互斥事件是指事件A与事件B在一次试验中不会同时发生,其具体包括三种不同情形:①事件A发生且事件B不发生;②事件A不发生且事件B发生;③事件A与事件B同时不发生。

而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形:①事件A发生事件B不发生;②事件B发生事件A不发生。

对立事件是互斥事件的特殊情形。

例1某城市有甲、乙两种报纸供居民们订阅,记事件A为“只订甲报”,事件B为“至少订一种报”,事件C为“至多订一种报”,事件D为“不订甲报”,事件E为“一种报也不订”。

判断下列每对事件是不是互斥事件;如果是,再判断它们是不是对立事件。

(1)A与C(2)B与E(3)B与D(4)B与C(5)C与E分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚,互斥事件是指不可能同时发生的两事件,而对立事件是建立在互斥事件的基础上,两个事件中一个不发生,另一个必发生。

解:(1)由于事件C“至多订一种报”中有可能只订甲报,即事件A与事件C有可能同时发生,故A与C不是互斥事件。

(2)事件B“至少订一种报”与事件E“一种报也不订”是不可能同时发生的,故B 与E是互斥事件。

由于事件B发生可导致事件E一定不发生,且事件E发生会导致事件B 一定不发生,故B与E还是对立事件。

(3)事件B“至少订一种报”中有可能只订乙报,即有可能不订甲报,即事件B发生,事件D也可能发生,故B与D不互斥。

(4)事件B“至少订一种报”中有这些可能:“只订甲报”、“只订乙报”、“订甲、乙两种报”,事件C“至多订一种报”中有这些可能:“什么也不订”、“只订甲报”、“只订乙报”。

由于这两个事件可能同时发生,故B与C不是互斥事件。

(5)由(4)的分析,事件E“一种报也不订”只是事件C的一种可能,故事件C与事件E有时可能同时发生,故C与E不互斥。

评注:由对立事件的定义可知,对立事件首先是互斥事件,并且其中一个一定要发生,因此,两个对立事件一定是互斥事件,但两个互斥事件却不一定是对立事件,解题时一定要搞清两种事件的关系。

§233互斥事件与对立事件

§233互斥事件与对立事件
7.某种彩色电视机的一等品率为90%,二等品率为8%,次品率为2%,某人买了一台该种电视机,则这台电视机是正品(一等品或二等品)的概率为,这台电视机不是一等品的概率
8.经临床验证,一种新药对某种疾病的治愈率为54%,现效率为22%,有效率为12%,其余为无效。则某人患该病使用此药后无效的概率
4.某人射击射中10环,9环,8环的概率依次为0.2,0.25,0.3,则他打1枪至少8环的概率为
5.口袋中有若干红球、黄球与蓝球。摸出红球的概率为0.45,摸出黄球的概率为0.33,则摸出红球或黄球的概率摸出蓝球的概率
6.一架飞机向目标投弹,击毁目标的概率为0.2,目标未受损的概率为0.4,则使目标受损但未完全击毁的概率
⑴.
⑵.1张奖券的中奖概率;
⑶.1张奖券不中特等奖或一等奖的概率。
自我挑战三
我的知识网络图——归纳总结 串联整合
规律方
法总结:
创新思维能力培养反思体验过程
自我评价——激励创新思维意识
1.你完成本节学习设计方案的情况为( )
A. 很好 B. 较好 C. 一般 D. 较差
2.你今天所学的重要数学知识是:
课题
§2.3.3互斥事件与对立事件
第3课时
第8周
学习目标
1.进一步理解互斥事件和对立事件的概念,并根据概率计算公式的应用范围和具体运算法则解决简单的概率问题。能熟练应用概率运算法则解决简单的概率问题。
2.通过不同形式的自主学习和探究活动,体验数学发现和创造的历程,提高学生的合作能力和创造的历程,提高学生的合作解题能力和利用数学知识解决实际应用问题的能力。
⑴A与B⑵A与C⑶A与D
2.有一批小包装食品,其中重量在90~95g的有40袋,重量在95~100g的有30袋,重量在100~105g的有10袋。从中任意抽取一袋,则此袋食品的重量在95~100g的概率为;此袋食品的重量不足100g的概率为;此袋食品的重量不低于95g的概率为

互斥事件与对立事件说课稿PPT课件

互斥事件与对立事件说课稿PPT课件

过程与方法
通过引导使学生掌 握互斥事件和对立 事件两个概念的区 别和联系,提高分 析问题的能力;通 过知识迁移,与集 合中相关概念的对 比学习,提高学生 类比、归纳的能力 .
情感态度 价值观
通过学生独立思考 、合作讨论,有意 识、有目的地培养 学生自主学习的习 惯和协作共进的团 队精神;让学生体 验成功,激发其求 知欲.
三、教学过程的设计
3 掌握方法、适当延展
某战士射击一次,设中靶的概率为0.95,令事件A为 “射击一次,中靶”求 (1)A巴的概率是多少? (2)若事件B(环数大于5)的概率是0.75,那么事件 C(环数小于6)的概率是多少?事件D(环数大于0且 小于6)的概率是多少?
设计意图:对于复杂问题,学生更容易混淆互斥事件和 对立事件的概念,这种情况下从集合的角度搞清楚B、C D之间的包含或对立关系,通过图象直观形象的呈现, 就能轻易的使得学生能利用所学知识独立解决问题,让
课堂以外延伸的目的 .而恰当的使用多媒体,体现了现
代课堂与信息技术相结合的特点,同时也符合新课标的 要求.
结束语
各位专家、评委,本节课在概念教学上 进行了一些尝试.在教学过程中,努力创设 一个探索数学的学习环境,通过设计一系列 问题, 使学生在探究问题的过程中,亲身经历 数学概念的发生与发展过程,从而逐步把握 概念的实质内涵,深入理解概念.
4
教学的重点和难点
一、教学内容的分析
理解互斥事件和对立事件概念的区别和
联系,并会用相应模型解决实际问题.
5
教材的处理
一、教学内容的分析
教材中直接引用了前面课文中有关质量盘的例 题,再对互斥事件进行讲解,因为质量盘的例题不 直观,这样做会加大学生理解互斥事件的难度.因此, 我对教材内容作了一点调整,从生活实例掷骰子事 件出发,逐步导出互斥事件,使学生既有兴趣又很 轻松的理解互斥事件的含义,为下面的学习打好理 论基础.

§232互斥事件与对立事件

§232互斥事件与对立事件
自己存在的困惑:
自己所提的问题:
质疑交流——激发创新思维火花
议题1:5件产品中有2件次品,从中任取2件。
(1)判断下列事件是不是互斥事件,如果是,再判断它们是不是对立事件,如果不是对立事件,再分别说出它们的对立事件。
(a)“恰有一件是次品”与“恰有两件次品”。
(b)“至少有一件次品”与“全是次品”
(c)“至少有一件正品”与“至少有一件次品”
自我挑战一
经统计,在某储蓄所一个营业窗口等候的人数为及相应概率如下:
排队人数
0
1
2
3
4
5人及5人以上
概率
0.1
0.16
0.30.3Fra bibliotek0.10.04
(1)至少3人排队等候的概率是多少?
(2)有人排队等候的概率是多少?
自我挑战二
某市派出甲、乙两支球队参加全省足球冠军赛.甲、乙两队夺取冠军的概率分别是 和 .试求该市足球队夺得全省足球赛冠军的概率.
5.若A表示四件产品中至少有一件是废品的事件,B表示废品不少于两件的事件,试问对立事件 、 各表示什么?
学习建议:(用15分钟时间独立完成,并注意规范书写)
1.一口袋内装有大小一样的4只白球与4只黑球,从中一次任意摸出2只球.记摸出2只白球为事件A,摸出1只白球和1只黑球为事件B.问事件A和B是否为互斥事件?是否为对立事件?
2.在一个盒子内放有10个大小相同的小球,其中有7个红球、2个绿球、1个黄球,从中任取一个球,求:
(1)求他参加不超过2个小组的概率是多少?
(2)求他至少参加2个小组的概率是多少?
话题2:某射手在一次射击训练中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算该射手在一次射击中:

概率2.3 互斥事件

概率2.3 互斥事件

2.3互斥事件[学习目标] 1.理解互斥事件、对立事件的定义,会判断所给事件的类型.2.掌握互斥事件的概率加法公式并会应用.3.正确理解互斥、对立事件的关系,并能正确区分判断.知识点一互斥事件与对立事件发生是指思考(1)在掷骰子的试验中,事件A={出现的点数为1},事件B={出现的点数为奇数},事件A与事件B应有怎样的关系?(2)判断两个事件是对立事件的条件是什么?知识点二概率的几个基本性质1.概率的取值范围(1)由于事件的频数总是小于或等于试验的次数,所以频率在0~1之间,从而任何事件的概率在0~1之间,即.(2) 的概率为1.(3) 的概率为0.2.互斥事件的概率加法公式当事件A与事件B互斥时,A+B发生的频数等于A发生的频数与B发生的频数之和,从而A+B的频率f n(A+B)=f n(A)+f n(B),则概率的加法公式为P(A+B)=.3.对立事件的概率公式若事件A与事件B互为对立事件,则A+B为必然事件,P(A+B)=1.再由互斥事件的概率加法公式P(A+B)=P(A)+P(B),得P(A)=.题型一互斥事件、对立事件的概念例1从40张扑克牌(红桃、黑桃、方块、梅花,点数从1~10各10张)中,任取一张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.判断上面给出的每对事件是否为互斥事件,是否为对立事件,并说明理由.反思与感悟 1.要判断两个事件是不是互斥事件,只需要分别找出各个事件包含的所有结果,看它们之间能不能同时发生.在互斥的前提下,看两个事件的和事件是否为必然事件,从而可判断是否为对立事件.2.考虑事件的结果间是否有交事件.可考虑利用Venn图分析,对于较难判断的关系,也可考虑列出全部结果,再进行分析.跟踪训练1从装有5个红球和3个白球的口袋内任取3个球,那么下列各对事件中,互斥而不对立的是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有两个红球题型二和事件的概念例2在掷骰子的试验中,可以定义许多事件.例如,事件C1={出现1点},事件C2={出现2点},事件C3={出现3点},事件C4={出现4点},事件C5={出现5点},事件C6={出现6点},事件D1={出现的点数不大于1},事件D2={出现的点数大于3},事件D3={出现的点数小于5},事件E={出现的点数小于7},事件F={出现的点数为偶数},事件G={出现的点数为奇数},请根据上述定义的事件,回答下列问题:(1)请举出符合包含关系、相等关系的事件;(2)利用和事件的定义,判断上述哪些事件是和事件.反思与感悟事件间运算方法:(1)利用事件间运算的定义.列出同一条件下的试验所有可能出现的结果,分析并利用这些结果进行事件间的运算.(2)利用Venn图.借助集合间运算的思想,分析同一条件下的试验所有可能出现的结果,把这些结果在图中列出,进行运算.跟踪训练2盒子里有6个红球,4个白球,现从中任取3个球,设事件A={3个球中有一个红球,两个白球},事件B={3个球中有两个红球,一个白球},事件C={3个球中至少有一个红球},事件D={3个球中既有红球又有白球}.则:(1)事件D与事件A、B是什么样的运算关系?(2)事件C与事件A的交事件是什么事件?题型三对立事件、互斥事件的概率例3同时抛掷两枚骰子,求至少有一个5点或6点的概率.反思与感悟 1.互斥事件的概率的加法公式P(A+B)=P(A)+P(B).2.对于一个较复杂的事件,一般将其分解成几个简单的事件,当这些事件彼此互斥时,原事件的概率就是这些简单事件的概率的和.3.当求解的问题中有“至多”、“至少”、“最少”等关键词语时,常常考虑其反面,通过求其反面,然后转化为所求问题.跟踪训练3某射手在一次射击中,射中10环、9环、8环、7环的概率分别为0.21,0.23,0.25,0.28,计算这个射手一次射击中射中的环数低于7环的概率.求复杂事件的概率例4 玻璃盒里装有红球、黑球、白球、绿球共12个,从中任取1球,设事件A 为“取出1个红球”,事件B 为“取出1个黑球”,事件C 为“取出1个白球”,事件D 为“取出1个绿球”.已知P (A )=512,P (B )=13,P (C )=16,P (D )=112.(1)求“取出1个球为红球或黑球”的概率; (2)求“取出1个球为红球或黑球或白球”的概率.解后反思 求复杂事件的概率通常有两种方法:一是将所求事件转化成彼此互斥事件的和;二是先求对立事件的概率,再求所求事件的概率,即P (A )=1-P (B )(B 是A 的对立事件).1.互斥事件和对立事件既有区别又有联系.互斥未必对立,对立一定互斥.2.互斥事件的概率加法公式是一个很基本的计算公式,解题时要在具体的情景中判断各事件间是否互斥,只有互斥事件才能用概率加法公式P (A +B )=P (A )+P (B ). 3.求复杂事件的概率通常有两种方法: (1)将所求事件转化成彼此互斥事件的和事件; (2)先求其对立事件的概率,再求所求事件的概率.1.给出以下结论:①互斥事件一定对立;②对立事件一定互斥;③互斥事件不一定对立;④事件A 与B 的和事件的概率一定大于事件A 的概率;⑤事件A 与B 互斥,则有P (A )=1-P (B ).其中正确命题的个数为( )A .0B .1C .2D .32.对同一事件来说,若事件A 是必然事件,事件B 是不可能事件,则事件A 与事件B 的关系是( ) A .互斥不对立 B .对立不互斥 C .互斥且对立D .不互斥、不对立3.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .“至少有1个白球”和“都是红球” B .“至少有1个白球”和“至多有1个红球” C .“恰有1个白球”和“恰有2个白球” D .“至多有1个白球”和“都是红球”4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列关系不正确的是( ) A .A ⊆D B .B ∩D =∅ C .A ∪C =DD .A ∪C =B ∪D5.从集合{a ,b ,c ,d ,e }的所有子集中任取一个,若这个子集不是集合{a ,b ,c }的子集的概率是34,则该子集恰是集合{a ,b ,c }的子集的概率是( )A.35B.25C.14D.186.从几个数中任取实数x ,若x ∈(-∞,-1]的概率是0.3,x 是负数的概率是0.5,则x ∈(-1,0)的概率是________.7.同时抛掷两枚骰子,既不出现5点也不出现6点的概率为49,则5点或6点至少出现一个的概率是________.8.袋中装有红球、黑球、黄球、绿球共12个.从中任取一球,取到红球的概率是13,取到黑球或黄球的概率是512,取到黄球或绿球的概率是512.试求取到黑球、黄球、绿球的概率各是多少.一、选择题1.已知P (A )=0.1,P (B )=0.2,则P (A +B )等于( ) A .0.3 B .0.2 C .0.1D .不确定2.若A 、B 是互斥事件,则( ) A .P (A +B )<1 B .P (A +B )=1 C .P (A +B )>1D .P (A +B )≤13.某产品分甲、乙、丙三级,其中丙级为次品.若生产中出现乙级品的概率为0.03,丙级品的概率为0.01,则对该产品抽查一件抽到正品的概率为( ) A .0.09 B .0.97 C .0.99D .0.964.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而不对立的两个事件是( ) A .“至少有1个白球”和“都是红球” B .“至少有1个白球”和“至多有1个红球” C .“恰有1个白球”和“恰有2个白球” D .“至多有1个白球”和“都是红球”5.从1,2,3,…,9中任取两数,其中:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.则在上述事件中,是对立事件的是( ) A .① B .②④ C .③D .①③6.下列四个命题:①对立事件一定是互斥事件;②若A ,B 为两个事件,则P (A +B )=P (A )+P (B );③若事件A ,B ,C 两两互斥,则P (A )+P (B )+P (C )=1;④事件A ,B 满足P (A )+P (B )=1,则A ,B 是对立事件.其中错误命题的个数是( ) A .0 B .1 C .2D .37.掷一枚骰子的试验中,出现各点的概率为16.事件A 表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件A +B (B 表示事件B 的对立事件)发生的概率为( )A.13B.12C.23D.56二、填空题8.若A ,B 为互斥事件,P (A )=0.4,P (A +B )=0.7,则P (B )=________.9.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选中男教师的概率为920,则参加联欢会的教师共有________人.10.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.用频率估计概率,现从该批产品中随机抽取一件,则其为二等品的概率为________.三、解答题12.袋中装有红球、黑球、黄球、绿球共12个.从中任取一球,取到红球的概率是13,取到黑球或黄球的概率是512,取到黄球或绿球的概率是512.试求取到黑球、黄球、绿球的概率各是多少.解 从袋中任取一球,记事件“取到红球”“取到黑球”“取到黄球”和“取到绿球”分别为A ,B ,C ,D ,则事件A ,B ,C ,D 显然是两两互斥的.由题意,得⎩⎨⎧P (A )=13, P (B +C )=512, P (C +D )=512, P (A +B +C +D )=1,即⎩⎨⎧P (B )+P (C )=512, P (C )+P (D )=512, 13+P (B )+P (C )+P (D )=1,解得⎩⎨⎧P (B )=14, P (C )=16, P (D )=14,故取到黑球的概率是14,取到黄球的概率是16,取到绿球的概率是14.13.黄种人群中各种血型的人所占的比例如下表所示.互相输血.小明是B型血,若小明因病需要输血,则:(1)任找一个人,其血可以输给小明的概率是多少?(2)任找一个人,其血不能输给小明的概率是多少?解(1)对任一个人,其血型为A,B,AB,O的事件分别为A′,B′,C′,D′,它们是互斥的.由已知得P(A′)=0.28,P(B′)=0.29,P(C′)=0.08,P(D′)=0.35.由于B,O型血可以输给B型血的人,因此“可以输血给B型血的人”为事件B′+D′,根据互斥事件的概率加法公式,得:P(B′+D′)=P(B′)+P(D′)=0.29+0.35=0.64.(2)由于A,AB型血不能输给B型血的人,因此“不能输血给B型血的人”为事件A′+C′,所以P(A′+C′)=P(A′)+P(C′)=0.28+0.08=0.36.[学习目标] 1.初步体会模拟方法在概率方面的应用.2.理解几何概型的定义及其特点,会用公式计算简单的几何概型问题.3.了解古典概型与几何概型的区别与联系.知识点一 几何概型的含义1.几何概型的定义向平面上有限区域(集合)G 内随机地投掷点M ,若点M 落在子区域G 1 G 的概率与G 1的面积成正比,而与G 的形状、位置无关,即P (点M 落在G 1)=G 1的面积G 的面积,则称这种模型为几何概型.2.几何概型的特点(1)试验中所有可能出现的结果(基本事件)有无限多个. (2)每个基本事件出现的可能性相等. 思考 几何概型与古典概型有何区别? 答 几何概型与古典概型的异同点P (A )=构成事件A 的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).思考 计算几何概型的概率时,首先考虑的应该是什么? 答 首先考虑取点的区域,即要计算的区域的几何度量.题型一 与长度有关的几何概型例1 取一根长为3 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m 的概率有多大?解 如图,记“剪得两段的长都不小于1 m ”为事件A .把绳子三等分,于是当剪断位置处在中间一段时,事件A 发生,因为中间一段的长度为1 m ,所以事件A 发生的概率为P (A )=13.反思与感悟 在求解与长度有关的几何概型时,首先找到试验的全部结果构成的区域D ,这时区域D 可能是一条线段或几条线段或曲线段,然后找到事件A 发生对应的区域d ,在找区域d 的过程中,确定边界点是问题的关键,但边界点是否取到却不影响事件A 的概率. 跟踪训练1 平面上画了一组彼此平行且相距2a 的平行线.把一枚半径r <a 的硬币任意投掷在平行线之间,求硬币不与任一条平行线相碰的概率.解 设“硬币不与任一条平行线相碰”为事件A .如图,在两条相邻平行线间画出与平行线间距为r 的两条平行虚线,则当硬币中心落在两条虚线间时,与平行线不相碰.故P (A )=虚线间距离平行线间距离=2a -2r 2a =a -ra .题型二 与面积有关的几何概型例2 如图,射箭比赛的箭靶中有五个涂有不同颜色的圆环,从外向内分别为白色、黑色、蓝色、红色,靶心是金色,金色靶心叫“黄心”.奥运会的比赛靶面直径为122 cm ,靶心直径为12.2 cm ,运动员在一定距离外射箭,假设每箭都能中靶,且射中靶面内任意一点是等可能的,那么射中黄心的概率为多少?解 记“射中黄心”为事件B .因为中靶点随机地落在面积为⎝⎛⎭⎫14×π×1222cm 2的大圆内,而当中靶点落在面积为⎝⎛⎭⎫14×π×12.22cm 2的黄心内时,事件B 发生,所以事件B 发生的概率P (B )=14×π×12.2214×π×1222=0.01.反思与感悟 解此类几何概型问题的关键:(1)根据题意确定是不是与面积有关的几何概型问题.(2)找出或构造出随机事件对应的几何图形,利用图形的几何特征计算相关面积,套用公式从而求得随机事件的概率.跟踪训练2 一只海豚在水池中自由游弋,水池为长30 m ,宽20 m 的长方形,求此刻海豚嘴尖离岸边不超过2 m 的概率.解 如图所示,区域Ω是长30 m 、宽20 m 的长方形.图中阴影部分表示事件A :“海豚嘴尖离岸边不超过2 m ”,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m 2),阴影部分的面积为30×20-26×16=184(m 2). 所以P (A )=184600=2375≈0.31.即海豚嘴尖离岸边不超过2 m 的概率约为0.31. 题型三 与体积有关的几何概型例3 已知正三棱锥S -ABC 的底面边长为a ,高为h ,在正三棱锥内取点M ,试求点M 到底面的距离小于h2的概率.解 如图,分别在SA ,SB ,SC 上取点A 1,B 1,C 1,使A 1,B 1,C 1分别为SA ,SB ,SC 的中点,则当点M 位于平面ABC 和平面A 1B 1C 1之间时,点M 到底面的距离小于h2.设△ABC 的面积为S ,由△ABC ∽△A 1B 1C 1,且相似比为2,得△A 1B 1C 1的面积为S4.由题意,知区域D (三棱锥S -ABC )的体积为13Sh ,区域d (三棱台ABC -A 1B 1C 1)的体积为13Sh -13·S 4·h 2=13Sh ·78.所以点M 到底面的距离小于h 2的概率P =78.反思与感悟 如果试验的全部结果所构成的区域可用体积来度量,我们要结合问题的背景,选择好观察角度,准确找出基本事件所占的区域体积及事件A 所占的区域体积.其概率的计算公式为P (A )=构成事件A 的区域体积试验的全部结果构成的区域体积.跟踪训练3 一只小蜜蜂在一个棱长为3的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个面的距离均大于1,称其为“安全飞行”,求蜜蜂“安全飞行”的概率. 解 依题意,在棱长为3的正方体内任意取一点,这个点到各面的距离均大于1.则满足题意的点区域为:位于该正方体中心的一个棱长为1的小正方体.由几何概型的概率公式,可得满足题意的概率为P =1333=127.题型四 与角度有关的几何概型例4 如图,在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,求射线OA 落在∠xOT 内的概率.解 以O 为起点作射线OA 是随机的,因而射线OA 落在任何位置都是等可能的,落在∠xOT 内的概率只与∠xOT 的大小有关,符合几何概型的条件. 于是,记事件B ={射线OA 落在∠xOT 内}. 因为∠xOT =60°,所以P (B )=60°360°=16.反思与感悟 当涉及射线的运动,扇形中有关落点区域问题时,常以角的大小作为区域度量来计算概率,切不可用线段代替,这是两种不同的度量手段.跟踪训练4 如图,在等腰直角三角形ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M .求AM <AC 的概率.解 因为CM 是∠ACB 内部的任意一条射线,而总的基本事件是∠ACB 的大小,即为90°, 所以作AC ′=AC ,且∠ACC ′=180°-45°2=67.5°.如图,当CM 在∠ACC ′内部的任意一个位置时,皆有AM <AC ′=AC ,即P (AM <AC )=67.5°90°=34.转化与化归思想例5 把长度为a 的木棒任意折成三段,求它们可以构成一个三角形的概率.分析 将长度为a 的木棒任意折成三段,要能够构成三角形必须满足“两边之和大于第三边”这个条件,进而求解即可.解 设将长度为a 的木棒任意折成三段的长分别为x ,y ,a -x -y ,则(x ,y )满足的条件为⎩⎪⎨⎪⎧0≤x ≤a ,0≤y ≤a ,0≤x +y ≤a ,它所构成的区域为图中的△AOB .设事件M ={能构成一个三角形}, 则当(x ,y )满足下列条件时,事件M 发生.⎩⎪⎨⎪⎧x +y >a -x -y ,x +a -x -y >y ,y +a -x -y >x ,即⎩⎪⎨⎪⎧x +y >a 2,y <a2,x <a 2,它所构成的区域为图中的阴影部分, 故P (M )=S 阴影S △AOB =12×⎝⎛⎭⎫a 2212×a 2=14.故满足条件的概率为14.解后反思 解决本题的关键是将之转化为与面积有关的几何概型问题.一般地,有一个变量可以转化为与长度有关的几何概型,有两个变量可以转化为与面积有关的几何概型,有三个变量可以转化为与体积有关的几何概型.1.在区间[0,3]上任取一个数,则此数不大于2的概率是( ) A.13 B.12 C.23 D.79答案 C解析 此数不大于2的概率P =区间[0,2]的长度区间[0,3]的长度=23.2.在半径为2的球O 内任取一点P ,则|OP |>1的概率为( ) A.78 B.56 C.34 D.12 答案 A解析 问题相当于在以O 为球心,1为半径的球外,且在以O 为球心,2为半径的球内任取一点,所以P =43π×23-43π×1343π×23=78.3.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影区域的面积是( )A.13B.23C.43 D .无法计算答案 C解析 在正方形中随机撒一粒豆子,其结果有无限个,属于几何概型.设“落在阴影区域内”为事件A ,则事件A 构成的区域是阴影部分.设阴影区域的面积为S ,全部结果构成的区域面积是正方形的面积,则有P (A )=S 22=S 4=13,解得S =43.4.当你到一个红绿灯路口时,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为45秒,那么你看到黄灯的概率是( ) A.112 B.38 C.116 D.56 答案 C解析 由题意可知,在80秒内路口的红、黄、绿灯是随机出现的,可以认为是无限次等可能出现的,符合几何概型的条件.事件“看到黄灯”的时间长度为5秒,而整个灯的变换时间长度为80秒,据几何概型概率计算公式,得看到黄灯的概率为P =580=116.5.在1 000 mL 水中有一个草履虫,现从中随机取出3 mL 水样放到显微镜下观察,则发现草履虫的概率是________. 答案31 000解析 由几何概型知,P =31 000.1.几何概型适用于试验结果是无穷多且事件是等可能发生的概率模型. 2.几何概型主要用于解决与长度、面积、体积有关的题目.3.注意理解几何概型与古典概型的区别.4.理解如何将实际问题转化为几何概型的问题,利用几何概型公式求解,概率公式为P(A)=构成事件A的区域长度(面积或体积)试验的全部结果所构成的区域长度(面积或体积).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

= 2+ +2 + 2
1
16 16 16 16
7 =
16 0.44. 因此,随机地从2个箱子中各取1个质量盘,此人不能拉开
拉力器的概率约为0.44.
互斥事件:不同时发生的两个或多个事件. 若事件A与B互斥: P(A+B) = P(A) + P(B)
事件A1,A2,…,An彼此互斥 P(A1+A2+…An)=P(A1)+P(A2)+…+P(An) 对立事件:必有一个发生的两个互斥事件(A与B对 立).
(4)对立事件的概率公式:
P(A)=1–P(A)
❖集从合集,合是的全角集度I中看的,事由件事A件所A 含所的含结的果结组果成组的成集的合
的补集。
I 红红红
红 红A红 红
A
绿绿
BA
黄C
例6 某学校成立了数学、英语、音乐3个课外兴趣小组,3个 小组分别有39,32,33个成员,一些成员参加了不止1个小组, 具体情况如图所示.随机选取1个成员: (1)他至少参加2个小组的概率是多少? (2)他参加不超过2个小组的概率是多少?
2、每一个试验结果出现的可能性相同.
古典概型 概率公式
P( A)

m(事件A包含的可能结果数) n(试验的所有可能结果数)
概率模型 一般来说,在建立概率模型时,我们把什么看作是一
个基本事件是人为规定的,也就是说,对于同一个随机试验,
可以根据需要,建立满足我们要求的概率模型.
问题:一个盒子内放有10个大小相同的小球,其中有
2.一般地,如果随机事件A1,A2, • • • ,An中任 意两个是互斥事件,那么有
P(A1+A2+ • • • +An)=P(A1)+P(A2)+ • • • +P(An)
练习:在例1中,随机地从2个箱子中各取1个质量盘,如果一
个人不能拉动超过22kg的质量,那么他将不能拉开拉力器,
则他不能拉开拉力器的概率是多少?
给定事件A,B,我们规定A+B为一个事件,事件A+B发生 是指事件A和B至少有一个发生.
用集合解释 (1)与集合类比,事件A+B可用集合A与B的并集来表示,如下图.
(2)事件A+B与事件B+A是同一事件.即
A+B=B+A.
(3)A+B有三层意思:
事件A发生,事件B不发生; 事件A不发生,事件B发生;
第一个质量
2.5 5 10
20
2.5
5 7.5 12.5 22.5
5
10 20
7.5 12.5 22.5
10
15 25
15
20 30
25
30 40
而A1,A2,A3,A4中任意两个是互斥事件,由互斥事件的概率 加法公式,随机地从2个箱子中各取1个质量盘,总质量超
过22kg的概率为:
P(A1+A2+A3+A4 ) = P(A1)+P(A2)+P(A3)+P(A4)
❖如果从盒中摸出的1个球是红球,即事件A发生,那 么事件B就不发生;如果从盒中摸出的1个球是绿球, 即事件B发生,那么事件A就不发生.
❖就是说,事件A与B不可能同时发生.
1.互斥事件定义
在一个随机试验中,我们把一次试验下不能同时发生的两 个事件A与B称作互斥事件.
如:
❖易知,事件B与C、事件A与C也是互斥事 ❖件对.于上面的事件A、B、C,其中任何两个都 是互斥事件,这时我们说事件A、B、C彼此互 斥. ❖一般地,若事件A1,A2,…,An中的任何两个都
AB
事件A发生,事件B同时发生.
当A与B互斥时,A+B事件指“A发生B不发生”和“A不发生B 发生”;
(1)对于例3的(2)和(3)中的事件A和事件B,A+B表示什么事
件?
(2)对例3的(1),(2)和(3)中的每一对事件,通过计算完成表
3-10:
表3-10
(1)
(2)
(3)
P(A)
P(B)
P(A)+P(B)
看法的概率是多少?
解:用A表示事件“对这次调整表示反对”,B表示 事件“对这次调整不发表看法”,则A和B是互斥 事件,并且A+B就表示事件“对这次调整表示反 对或不发表看法”,由互斥事件的概率加法公式, P( A B) P( A) P(B) 37 36 73 0.73.
是互斥事件,那么就说事件A1,A2,…,An彼此互 斥.
从字面上如何 理解“互斥事
件”
互:相互;斥:排斥 相互排斥,即不能同时出现
互斥事件:一次试验下不能同时发生 的两个或多个事件. 若A,B互斥,则A,B不能同时发生. 你还能举出一些生活 抛硬币,“正面朝上”和“反面朝上” 中的其他例子吗? 抽奖时,“中奖”和“不中奖”.
P(A+B)
根据表3-10中的结果,你发现P(A+B)与P(A)+P(B)有什么样
的大小关系?
第二个质量 2.5
5
10 20
总质量
第一个质量
2.5 5 10
20
5
7.5 12.5 22.5
7.5
10
15 25
12.5 15
20 30
22.5 25
30 40
P(A) P(B) P(A)+P(B) P(A+B)
100 100 100
因此,随机选取的一个被调查者对这次调整表示反对 或不发表看法的概率是0.73.
3.对立事件的概念
一次实验中,必有一个发生的互斥事件,称为 对立事件.
(1)对立事件也称逆事件,A的对立事件记作A. (2)其含义是:在一次实验中,事件A与A只发生其中之 一,并且必然发生其中之一. (3)对立事件是针对两个事件来说的,一般地,两个 事件对立,则两个事件必互斥.反之,两个事件互斥, 则未必是对立事件.
表3-10
(1)
(2)
1/16
1/8
1/8
3/4
3/16
7/8
3/16
7/8
(3)
(4)
1/4
1/16
3/4
3/4
1
13/16
1
3/4
在一个随机实验中,如果随机事件A和B是互斥事件,
那么有 P(A+B)=P(A)+P(B).
说明:(1)上面的公式叫互斥事件的概率加法公式;
(2)加法公式的前提条件是:事件A与B互斥.
如果没有这一条件,加法公式将不能应用.
➢ 一般地,如果事件A1,A2,…,An彼此互斥,那 么事件发生(即A1,A2,…,An中有一个发生)的 概率,等于这n个事件分别发生的概率的和,即
P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)
例4 从一箱产品中随机地抽取一件产品,设事件A=“抽到 的是一等品”,事件B=“抽到的是二等品”,事件C=“抽到 的是三等品”,且已知P(A)=0.7,P(B)=0.1,P(C)=0.05.
2.3 互斥事件
第1课时 互斥事件
1.了解事件“A+B”的含义,并能将一些复杂的事件表示 为互斥事件的和,以便于利用概率加法公式求其概率; 2.正确理解互斥事件和对立事件的概念; 3.掌握互斥事件的概率加法公式以及对立事件的概率之间 的关系.
古典概型两个特征: 1、试验的所有结果只有有限个且每次只有一个结果,
英语 音乐 67 8 11 8 10
数学 10
解:(1)从图可以看出,3个课外兴趣小组总人数 为60.用A表示事件“选取的成员只参加1个”
则 A就表示“选取的成员至少参加2个小组”, 于是, P( A) 1 P( A) 1 6 8 10 0.6.
60 因此,随机选取的1个成员至少参加2个小组的概率是0.6.
从集合意义理解,A NhomakorabeaB
A与B交集为空集 A、B互斥
A
B
A与B交集不为空集 A、B不互斥
❖从集合的角度看,几个事件彼此互斥,是指由各个 事件所含的结果组成的集合彼此互不相交,如图所 示.
红红红
红 红红红 A
绿绿 B 黄C
例3 在例1中,随机地从2个箱子中各取1个质量盘,下面的事件 A和B是否是互斥事件? (1)事件A=“总质量为20kg”,事件B=“总质量为30kg”; (2)事件A=“总质量为7.5kg”,事件B=“总质量超过10kg”; (3)事件A=“总质量不超过10kg”,事件B=“总质量超过 10kg”; (4)事件A=“总质量为20kg”,事件B=“总质量超过10kg”.
例5 某地政府准备对当地的农村产业结构进行调整,为此 政府进行了一次民意调查.100个人接受了调查,他们被要 求在赞成调整、反对调整、对这次调整不发表看法中任选 一项.调查结果如表3-11所示:


总计
赞成
18
9
27
反对
12
25
37
不发表看法
20
16
36
总计
50
50
100
表3-11
随机选取一个被调查者,他对这次调整表示反对或不发表
7个红球、2个绿球、1个黄球.从中任取 1个小球.求:
7
(1)得到红球的概率; (2)得到绿球的概率;
10 2 = 1 10 5
9
(3)得到红球或绿球的概率.
10
“得到红球”和“得到绿球”这两个事件可以 同时发生吗?
事件得到“红球或绿球”与上两个事件它们 的概率间的关系如何?
❖在一个盒子内放有10个大小相同的小球,其中有7个红 球、2个绿球、1个黄球.我们把“从中摸出 1个球,得 到红球”叫做事件A,“从中摸出1个球,得到绿球”叫 做事件B,“从中摸出1个球,得到黄球”叫做事件C.
相关文档
最新文档