50立方米液化石油气储罐CAD图纸

50立方米液化石油气储罐CAD图纸

20立方米石油液化气储罐

设计摘要 储罐是石油液化气储存的重要设备之一,石油液化气主要成分:乙烯、乙烷、丙烷、丙烯、丁烷、丁烯等;这些化学成分都对工艺设备腐蚀,在生产过程中设备盛装的介质还具有高温、高压、高真空、易燃易爆的特性,甚至是有毒的气体或液体。根据以上的特点,确定其设备结构、工艺参数、零部件。在设备生产过程中,没有连续运转的安全可靠性,在一定的操作条件下(如温度、压力等)有足够的机械强度;具有优良的耐腐蚀性能;具有良好的密封性能;高效率、低耗能。 关键词:储罐设备结构工艺参数机械强度耐腐蚀强度密封性能

前言 在与普通机械设备相比,对于处理如气体、液体等流体材料为主的化工设备,其所处的工艺条件和过程都比较复杂。尤其在化学工业、石油化工部门使用的设备,多数情况下是在高温、低温、高压、高真空、强腐蚀、易燃易爆、有毒的苛刻条件下操作,加之生产过程具有连续性和自动化程度高的特点,这就需要要求在役设备既要安全可靠地运行,又要满足工艺过程的要求,同时还应具有较高的经济技术指标以及易于操作和维护的特点。 生产过程苛刻的操作条件决定了设备必须可靠运行,为了保证其安全运行,防止事故发生,化工设备应该具有足够的能力来承受使用寿命内可能遇到的各种外来载荷。就是要求所使用的设备具有足够强度、韧性和刚度,以及良好的密封性和耐腐蚀性。 化工设备是由不同的材料制造而成的,其安全性与材料的强度密度切相关。在相同的设计条件下,提高材料强度无疑可以保证设备具有较高的安全性。 由于材料、焊接和使用等方面的原因,化工设备不可避免地会出现各种各样的缺陷;在选材时充分考虑材料在破坏前吸收变形能量的能力水平,并注意材料强度和韧性的合理搭配。设备的设计应该确保具有足够的强度抵抗变形能力。 在相同工艺条件下,为了获得较好的效果,设备可以使用不同的结构内件、附件等。并充分利用材料性能,使用简单和易于保证质量的制造方法,减少加工量,降低制造成本。化工设备除了要满足工艺条件和考虑经济性能,使设备操作简单,便于维护和控制;在结构设计上就应该考虑易损零部件的可维护性和可修理性。 对于化工设备提出的基本要求比较多,全部满足显然是比较困难的,但是主要还是化工设备的安全性、工艺性和经济性,且核心是安全性要求。由此,可以针对化工设备的具体使用情况,优先考虑主要要求,再适当兼顾次要要求。

液化石油气槽车的装卸详细流程

一、准备工作 1、引导罐车对准装卸台位置停车,待司机拉上制动手闸,关闭汽车发动机后,给车轮垫上防滑块。 2、检查液化石油气检验单,检查罐车和接收贮罐的液位、压力和温度,检查装卸阀和法兰连接处有无泄漏。 3、接好静电接地线,拆卸快装接头盖,将装卸台气、液相软管分别与罐车的气、液相管接合牢固后,开启放散阀,用站内液化石油气排尽软管中空气,关闭放散阀。 4、使用手动油压泵打开罐车紧急切断阀,听到开启响声后,缓慢开启球阀。 二、正常装卸车程序 1、液化石油气压缩机卸车作业 ①气相系统:开通接收储罐的气相出口管至压缩机进口管路的阀门;开通压缩机出口管至罐车的气相管阀门。 ②液相系统:开通罐车液相管至接收储罐的进液管阀门。 ③通知运行工启动压缩机。 ④待罐车气相压力高于接收储罐0.2MPa~0.3MPa后,液体由罐车流向接收储罐。当罐车液位接近零位时,及时通知压缩机运行工停车,关闭罐车液相管至接收储罐的进液管阀门,关闭接收储罐气相出口管至压缩机进口管路的阀门,关闭压缩机出口管至罐车的气相管阀门。 ⑤将罐车气相出口管至压缩机进口管路的阀门接通,将压缩机出口至接收储罐气相进口管路的阀门接通,通知运行工启动压缩机回收罐车内气体,回收至罐车压力为~0.2MPa停车,并关闭上述有关阀门。 ⑥关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,卸车作业结束。 ⑦按规定填好操作记录表。 2、液化石油气压缩机装车作业 ①气相系统:开通罐车气相管至压缩机入口管路的阀门;开通压缩机出口管至出液储罐气相入口管路的阀门。 ②液相系统:开通罐车液相管至出液储罐的出液管路的阀门。 ③通知运行工启动压缩机。 ④待出液储罐气相压力高于罐车0.2MPa~0.3MPa后,液体由出液储罐流向罐车。当罐车液位达到最高允许充装液位时,及时通知压缩机运行工停车,关闭罐车液相阀门和出液储罐的出液管阀门。 ⑤关闭罐车气相管至压缩机入口管阀门,关闭压缩机出口管至出液储罐气相入口管路的阀门。关闭罐车紧急切断阀。泄压后拆卸软管和静电接地线,盖上快装接头盖,取出防滑块。开走罐车,装车作业结束。 ⑥按规定填好操作记录表。 3、液化石油气泵卸车作业 ①气相系统:开通罐车气相阀至接收储罐气相管路的阀门。 ②液相系统:开通罐车液相阀至泵进口管路的阀门;开通泵出口至接收储罐进液管路的阀门。 ③通知运行工启动液化石油气泵。

推荐-2立方米谷氨酸发酵罐设计 精品

生物工程设备课程设计200m3谷氨酸发酵罐设计 院系:生物与化学工程学院 专业:生物工程 班级: 学号: 姓名: 指导老师: 日期:20XX年5月11日

生物反应工程与设备课程设计任务书 —机械搅拌生物反应器设计 一、课程教学目标 生物反应工程与设备课程设计是生物工程专业一个重要的、综合性的实践教学环节,要求学生综合运用所学知识如生化反应工程与生物工程设备课程来解决生化工程实际问题,对培养学生全面的理论知识与工程素养,健全合理的知识结构具有重要作用。在本课程设计中,通过生化过程中应用最为广泛的设备,如机械搅拌发酵罐、气升式发酵罐、动植物细胞培养反应器,蒸发结晶设备、蒸馏设备等的设计实践,对学生进行一次生化过程发酵设备设计的基本训练,使学生初步掌握发酵设备设计的基本步骤和主要方法,树立正确的设计思想和实事求是,严肃负责的工作作风,为今后从事实际设计工作打下基础。 二、课程设计题目 设计200m3谷氨酸机械搅拌通风反应器 三、课程设计内容 1、设备所担负的工艺操作任务和工作性质,工作参数的确定。 2、容积的计算,主要尺寸的确定,传热方式的选择及传热面积的确定。 3、动力消耗、设备结构的工艺设计。 四、课程设计的要求 课程设计的规模不同,其具体的设计项目也有所差别,但其基本内容是大体相同,主要基本内容及要求如下: 1、工艺设计和计算 根据选定的方案和规定的任务进行物料衡算,热量衡算,主体设备工艺尺寸计算和简单的机械设计计算,汇总工艺计算结果。主要包括: (1)工艺设计 ①设备结构及主要尺寸的确定(D,H,H L ,V,V L ,Di等) ②通风量的计算 ③搅拌功率计算及电机选择 ④传热面积及冷却水用量的计算

15立方米液化石油气储罐设计

中北大学 课程设计说明书 学院:机械工程与自动化学院 专业:过程装备与控制工程 题目:(15)M3液化石油气储罐设计

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

石油液化气储罐的设计

石油液化气储罐的设计 摘要 卧式储罐设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。其设计的目的主要是确定合理、经济的结构形式,并满足制造、检验、装配、运输和维修等方面要求,设计中主要从强度和刚度两方面进行设计,保证强度不失效,即材料不发生强度破坏;刚度满足要求,即材料的形变量控制在一定范围内,保证容器不因过渡变形而发生泄露失效,最终达到安全可靠的工作性能的要求。 关键词:卧式储罐、应力、刚度、强度、设计

目录 第1章 前言 (1) 第2章 卧式储罐一般结构 (2) 第3章 选材要求 (4) 3.1 材料各种机械性能参数 (4) 3.1.1 R的含义 (4) 3.1.2 Q235系列的含义 (4) 3.2 机械性能指标及符号 (5) 3.2.1 强度 (5) 3.2.2 塑性 (6) 3.2.3 冲击韧性 (7) 3.2.4 硬度 (7) 3.2.5 冷弯 (8) 3.2.6 断裂韧性 (8) 3.3 压力容器常见的失效形式 (8) 3.3.1 强度失效 (8) 3.3.2 刚度失效 (8) 3.3.3 稳定性失效 (9) 3.3.4 腐蚀失效 (9) 3.4 主要部件的选材 (10) 3.4.1 筒体、封头 (10) 3.4.2 接管 (10) 3.4.3 法兰 (10)

第4章 焊接 (12) 4.1 焊接结构的特点和常用的焊接方法 (12) 4.2 焊缝类型及施焊方法 (12) 4.3 对接焊缝构造 (13) 4.3.1 对接焊缝施工要求 (13) 4.3.2 对接焊缝的构造处理 (13) 4.3.3 对接焊缝的强度 (13) 4.4 对接焊缝连接的计算 (14) 4.5 焊条的选用 (14) 第5章 液压试验 (15) 5.1 试验目的和作用 (15) 5.2 试验要求 (15) 5.3 试验方法步骤 (16) 第6章 卧式储罐校核 (17) 6.1 剪力弯矩载荷计算 (17) 6.2 内力分析 (19) 6.2.1 弯矩计算 (19) 6.2.2 剪力计算 (20) 6.2.3 圆筒应力计算和强度校核 (21) 参考文献 (26) 致谢 (27) 附录 (28)

液化石油气的装卸操作

编订:__________________ 单位:__________________ 时间:__________________ 液化石油气的装卸操作 Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-4593-64 液化石油气的装卸操作 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 液化石油气的装卸,根据其输送方式的不同,装卸的方法也不同。 由炼油厂通过管路直接输送到储配站的液化石油气,可利用管道的压力压入储罐。 用罐车运输液化石油气时,可根据具体情况,采用不同的装卸方法进行。常用的装卸方法有:压缩机装卸法、烃泵装卸法、加热装卸法、静压差装卸法和气体加压装卸法等。 一、压缩机装卸法 1.原理 利用压缩机抽吸和加压输出气体的性能,将需要灌装的储罐(或罐车)中的气相液化石油气通入压缩机

的入口,经压缩升压后输送到准备卸液的罐车(或储罐)中,从而降低灌装罐(或罐车)的压力,提高卸液罐车(或储罐)中的压力,使二者之间形成装卸所需的压差(0.2~0.3MPa),液态液化石油气便在压力差的作用下流进灌装的储罐(或罐车),以达到装卸液化石油气的目的。 2.工艺流程 压缩机装卸、倒罐的工艺流程如图1-5-4所示。由图可以看出,当要将罐车中的液化石油气灌注到储罐中去时,打开阀门9和13,关闭阀门10和12,按压缩机的操作程序开启压缩机,把储罐中的气态液化石油气抽出,经压缩后进入罐车,使罐车内气相压力升高,罐车中的液态液化石油气在此压力作用下经液相管进入储罐。气、液态液化石油气的流动方向如图1-5-4所示。 图1-5-4压缩机装卸、倒罐工艺流程

发酵罐设计

安徽工程大学课程设计任务书 班级:课题名称:生物反应器设计(啤酒露天发酵罐设计) 学生姓名: 指定参数: 1.全容:50m3 2.容积系数:75% 3.径高比:1:2 4.锥角:900 5.工作介质:啤酒 设计内容: 纸打印) 1.完成生物反应器设计说明书一份(要求用A 4 1)封面 2)设计任务书 3)生物反应器设计化工计算 4)完成生物反应器设计热工计算 5)完成生物反应器设计数据一览表 纸打印) 2.完成生物反应器总装图一份(用CAD绘图A 4 设计主要参考书: 1.生物反应器课程设计指导书 2.化学工艺设计手册 3.机械设计手册 4.化工设备 5.化工制图 接受学生承诺: 本人承诺接受任务后,在规定的时间内,独立完成任务书中规定任务 接受学生签字:生物工程教研室 2010-11-15

啤酒露天发酵罐设计 第一节 发酵罐的化工设计计算 一、发酵罐的容积确定 在选用时V 全=50m 3的发酵罐 则V 有效=V全×?=50×75%= 37.5m 3(?为容积系数) 二、基础参数选择 1.D:H: 选用D:H=1:2 2.锥角: 取锥角为900 3.封头:选用标准椭圆形封头 4.冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,锥体一段,槽钢材料为A 3钢,冷却介质采用20%、-4℃的酒精溶液 5.罐体所承受最大内压:2.5㎏/㎝3 外压:0.3㎏/㎝3 6.锥形罐材质:A3钢外加涂料,接管均用不锈钢 7.保温材料:硬质聚氨酯泡沫塑料,厚度200㎜ 8.内壁涂料:环氧树脂 三、D 、H 的确定 由D:H=1:2,则锥体高度H 1=D/2tan450=D/2(450为锥角的一半) 封头高度H 2=D/4=0.25D 圆柱部分高度H 3=(2-0.5-0.25)D=1.25D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2/4×H 1+24π×D 3+ 4 π ×D 2×H 3 =50 m 3 得D=3.43m 查JB-T4746-2002《椭圆形封头和尺寸》取发酵直径D=3400mm 再由V 全=50m 3,D=3.4m

立方液化石油气储罐设计方案

25立方液化石油气储罐 一.设计背景 该储罐由菏泽锅炉厂有限公司设计,是用来盛装生产用的液化石油气的容器。设计压力为,温度在-19~52摄氏度范围内,设备空重约为5900Kg,体积为25立方米,属于中压容器。石油液化气为易燃易爆介质,且有毒,因此选材基本采用Q345R。此液化石油气卧式储罐是典型的重要焊接结构,焊接接头是其最重要的连接结构,焊接接头的性能会直接影响储存液化石油气的质量和安全。 二.总的技术特性: 三.储气罐基本构成 储气罐是一个承受内压的钢制焊接压力容器。在规定的使用温度和对应的工作压力下,应保证安全可靠,罐体的基本结构部件应包括人孔、封头、筒体、法兰、支座。

图1储气罐的结构简图 筒体 本产品的简体是用钢板卷焊成筒节后组焊而成,这时的简体有纵环焊缝。 封头 按几何形状不同,有椭圆形封头,球形封头,蝶形封头,锥形封头和平盖等各种形式。封头和简体组合在一起构成一台容器壳体的主要部分,也是最主要的受压元件之一。此储气罐选择的是椭圆形封头。 从制造方法分,封头有整体成形和分片成形后组焊成一体的两种。当封头直径较大,超出生产能力时,多采用分片成形方法制造,分片成形控制难度大,易出现不合格产品。对整体成形的封头尺寸、形状,虽然易控制但一般需要有大型冲压模具的压力机或大型旋压设备,工艺设备庞大,制造成本高。 从封头成形方式讲,有冷压成形、热压成形和旋压成形。对于壁厚较薄的封头,一般采用冷压成形。 采用调质钢板制造的封头或封头瓣片,为不破坏钢板调质状态的力学性能,节省模具制造费用,往往采用多点冷压成形法制造。 当封头厚度较大时,均采用热压成形法,即将封头坯料加热至900℃~1000℃。钢板在高温下冲压产生塑性变形而成形,此时对于有些材料(如正火态钢板),由于改变了原始状态的力学性能,为恢复和改善其力学性能,封头冲压成形后还要做正火、正火+回火或淬火+回火等相应的热处理。对于直径大且厚度薄的封头,采用旋压成形法制造是最经济最合理的选择。

液化石油气站的安全技术和事故预防措施(标准版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 液化石油气站的安全技术和事故 预防措施(标准版)

液化石油气站的安全技术和事故预防措施 (标准版) 导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 1引言 在城市内建设的液化石油气站(如小区气化站、混气站和加气站等)应安全使用。保证安全有二种途径,一是主要通过比较大的安全间距来减少事故的危害,二是主要通过技术措施保证运行的安全。为减少事故而需设置的安全间距是很大的。为了防止较大事故(如发生连续液体泄漏,泄漏时间30min)的安全距离:静风为36m,风速≤1.0m/s 时下风向为80m;为防止重大事故(如爆发性液体泄漏)的安全距离:静风为65m,风速≤1.0m/s时下风向为150m.这对一般液化石油气储罐难以实现。城市用地十分紧张,很难找到一片空地专用于液化石油气站建设。这就要求液化石油气站的建设应以安全技术为主,即应采用先进成熟的技术和可靠的防止燃气泄漏措施,满足液化石油气站的建设的发展的需要。 2主要安全技术措施

液化石油气储罐设计毕业论文

四川理工学院毕业设计(论文)500m3液化石油气储罐设计 学生: 学号:0901******* 专业:过程装备与控制工程 班级:2009.2 指导教师:林海波 四川理工学院机械工程学院 二O一三年六月 四川理工学院

毕业设计任务书 设计题目:500m3液化石油气储罐设计 学院:机械工程专业:过程装备与控制工程班级:2009级2班学号:0901******* 学生:指导教师:林海波接受任务时间2013年3月1日 系主任(签名)院长(签名) 1.毕业设计(论文)的主要内容及基本要求 设计题目:500m3液化石油气储罐设计 介质:液化石油气容积:500m3 放置地点:四川自贡,进行选型论证和结构设计。 完成:0#总装配图一张,零部件图0#图总量1张,设计说明书一份。 2.指定查阅的主要参考文献及说明 NB/T 47001-2009 .钢制液化石油气卧式储罐型式与基本参数 GB150—2011.钢制压力容器 卧式储罐焊接工程技术 我是储罐和大型储罐 3.进度安排 设计(论文)各阶段名称起止日期 1 资料收集,阅读文献,完成开题报告3月 1 日至3月24日 2 完成所有结构设计和设计计算工作3月25日至4月21日 3 完成所有图纸的绘制、完成设计说明书的撰写4月22日至5月22日 4 完成图纸和说明书的修改、答辩的准备和毕业 答辩5月23日至6月7日 5 毕业设计修改与设计资料整理6月 8 日至6月14日

摘要 用于储存或盛装气体、液体、液化气体等介质的储罐,在化工、石油、能源、轻工、环保、制药及食品等行业得到广泛应用。本设计运用常规设计的方法,对卧式液化石油气储罐的筒体、封头进行厚度设计计算,对水压试验进行校核,并对所开人孔进行补强设计。按照相关标准选择密封装置、人孔、支座、接口管以及部分安全附件。根据设计时的需要附上一些储罐零件图与储罐装配简图。完成了一个相对比较完整的卧式液化石油气储罐的设计。 关键字:储罐;压力容器;设计;计算

发酵罐的选择与计算

4.1.2.1发酵罐个数的确定 年产1000吨琥珀酸,全年的生产天数为330天,则每天产1000/330=3.03吨,需要发酵液的体积为: 28*3.03=84.84(m^3) 发酵罐的填充系数φ=70%;则每天总共有发酵罐的体积为V 0 )(3m 2.1217.0/84.847.0/V 0== 发酵周期为48小时,生产周期为80小时 发酵罐个数的确定:现选取公称体积为100m 3的发酵罐,总体积为118m 3 (个))()(总67.324*7.0*110/80*84.8424*V /V N 01===φτ 取公称体积100m 3 发酵罐4个,其中1个留作备用。 实际产量验算: 年)(吨/1059.09330/3.54%71%21.57.0110=????? 富裕量 %91.51000 10001059=- 能够满足生产需要。 4.1.2.2主要尺寸的计算 公称容积,是指罐的圆柱部分和底封头容积之和。并圆整为整数:上封头因无法装液,一般不计入容积。 罐的全容积,是指罐的圆柱部分和两封头容积之和。 1 罐径与罐体高度 现在按公称容积100m3,全罐的体积为:118m3,取高径比为H :D=2,封头与圆柱罐体的焊接处的直边高度不纳入体积,则: 3m 118V 2V =+=封全筒V 根据圆柱体体积与椭圆的体积计算公式有: () 3221182414314V m D D H D =????+??=ππ全 () 332118242785.0m D D D V =+??=π全

解方程得: () 333118242m D D =+ππ ()m D 1.413 241183=??=π 直径计算出来后,应将其值圆整到接近的公称直径系数 [12],查吴思方的《生物工程工厂设计概论》2007年版,附表25(281)通用式发酵罐系列尺寸表,则D 取4.0m , H=2D=2×4.0=8.0(m) 查阅文献,当公称直径D 为4.0m 时,标准椭圆封头的曲面高度H 为D/4,即1.0m ,焊接处的直边高度h 为0.05 则总深度为: )(m 05.105.00.1h H =+=+ 封头容积 : V 封)(封33m 38.80.424V =?= π 圆柱部分容积: ) (筒32m 53.1000.420.44V =???=π 两者之和为全容积全 V ' 3m 118V 2V =+=封全筒V 全全 V V ≈' 则设计的发酵罐其尺寸符合要求,能够满足生产工艺的需要。 2 搅拌器的设计 由于琥珀酸发酵过程有中间补料操作,对混合要求较高,因此采用六弯叶涡轮搅拌器。六弯叶涡轮式搅拌器已标准化,称为标准型搅拌器;搅动液体的循环量大,搅拌功率消耗也大,根据搅拌器型式及主要参数HG/T2123-1991标准,知100m 3发酵罐采用6-6-6弯叶式搅拌叶,搅拌器:六弯叶涡轮搅拌 器,D i :d i :L:B=20:15:5:4,搅拌器直径:D i =D/3 搅拌器直径:D i =)(33.1343m D == (取1.4m ) 叶宽:B=8.24.12.0D 2.0=?=?i 弧长:)(525.04.1375.0375.0m D l i =?==

液化石油气储罐倒罐(正式版)

文件编号:TP-AR-L1874 In Terms Of Organization Management, It Is Necessary To Form A Certain Guiding And Planning Executable Plan, So As To Help Decision-Makers To Carry Out Better Production And Management From Multiple Perspectives. (示范文本) 编订:_______________ 审核:_______________ 单位:_______________ 液化石油气储罐倒罐(正 式版)

液化石油气储罐倒罐(正式版) 使用注意:该安全管理资料可用在组织/机构/单位管理上,形成一定的具有指导性,规划性的可执行计划,从而实现多角度地帮助决策人员进行更好的生产与管理。材料内容可根据实际情况作相应修改,请在使用时认真阅读。 储罐倒罐是指将某个储罐内的液态液化石油气通 过输送设备和管道倒入另一储罐的操作过程。要求储 配站至少配备两台液化石油气储罐,其目的就是以备 相互倒罐。 一、储罐倒罐的原因 液化石油气倒罐,除了从储罐倒入中间储罐以备 汽化输往生产窑炉使用外,当遇有下列情况之一时, 必须进行倒罐。 1.已到检验周期,需要进行定期检验的储罐

根据《压力容器安全技术监察规程》第132条规定:安全状况等级为1~2级的压力容器,每6年至少进行一次内外部检验;安全状况等级为3级的压力容器,每隔3年至少进行一次内外部检验。液化石油气储罐在进行内外部检验之前,应将内存液化石油气全部倒出,并经清洗置换合格,以便检验人员进入罐内检查。 2.储罐的安全附件损坏,需进行修理时 液化石油气储罐的安全附件主要有:安全阀、压力表、温度计、液压计、降温冷却系统等。当这些部件损坏、失灵,需要修理或更换,有的附件还要进入罐内修复,即使不需动火,也应将液化石油气倒出,以免发生事故。 3.储罐的入孔盖、盲板、法兰出现泄漏或所属阀门损坏

液化石油气储罐毕业设计_

液化石油气储罐毕业设计_

目录 绪论....................................................................................... ............ (2) 第一章设计参数的选择 1.1 设计题目....................................................................................... ............ (3) 1.2 原始数据....................................................................................... ............ (3) 1.3 设计压力....................................................................................... ........ . (3) 1.4 设计温 第17页(共31页)

度....................................................................................... ........ . (3) 1.5 主要元件材料的选择....................................................................................... ........... .. (3) 第二章容器的结构设计 2.1 圆筒厚度的设计....................................................................................... ........... . (4) 2.2 封头壁厚的设计....................................................................................... .......... .. (4) 2.3 筒体和封头的结构设计....................................................................................... .......... .. (5) 2.4 人孔的选 第17页(共31页)

30m3液化石油气储罐设计

课程设计任务书 题目:303m 液化石油气储罐设计 设计条件表 序号 项目 数值 单位 备注 1 最高工作压力 1.893 MPa 由介质温度确定 2 工作温度 -20~48 ℃ 3 公称容积(s V ) 30 3 m 4 装量系数(V ) 0.9 5 工作介质 液化石油气 6 使用地点 太原市,室内 管口条件: 液相进口管 DN50;液相出口管DN50;安全阀接口DN80;压力表接口DN25;气相管DN50;放气管DN50;排污管DN50。 液位计接口和人孔按需设置。

设计计算说明书 1. 储存物料性质 1.1物料的物理及化学特性 1.2 物料储存方式 常温常压保存,不加保温层。 2. 压力容器类别的确定 储存物料液氯为高度危害液体,工作压力为 1.303MPa ,储罐属低压容器。PV ≧0.2MPa.3m ,根据《压力容器安全技术监察规程》][2,所以设计储罐为第三类容器。 3.1储罐筒体公称直径和筒体长度的确定 公称容积g V =303m ,则 4 πi D L =30。 L D i = 3 1计算,得 i D =2.335m ,L =7.006.。 取D=2.3m,此时11] [查表 ,得封头容积1V =2×1.7588=3.517 3 m ,直边段长度为40mm 。计 算筒体容积2V =4824 .267588.1230=?-3 m , 4824 .264 12 =L D ,解得 mm L 3772.61=。取筒体长度为6.4m 。 10.307588.124.63.24 V 2 =?+?=)(真π 此时5%.3%0100%)/303010.30(/)(≤=?-=-V V V 真,所以合适,画图发现比例也合适。 最后确定公称直径为2300mm ,筒体长度为6400mm 。 3.2封头结构型式尺寸的确定

液化石油气站操作规程

操作规程汇编

目录 槽罐车卸车操作规程错误!未定义书签。 压缩机操作规程错误!未定义书签。 烃泵操作规程错误!未定义书签。 气瓶抽真空操作规程错误!未定义书签。 气瓶倒残操作规程错误!未定义书签。 气瓶充装供液操作规程错误!未定义书签。 气瓶充装操作规程错误!未定义书签。 倒罐操作规程错误!未定义书签。 液化石油气排放操作规程错误!未定义书签。消防泵操作规程错误!未定义书签。 事故应急救援操作规程错误!未定义书签。 配电房安全操作规程错误!未定义书签。

槽罐车卸车操作规程 卸车前准备 槽车按指定位置停好后,关闭发动机,拉紧手动制动器。 连接槽车与卸车台的静电接地线。 将气、液相软管与槽车气,液相接头连接,打开放气阀, 放出连接处管中的空气,然后关闭放气阀。 操作顺序 确定卸液罐,打开卸液罐的进液阀,气相阀。 打开压缩机房气相阀门组卸液罐的下排阀门。 打开气相阀门组卸车柱的上排阀门。 打开压缩机的进气阀门。 打开压缩机分离器的进出口阀门。 打开压缩机的出气阀门。 打开卸车柱气液相阀门。 打开槽车紧急切断阀,气液相软管上的球阀。 开启压缩机进行卸车。 当槽车内液相卸完后,关闭压缩机,关闭液相管路阀门。 关闭气相阀门组卸液罐的下排阀门,打开上排阀门;关闭气相阀门组装卸柱的上排阀门,打开下排阀门;或不改变阀门组阀的开、关状态,将压缩机四通阀的方向改变,将槽车内的气相抽至储罐内,直至槽车内的压力小于,但不低于。 关闭压缩机。 关闭槽车紧急切断阀。 关闭气相系统管路上的阀门,打开气液相软管末端放气阀,放出连接管处的液化气,卸下气液相软管,卸车结束。 注意事项 作业现场,严禁烟火,严禁使用易产生火花的工具和用品。 卸车人员必须穿戴防静电的工作服、防护手套。 卸车时卸车人员必须严密监视储罐的液位、压力、温度,发现异常立即停止卸气。卸车结束后,应检查阀门关闭情况。 填写《罐车卸车操作记录》并签字。

发酵工业存在地主要问题及解决要求措施

发酵工业存在的主要问题及解决措施 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 1 我国发酵工业的现状 我国发酵工业是将传统的发酵工艺和现代生物工程技术相结合的基础产业,也是现代工业生物工程技术的具体应用产业。我国发酵工业目前已发展形成了具有一定规模和技术水平的门类比较齐全的独立工业体系。其中,一部分产品的发酵生产工艺及技术已接近或达到世界先进水平,并且掌握了核心工艺技术拥有知识产权。目前,我国已经是味精、柠檬酸的世界第一大生产国。2013年我国发酵行业主要产品产量、出口量及同比增长率。 2013年我国生物发酵工业全年生产值约2780亿人民币,全年的产品总产量为2429万吨,比2012年略有增长。其中,味精、淀粉糖由于价格等原因导致产量下降,而氨基酸、酵母、酶制剂行业保持了持续增长。2013年,氨基酸产品年产量为400万吨,有机酸产品年产量为158万吨,功能发酵制品年产量为310万吨。2013年我国发酵工业主要产品出口总量为万吨,比2012年增长了%。

近年来,随着食品发酵工业的迅速发展和人口不断增长,工业用粮也在不断增加,工业大量使用粮食造成了与人类争粮的局面。与此同时,这些企业排放的废水、废渣也极污染了环境,不仅消耗了大量粮食、能源和水资源,而且也严重制约了自身的发展。发酵工业耗能多、排污大,采用新技术,优化发酵生产工艺,减少废水、废渣的排放量,提高发酵原料的综合利用率,把耗能降到最低水平,以期获得最佳产品和获得最好的效益,这一直以来都是发酵工业努力的目标。 2 我国发酵工业存在的主要问题 粮食短缺问题 我国用占世界耕地面积总量7%左右的耕地,养育了占世界人口总额21%的人口,而且我国的可耕地面积还在不断减少,人口在不断增长。2013年我国粮食国总消费量为60 133万吨,而发酵主要工业耗粮约为16 970万吨,我国人均粮食占有量约为420千克,但人均粮食消费量约500千克,尤其是近几年全国各地都有旱情,导致粮食减产,有的地方甚至颗粒无收,所以降低粮耗是目前我国发酵工业所面临的重要问题。因此,发酵工业首先要面临的问题就是优化发酵生产工艺、节约粮食。

中北大学60M3液化石油气储罐设计

中北大学 课程设计说明书 学生姓名:学号:1102034348 学院:机械与动力工程学院 专业:过程装备与控制工程 题目:(60)M3液化石油气储罐设计 指导教师:吕海峰王福杰职称: 副教授 2014年06月16日

中北大学 课程设计任务书 2013/2014 学年第二学期 学院:机械与动力工程学院 专业:过程装备与控制工程 学生姓名:学号:1102034348 课程设计题目:(60)M3液化石油气储罐设计 起迄日期:06 月16 日~06月27日 课程设计地点:校内 指导教师:吕海峰王福杰 基层教学组织负责人:黄晋英 下达任务书日期: 2013年06月08日

课程设计任务书

目录 第一章储罐设计介绍及介质特性 (7) 1.1 液化石油气储罐介绍 (7) 1.2 液化石油气的发展及应用 (7) 1.3 液化石油气的组成及物理特性 (7) 1.4 储罐设计的问题和难点 (7) 第二章储罐设计参数的确定 (8) 2.1 设计温度 (8) 2.2 设计压力 (8) 2.3 设计储量 (9) 第三章主体材料的确定 (9) 第四章工艺计算 (10) 4.1 筒体和封头的设计 (10) 4.2 筒体长度的确定 (10) 4.3 圆筒厚度的设计 (11) 4.4 椭圆封头厚度的设计 (11) 第五章结构设计 (12) 5.1 接管法兰垫片螺栓的选择 (12) 5.2 人孔的设计 (18) 5.3 人孔补强圈设计 (19) 5.4 鞍座选型和结构设计 (21) 5.5 视镜设计 (23) 5.6 液面设计与安全阀设计 (24) 5.7 焊接设计 (24) 第六章强度校核 (26)

液化石油气储罐泄漏危害预防和控制的安全措施知识讲解

液化石油气储罐泄漏危害预防和控制的安全措施随着石油化学工业的发展,液化石油气作为一种化工生产的基本原料和新型燃料,已愈来愈受到人们的重视。液化石油气属于甲类火灾危险性物质,常温高压下储存于压力容器中,火灾危险性极大,一旦泄漏极易引起火灾爆炸,造成人员伤亡和巨大财产损失。近年来液化石油气储罐泄漏事故不断发生,例如1998年3月5日发生在西安市液化石油气站的爆炸火灾事故,造成12人死亡,32人受伤,直接损失400多万。2004看3月29日,辽宁省葫芦岛市某天然气分离厂液化石油气储罐泄漏,消防官兵抢险长达8h,方排除险情。如何预防和控制液化石油气储罐泄漏危害一直是倍受关注的安全问题。 一、储罐的种类及特点 1.卧式圆筒罐 卧式圆筒罐主要是由筒体,封头、人孔、支座、接管、安全阀、液位计、温度计及压力表等部件组成。圆筒体是一个平滑的曲面,应力分布均匀,承载能力较高,且易于制造,便于内件的设置和装拆,广泛应用于中小型液化石油气储配站。 2.球形罐 球形罐主要由壳体、人孔接管及拉杆等组成,其壳体由不同数量的瓣片组装焊接而成。球形罐受力均匀,在相同壁厚的条件下,球形壳体的承载能力最高,但制造比较困难,工时成本高,对于大型球罐,由于运输等原因,要先在制造厂压好球瓣,然后运到现场组装,由于施工条件差,质量不易保证。因此,球形罐用于大型液化石油气储配站。 二、储罐泄漏火灾风险分析

1.泄漏物质易燃易爆 液化石油气具有很强的挥发性,闪点低于-60℃,具有易燃特性,最小点火能量为0.2~0.3mJ,一旦遇到火源,极易发生燃烧爆炸事故。 当液化石油气发生泄漏时,1m3液化石油气可转变成250~300m3的气态液化石油气,液化石油气的爆炸极限按2%~9%的近似值计算,则1m3的液态液化石油气漏失在大气中,将会变成3000~15000m3的爆炸性气体。液化石油气泄漏形成为爆炸性气体遇火源发生化学性爆炸,其爆炸威力是TNT炸药当量的4~10倍,爆速可达2000~3000m/s。由于液化石油气热值大,1m3发热量是煤气的6倍,火焰温度高达1800℃。因此,液化石油气爆炸起火后,会迅速引燃爆炸区域的一切可燃物,形成大面积燃烧,造成重大破坏和人员伤亡。液化石油气的化学性爆炸比物理性爆炸的破坏作用更大。 储罐内液化石油气在一定温度、压力条件下保持蒸气压平衡,当罐体突然破裂,罐内液体就会因急剧的相变而引起激烈的蒸气爆炸。当储罐,设备或附件因泄漏着火后,其本身以及邻近设备均会受到火焰烘烤;受热膨胀后压力超过储罐所能承受的强度时,致使破裂,内部介质在瞬间膨胀,并以高速度释放出内在能量,引发物理性蒸气爆炸。喷出的物料立即被火源点燃,出现火球,产生强烈的热辐射。若没有立即点燃,喷出的液化气与空气混合形成可燃性气云,遇邻近火源则发生二次化学性爆炸。 2.易发生泄漏 造成储罐泄漏的原因很多。质量因素泄漏,如设计不当,选材料不符,强度不足,加工焊接组装缺陷等。工艺因素泄漏,如高流速介

发酵罐的设计

工程大学课程设计任务书 班级: 姓名: 课题名称:生物反应器设计(啤酒露天发酵罐设计) 指定参数: 1.全容:m3 2.容积系数: 3.径高比: 4.锥角: 5.工作介质:啤酒 设计内容: 1.完成生物反应器设计说明书一份(要求用A4纸打印) ⑴封面 ⑵完成生物反应器设计化工计算 ⑶完成生物反应器设计热工计算 ⑷完成生物反应器设计数据一览表 2.完成生物反应器总装图1份(用CAD绘图A4纸打印)设计主要参考书: 1.生物反应器课程设计指导书 2.化学工艺设计手册 3.机械设计手册 4.化工设备

5.化工制图 接受学生承诺: 本人承诺接受任务后,在规定的时间内,独立完成任务书中规定的任务。 接受学生签字: 生物工程教研室 2010-11-15

发酵罐设计 第一节 发酵罐的化工设计计算 一、 发酵罐的容积确定 由指定参数:V 全= 30m 3 ?=85% 则:V 有效=V 全*?= 25.5 m 3 二、 基础参数选择 1、D :H :由指定参数选用D :H=1:4 2、锥角:由指定参数取锥角为900 3、封头:选用标准椭圆形封头 4、冷却方式:选取槽钢盘绕罐体的三段间接冷却(罐体两段,槽钢材质为A 3 钢,冷却介质采用20%、-4℃的酒精溶液) 5、罐体所承受最大内压:2.5KG/CM 3 外压:0.3KG/CM 3 6、锥形罐材质:A3钢外加涂料,接管均用不绣钢 7、保温材料:硬质聚氨酯泡沫塑料,厚度200mm 8、内壁涂料:环氧树脂 三、D 、H 的确定 由D :H=1:4,则锥体高度H 1 =D/2tg450 =0.5D 封头高度H 2=D/4=0.25D 圆柱部分高度H 3 =(4.0-0.5-0.25)D=3.25D 又因为V 全=V 锥+V 封+V 柱 =3π×D 2/4×H 1+24 π×D 3 + 4 π ×D 2×H 3

液化石油气储罐设计说明书

1003m液化石油气储罐设计 绪论 m或随着我国化学工业的蓬勃发展,各地建立了大量的液化气储配站。对于储存量小于5003 m时.一般选用卧式圆筒形储罐。液化气储罐是储存易燃易爆介质.直接关系到单罐容积小于1503 人民生命财产安全的重要设备。因此属于设计、制造要求高、检验要求严的三类压力容器。本次设m液化石油气储罐设计即为此种情况。 计的为1003 液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计 这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其要注意安全, 还要注意在制造、安装等方面的 特点。 目前我国普遍采用常温压力贮罐, 常温贮罐一般有两种形式: 球形贮罐和圆筒形贮罐。球形贮 罐和圆筒形贮罐相比: 前者具有投资少, 金属耗量少, 占地面积少等优点, 但加工制造及安装复杂, m或单罐容积大于2003m时选用球形贮 焊接工作量大, 故安装费用较高。一般贮存总量大于5003 罐比较经济; 而圆筒形贮罐具有加工制造安装简单, 安装费用少等优点, 但金属耗量大占地面积大, m, 单罐容积小于1003m时选用卧式贮罐比较经济。圆筒形贮罐按安装方 所以在总贮量小于5003 式可分为卧式和立式两种。在一般中、小型液化石油气站大多选用卧式圆筒形贮罐, 只有某些特殊 情况下(站地方受限制等) 才选用立式。本文主要讨论卧式圆筒形液化石油气贮罐的设计。 卧式液化石油气贮罐设计的特点。卧式液化石油气贮罐也是一个储存压力容器, 也应按GB150 《钢制压力容器》进行制造、试验和验收; 并接受劳动部颁发《压力容器安全技术监察规程》(简称 容规) 的监督。液化石油气贮罐, 不论是卧式还是球罐都属第三类压力容器。贮罐主要有筒体、封 头、人孔、支座以及各种接管组成。贮罐上设有液相管、液相回液管、气相管、排污管以及安全阀、 压力表、温度计、液面计等。

相关文档
最新文档