《线性代数》复习要点

合集下载

线性代数复习要点

线性代数复习要点

线性代数复习要点线性代数是数学中的一个分支,其研究对象包括向量空间、线性变换、矩阵、线性方程组等。

线性代数广泛应用于各个领域,如物理学、计算机科学、工程学等。

下面是线性代数复习的要点:1.向量和向量空间-向量是指具有大小和方向的量,用箭头表示。

-向量空间是指由一组向量生成的集合,满足加法和数乘运算的封闭性。

-基是一个向量空间中独立且能够生成该向量空间的向量组。

-向量组的线性组合是指对向量组中的向量进行加法和数乘运算的结果。

-向量组的生成子空间是指向量组的所有线性组合所形成的空间。

2.矩阵和线性变换-矩阵是一个按照矩形排列的数。

矩阵的大小由行数和列数确定。

-矩阵的加法和数乘运算定义为对应元素的运算。

-矩阵的转置是指行变为列,列变为行的操作。

-矩阵的乘法是指矩阵的行与列的对应元素相乘后求和的运算。

-线性变换是指将一个向量空间映射到另一个向量空间的变换,保持线性关系。

3.行列式和特征值特征向量-行列式是一个与矩阵相关的数,用于描述矩阵的性质。

-二阶和三阶矩阵的行列式可以通过对应元素相乘后求和的方式计算。

-行列式的值为0表示矩阵不可逆,即不存在逆矩阵。

-特征值是指矩阵对一些向量进行线性变换后,仍然与原向量方向相同的结果。

-特征向量是指通过线性变换后,与其特征值对应的向量。

4.线性方程组的求解-线性方程组是一组线性方程的集合,其中未知量的次数等于方程的个数。

-列向量和矩阵可以表示线性方程组的系数和常数项。

-线性方程组的解可以通过高斯消元法、矩阵的逆等方法进行求解。

-高斯消元法是将方程组化为行阶梯形式,再通过回代求解。

-线性方程组的解可以有唯一解、无解或者无穷多解。

5.特殊矩阵和矩阵的分解-单位矩阵是指主对角线上的元素为1,其余元素为0的矩阵。

-零矩阵是指所有元素均为0的矩阵。

-对角矩阵是指主对角线以外的元素均为0的矩阵。

-逆矩阵是指一个矩阵与其逆矩阵相乘得到单位矩阵。

-矩阵的分解包括LU分解、QR分解、特征值分解等。

线性代数复习要点

线性代数复习要点

2
2、初等变换的性质 (1) 对调变换使得行列式的值反号; (2) 倍乘变换只是放大或缩小行列式的值; (3) 倍加变换不改变行列式的值. 3、加法原理:若行列式的某一行(或列)的元都是两数之和,则此行列式等于两个行列式的和. 4、乘积法则:对任何 n 阶矩阵 A 和 B ,均有 | AB | | Α | | B | . 5、转置运算不改变行列式的值. 三、行列式的计算 1、典型方法:三角化方法、降阶法、归纳法、递推法、分拆法、升阶法. 2、设 A 为 n 阶矩阵, k 为任意数,则 kA k A .
1 * * 1 * T T *
4、 ( A ) ( A ) , ( A ) ( A ) , ( A ) ( A ) .
T 1
AT A 5、 B
T
, T B B
1
A T A
T
BT ;
A1 A 当 A, B 可逆时,有 B
一、行列式的概念
n 阶行列式 A 或 det A 是 n 阶矩阵 A [aij ] 按下述运算法则得到的一个算式: 当 n 1 时, A a11 a11 ; 当 n 2 时,
A a11 A11 a12 A12
这里 A1 j (1)
三、分块矩阵的求逆公式 当 A, B 可逆时,有
, 1 B B
A 1 A
1
B 1 .
A 1 A C 0 B 0
四、重要结论
1
A1 A1CB 1 A 0 , 1 1 B 1 C B B CA
(5) rank
A 0 0 rankA rankB , rank 0 B B

线性代数知识点全归纳

线性代数知识点全归纳

线性代数知识点全归纳线性代数是数学的一个重要分支,研究向量空间及其上的线性映射。

它广泛应用于物理、工程、计算机科学等领域。

下面将对线性代数的主要知识点进行全面归纳。

1.矩阵及其运算:矩阵是线性代数的基本概念之一,由若干行和列组成的方阵。

常见的矩阵运算有加法、减法、数乘、矩阵乘法和转置等。

2.向量及其运算:向量是一个有序数组,具有大小和方向。

常见的向量运算有加法、减法、数乘、点乘和叉乘等。

3.线性方程组:线性方程组是线性代数的核心内容之一、包括齐次线性方程组和非齐次线性方程组。

解线性方程组的方法有高斯消元法、克莱姆法则和矩阵求逆等。

4.向量空间与线性变换:向量空间是线性代数的基本概念之一,包含零向量、加法和数乘运算。

线性变换是一种保持向量空间结构的映射。

5.基与维度:基是向量空间的一组线性无关向量,可以由基线性组合得到向量空间中的任意向量。

维度是向量空间中基的数量。

6.线性相关与线性无关:向量组中的向量线性相关指存在非零的线性组合,其系数不全为零。

如果向量组中的向量线性无关,则任何线性组合的系数都为零。

7.线性变换与矩阵:线性变换可以用矩阵表示,矩阵的列向量表示线性变换作用于基向量上后的结果。

矩阵乘法可以将多个线性变换组合为一个线性变换。

8.特征值与特征向量:对于一个线性变换,如果存在一个非零向量,使得它在该线性变换下只发生伸缩而不发生旋转,那么这个向量称为该线性变换的特征向量,对应的伸缩比例为特征值。

9.二次型与正定矩阵:二次型是线性代数中的重要概念,是一个关于变量的二次函数。

正定矩阵是指二次型在所有非零向量上的取值都大于零。

10.内积与正交性:内积是向量空间中的一种运算,它满足线性性、对称性和正定性。

正交性是指两个向量的内积为零,表示两个向量互相垂直。

11.正交变换与正交矩阵:正交变换是指保持向量长度和向量之间夹角的变换。

正交矩阵是一种特殊的方阵,它的行向量和列向量两两正交,并且长度为112.奇异值分解与特征值分解:奇异值分解将一个矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,另外两个是对角矩阵。

线性代数复习提纲

线性代数复习提纲

线性代数复习提纲线性代数是数学中的一个基础课程,涵盖了向量空间、线性变换、矩阵理论等内容。

它在计算机科学、物理学、经济学和工程学等领域都有广泛的应用。

下面是线性代数的复习提纲,帮助你回顾相关的知识点。

一、向量空间1.向量的定义和性质2.向量空间的定义和性质3.子空间的定义和判断条件4.向量的线性相关性与线性无关性5.基和维数的概念二、线性变换1.线性变换的定义和性质2.线性变换的矩阵表示3.线性变换的核与像空间4.线性变换的维数公式5.线性变换的复合与逆变换三、矩阵理论1.矩阵的定义和性质2.矩阵的运算:加法、数乘、乘法3.矩阵的逆与转置运算4.矩阵的秩和行列式5.矩阵的特征值与特征向量四、特殊矩阵和特征值问题1.对称矩阵的性质和对角化2.可逆矩阵与相似矩阵3.正交矩阵与正交对角化4.特征值问题的求解方法五、解线性方程组1.线性方程组的矩阵表示2.高斯消元法与矩阵的初等变换3.初等矩阵的性质与应用4.齐次线性方程组和非齐次线性方程组的解的结构六、向量空间的基变换1.基变换的定义和性质2.过渡矩阵的求解3.变换矩阵的求解与应用4.基变换下的坐标表示和坐标变换公式七、内积空间和正交性1.内积的定义和性质2.内积空间的定义和性质3.正交基和正交投影4.标准正交基和正交矩阵的定义和性质八、二次型与正定性1.二次型的定义和性质2.二次型的矩阵表示和标准化3.正定二次型和半正定二次型的定义和性质4.二次型的规范形和合同变换以上是线性代数的复习提纲,可以通过对每个知识点的回顾、理解和练习来复习线性代数。

在复习过程中,可以结合教材、习题和课堂笔记,通过解题和思考来巩固知识点的掌握。

另外,可以参考相关的教学视频或在线课程来帮助理解和学习线性代数的概念和方法。

最重要的是多做习题,加深对知识点的理解和应用。

线性代数知识点归纳

线性代数知识点归纳

线性代数知识点归纳线性代数复习要点第一部分行列式1.排列的逆序数2.行列式按行(列)展开法则3.行列式的性质及行列式的计算行列式的定义行列式的计算:①(定义法)②(降阶法)行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.③(化为三角型行列式)上三角、下三角行列式等于主对角线上元素的乘积④若都是方阵(不必同阶)则⑤关于副对角线:⑦型公式:⑧(升阶法)在原行列式中增加一行一列,保持原行列式不变的方法.⑨(递推公式法)对阶行列式找出与或,之间的一种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的方法称为递推公式法.(拆分法)把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以例计算.⑩(数学归纳法)2.对于阶行列式,恒有:,其中为阶主子式;3.证明的方法:①、;②、反证法;③、构造齐次方程组,证明其有非零解;④、利用秩,证明;⑤、证明0是其特征值.4.代数余子式和余子式的关系:第二部分矩阵矩阵的运算性质矩阵求逆矩阵的秩的性质矩阵方程的求解矩阵的定义由个数排成的行列的表称为矩阵.记作:或(同型矩阵:两个矩阵的行数相等、列数也相等.(矩阵相等:两个矩阵同型,且对应元素相等.(矩阵运算a.矩阵加(减)法:两个同型矩阵,对应元素相加(减).b.数与矩阵相乘:数与矩阵的乘积记作或,规定为.c.矩阵与矩阵相乘:设,,则,其中注:矩阵乘法不满足:交换律、消去律,即公式不成立.a.分块对角阵相乘:b.用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量;用对角矩阵乘一个矩阵相当于用的对角线上的各元素依次乘此矩阵的向量d.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,⑤矩阵的转置:把矩阵的行换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a.对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b.分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余子式.,,.分块对角阵矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立) 2.逆矩阵的求法方阵可逆.①伴随矩阵法:②初等变换法③分块矩阵的逆矩阵:④,⑤配方法或者待定系数法(逆矩阵的定义)行阶梯形矩阵可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵初等变换与初等矩阵对换变换、倍乘变换、倍加(或消法)变换初等变换初等矩阵初等矩阵的逆初等矩阵的行列式 () () () ?矩阵的初等变换和初等矩阵的关系:(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘;(对施行一次初等变换得到的矩阵,等于用相应的初等矩阵乘.注意:初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵.矩阵的秩关于矩阵秩的描述:①、,中有阶子式不为0,阶子式(存在的话)全部为0;②、,的阶子式全部为0;③、,中存在阶子式不为0;矩阵的秩的性质:①;;≤≤②③④⑤≤⑥若、可逆,则;即:可逆矩阵不影响矩阵的秩.⑦若;若⑧等价标准型.⑨≤,≤≤⑩,求秩矩阵方程的解法):设法化成第三部分线性方程组1.向量组的线性表示2.向量组的线性相关性3.向量组的秩4.向量空间5.线性方程组的解的判定6.线性方程组的解的结构(通解)(1)齐次线性方程组的解的结构(基础解系与通解的关系)(2)非齐次线性方程组的解的结构(通解)线性表示:对于给定向量组,若存在一组数使得,则称是的线性组合,或称称可由的线性表示.线性表示的判别定理:可由的线性表示由个未知数个方程的方程组构成元线性方程:①、有解②、③、(全部按列分块,其中);④、(线性表出)⑤、有解的充要条件:(为未知数的个数或维数)2.设的列向量为的列向量为,,为的解可由线性表示.即:的列向量能由的列向量线性表示,为系数矩阵. 同理:的行向量能由的行向量线性表示,为系数矩阵. 即:线性相关性判别方法:法1法2法3推论线性相关性判别法(归纳)线性相关性的性质零向量是任何向量的线性组合零向量与任何同维实向量正交单个零向量线性相关;单个非零向量线性无关部分相关整体必相关;整体无关部分必无关原向量组无关接长向量组无关;接长向量组相关原向量组相关两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关向量组中任一向量≤都是此向量组的线性组合若线性无关,而线性相关则可由线性表示且表示法一向量组的秩向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作矩阵等价经过有限次初等变换化为向量组等价和可以相互线性表示记作:矩阵的行向量组的秩列向量组的秩阶梯形矩阵的秩等于它的非零行的个数矩阵的初等变换不改变矩阵的秩且不改变行向量间的线性关系向量组可由向量组线性表示且,则线性相关向量组线性无关且可由线性表示则.向量组可由向量组线性表示且则两向量组等价任一向量组和它的极大无关组等价向量组极大无关组若两个线性无关的向量组等价则它们包含的向量个数相等设是矩阵若,的行向量线性无关;线性方程组的矩阵式向量式(1)解得判别定理(2)线性方程组解的性质:判断是的基础解系的条件:①线性无关;②是的解;③.(4)求非齐次线性方程组Ax=b的通解的步骤(5)其他性质一个齐次线性方程组的基础解系不唯一.√若是的一个解,是的一个解线性无关√与同解(列向量个数相同):①它们的极大无关组相对应从而秩相等②它们对应的部分组有一样的线性相关性③它们有相同的内在线性关系与的行向量组等价齐次方程组与同解(左乘可逆矩阵);矩阵与的列向量组等价(右乘可逆矩阵).第四部分方阵的特征值及特征向量1.施密特正交化过程2.特征值、特征向量的性质及计算3.矩阵的相似对角化,尤其是对称阵的相似对角化1.(标准正交基个维线性无关的向量两两正交每个向量长度为1与的内积(.记为:④向量的长度⑤是单位向量的向量.2.内积的性质:①正定性:②对称性:③线性:(设A是一个n阶方阵,若存在数和n维非零列向量,使得,则称是方阵A的一个特征值,为方阵A的对应于特征值的一个特征向量.(的特征矩阵).(的特征多项式).④是矩阵的特征多项式⑤,称为矩阵的迹.⑥上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素若则为的的基础解系即为属于的线性无关的特征向量.⑧一定可分解为=、,从而的特征值为:,.为各行的公比,为各列的公比.⑨若的全部特征值,是多项式,则:①若满足的任何一个特征值必满足②的全部特征值为;.⑩与有相同的特征值,但特征向量不一定相同.特征值与特征向量的求法(1)写出矩阵A的特征方程,求出特征值.(2)根据得到A对应于特征值的特征向量.设的基础解系为其中.则A对应于特征值的全部特征向量为其中为任意不全为零的数.(与相似(为可逆矩阵)(与正交相似(为正交矩阵)(可以相似对角化与对角阵相似.(称是的相似标准形)6.相似矩阵的性质:①,从而有相同的特征值,但特征向量不一定相同.是关于的特征向量,是关于的特征向量.②③从而同时可逆或不可逆④⑤若与相似,则的多项式与的多项式相似.矩阵对角化的判定方法①n阶矩阵A可对角化(即相似于对角阵)的充分必要条件是A有n 个线性无关的特征向量.这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:.②可相似对角化,其中为的重数恰有个线性无关的特征向量.:当为的重的特征值时,可相似对角化的重数基础解系的个数.③若阶矩阵有个互异的特征值可相似对角化.实对称矩阵的性质:①特征值全是实数,特征向量是实向量;②不同特征值对应的特征向量必定正交;:对于普通方阵,不同特征值对应的特征向量线性无关;③一定有个线性无关的特征向量.若有重的特征值,该特征值的重数=;④必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形;⑤与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形;⑥两个实对称矩阵相似有相同的特征值.9.正交矩阵正交矩阵的性质①;②;③正交阵的行列式等于1或-1④是正交阵则也是正交阵⑤两个正交阵之积仍是正交阵⑥的行(列)向量都是单位正交向量组.10.11.施密特线性无关单位化:其中为对称矩阵,(与合同.()(正惯性指数二次型的规范形中正项项数负惯性指数二次型的规范形中负项项数符号差(为二次型的秩)④两个矩阵合同它们有相同的正负惯性指数他们的秩与正惯性指数分别相等.⑤两个矩阵合同的充分条件是:与等价⑥两个矩阵合同的必要条件是:2.经过化为标准形.(正交变换法(配方法(1)若二次型含有的平方项,则先把含有的乘积项集中,然后配方,再对其余的变量同样进行,直到都配成平方项为止,经过非退化线性变换,就得到标准形;若二次型中不含有平方项,但是(),则先作可逆线性变换,化二次型为含有平方项的二次型,然后再按(1)中方法配方.(初等变换法3. 正定二次型不全为零,.正定矩阵正定二次型对应的矩阵.4.为正定二次型(之一成立):(1),;(2)的特征值全大于;(3)的正惯性指数为;(4)的所有顺序主子式全大于;(5)与合同,即存在可逆矩阵使得;(6)存在可逆矩阵,使得;5.(1)合同变换不改变二次型的正定性.(2)为正定矩阵;.(3)为正定矩阵也是正定矩阵.(4)与合同,若为正定矩阵为正定矩阵(5)为正定矩阵为正定矩阵,但不一定为正定矩阵. 半正定矩阵的判定一些重要的结论:全体维实向量构成的集合叫做维向量空间.√关于:①称为的标准基,中的自然基,单位坐标向量;②线性无关;③;④;⑤任意一个维向量都可以用线性表示.7第1页共20页。

线性代数重点复习(16页)

线性代数重点复习(16页)

齐次线性方程组给出系数矩阵,
1
非齐次线性方程组给出增广矩阵 。
对矩阵进行初等行变换得到行最
2
简形。
3
把行最简形矩阵写回线性方程 组的形式。
4
给出方程组的通解。
若线性方程组的系数带有未知数,需分各种情况讨论,灵活处理。
相似矩阵与二次型 05 Guidance for Final Exams at XXX University in 2025 2025
交向量组,由此便可得到相应的正交变换矩阵和相似对
角矩阵。
2025
马到成功!
XXX大学2025年期末考试指导
2025
公众号:安全生产管理
线性代数复习重点
第一章 行列式 01 Guidance for Final Exams at XXX University in 2025 2025
容易出选择填空题的内容:
(1)求逆序数; (2)含某个因子的项(注意正负号); (3)与余子式或代数余子式相关的内容; (4)已知 |A| 求某个与A相关的行列式。。
第三章 向量空间 03 Guidance for Final Exams at XXX University in 2025 2025
向量空间
本章提到的的性质和定理较多,需要灵活运用。
容易出选择填空题的内容: 二 (1)向量的加法、数乘和内积运算; (2)线性相关和线性无关的定义,以及它们与向量组秩的关系(线性无关意
容易出大题的内容:行列式的计算。 其中,若已知行列式的阶数和每个元素的数值, 则问题很简单,但要注意,对于2阶和3阶行列式, 可用划斜线的方式(对角线法则)来计算。而对于4 阶或更高阶的行列式,不能采用对角线法则计算, 此时必须利用行列式的性质将其化为上三角行列式 从而得出结果,或者当某一行(列)非零元很少时, 运用展开定理将该行(列)展开从而得到经过降阶 的行列式计算。 对于n阶行列式的情形或者行列式元素中出现未 知数,求解的难度较大,需要灵活的结合运用行列 式的性质和展开定理。一般来说,考试中都会出课 本中已有的例题、习题,或者非常相似的题目。

考研数学线性代数复习要点

考研数学线性代数复习要点对于考研数学中的线性代数部分,掌握好复习要点至关重要。

线性代数在考研数学中占据着重要的地位,其特点是概念多、定理多、符号多、运算规律多,并且前后知识的联系紧密。

以下是为大家梳理的线性代数复习要点。

一、行列式行列式是线性代数中的基础概念,其计算方法和性质是必须要熟练掌握的。

1、行列式的定义要理解行列式的定义,特别是二阶和三阶行列式的计算方法。

对于高阶行列式,可以通过行列式的性质将其化为上三角行列式或下三角行列式来计算。

2、行列式的性质熟练掌握行列式的性质,如行列式转置值不变、两行(列)互换行列式变号、某行(列)乘以常数加到另一行(列)行列式不变等。

这些性质在行列式的计算中经常用到。

3、行列式按行(列)展开定理掌握行列式按行(列)展开定理,能够将高阶行列式降阶计算。

二、矩阵矩阵是线性代数的核心内容之一,需要重点掌握。

1、矩阵的运算包括矩阵的加法、数乘、乘法、转置等运算。

要特别注意矩阵乘法的规则和性质,以及矩阵乘法不满足交换律这一特点。

2、矩阵的逆理解逆矩阵的定义和存在条件,掌握求逆矩阵的方法,如伴随矩阵法和初等变换法。

3、矩阵的秩掌握矩阵秩的定义和求法,了解矩阵秩的性质。

矩阵的秩在判断线性方程组解的情况等方面有重要应用。

4、分块矩阵了解分块矩阵的概念和运算规则,能够灵活运用分块矩阵解决一些复杂的矩阵问题。

三、向量向量是线性代数中的重要概念,与线性方程组和矩阵的秩密切相关。

1、向量的线性表示理解向量线性表示的概念,掌握判断向量能否由一组向量线性表示的方法。

2、向量组的线性相关性掌握向量组线性相关和线性无关的定义和判定方法,这是线性代数中的重点和难点。

3、向量组的秩理解向量组的秩的概念,掌握求向量组秩的方法。

4、向量空间了解向量空间的基本概念,如基、维数等。

四、线性方程组线性方程组是线性代数的核心内容之一,在考研中经常出现。

1、线性方程组的解掌握线性方程组有解、无解和有唯一解、无穷多解的判定条件。

《线性代数》知识点归纳整理

《线性代数》知识点归纳整理线性代数是一门重要的数学学科,在许多领域都有广泛的应用,如计算机科学、物理学、工程学等。

下面将对线性代数的一些关键知识点进行归纳整理。

一、行列式行列式是线性代数中的一个基本概念。

它是一个数值,可以通过特定的计算规则得到。

对于二阶行列式,其计算公式为:\\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad bc \对于三阶行列式,计算相对复杂些,可通过按行(列)展开来计算。

行列式具有一些重要的性质,例如:1、行列式转置后其值不变。

2、某行(列)元素乘以一个数加到另一行(列)的对应元素上,行列式的值不变。

行列式的应用包括求解线性方程组、判断矩阵是否可逆等。

二、矩阵矩阵是线性代数中的核心概念之一。

矩阵的定义:由\(m×n\)个数排成的\(m\)行\(n\)列的数表称为\(m×n\)矩阵。

矩阵的运算包括加法、减法、数乘、乘法等。

1、矩阵加法和减法要求两个矩阵具有相同的行数和列数,对应元素相加减。

2、数乘矩阵是将矩阵中的每个元素乘以一个数。

3、矩阵乘法需要前一个矩阵的列数等于后一个矩阵的行数,乘法运算不满足交换律。

矩阵的转置是将矩阵的行和列互换得到的新矩阵。

逆矩阵是一个重要概念,若矩阵\(A\)可逆,则存在矩阵\(B\),使得\(AB = BA = I\),其中\(I\)为单位矩阵。

三、向量向量可以看作是一组有序的数。

行向量是一行数,列向量是一列数。

向量的运算包括加法、减法、数乘。

向量组的线性相关性是一个重要内容。

如果存在一组不全为零的数,使得向量组的线性组合等于零向量,则称该向量组线性相关;否则称线性无关。

四、线性方程组线性方程组可以表示为矩阵形式\(Ax = b\)。

线性方程组的解分为有解和无解的情况。

1、有解时,可能有唯一解或无穷多解。

2、无解时,方程组矛盾。

通过高斯消元法可以求解线性方程组。

五、特征值与特征向量对于矩阵\(A\),如果存在非零向量\(x\)和数\(\lambda\),使得\(Ax =\lambda x\),则\(\lambda\)称为矩阵\(A\)的特征值,\(x\)称为对应于特征值\(\lambda\)的特征向量。

线性代数-要点考点复习


六、行列式的计算
1.基本计算方法 (1)化三角形法 (2)展开法(降阶法)
展开前尽量化 0 按特殊的一行、列展开 按0多的一行、列展开
2.常见行列式的计算方法
(1)各行(列)和相等
b a"a
a b"a
# #%#
a a"b
a1 + b a2 " an
a1 a2 + b " an
#
#%#
a1
a2 " an + b
2.向量的长度及其性质 向量的单位化 (标准化 ) 3.向量的正交 (1)夹角 (2)正交 (3)求与一个或几个向量均 正交的向量 解齐次方程组 由部分特征向量求实对 称矩阵的其余特征向量
(4)正交向量组与标准正交 向量组
4.施密特正交化方法
向量组的正交化
向量组的标准正交化
六、正交矩阵
1.定义 AT A = I
QT AQ = Λ QT AkQ = Λk Ak = QΛkQT
( ) AX = 0与 AT A X = 0同解 : ( ) AX = 0 ⇒ AT A X = AT ( AX ) = 0 ( ) ( ) AT A X = 0 ⇒ XT AT A X = 0
⇒ ( AX )T ( AX ) = 0
⇒ AX = 0
第一章 行列式
复习要点 :
一、排列及其逆序
τ (i1"in ) = a,
τ
(in " i1 )
=
n(n − 2
1)
a.
二、2、3阶行列式的对角线原理
三、行列式的定义
D
=| aij
|=
p1

p2"

线性代数期末复习要点


注:一般而言, 1o ( AB)k Ak Bk , 正确: ( AB)k (AB)(A B)( AB) ;
k个
2o ( A B)(A B) A2 B2, 正确: ( A B)(A B) A2 AB BA B2 ;
3o ( A B)2 A2 2AB B2 , 正确: ( A B)2 A2 AB BA B2 。
A22
An
2
A2n
Ann
称为
A
的伴随矩阵。
2、n 阶方阵可逆的充要条件:
A
0
A 可逆,且 A1
1 A
A 。
3、逆矩阵的性质: 1o ( A1 )1 A ; 3o ( AT )1 ( A1 )T ;
4、伴随矩阵的性质:
2o ( AB)1 B1 A1 ;
4o
(kA)1
1 k
A1
(k
1、 Ax 0的基础解系:解向量组的一个极大无关组。
2、 Ax 0解的定理:只有当 R( A) r n 时,才存在基础解 系,且 n r 个线性无关的解向量组成的向量组 v1、v2、、vnr 是 Ax 0的基础解系,其线性组合
v c1v1 c2v2 cnrvnr 是 Ax 0的全部解。 3、基础解系的求法:
组有且仅有唯一解,且
xj
Dj D
( j 1,2,, n )
注:齐次线性方程组有非零解 D 0。 (逆否命题:齐次线性方程组仅有零解 D 0。)
第二章 矩阵
一、矩阵的定义:矩形数表。
二、矩阵的运算
1、矩阵的加法、减法:只有同型矩阵才可以进行加减运算。
2、数与矩阵的乘法:数与矩阵的乘法是数与矩阵每一个元 素相乘;而数与行列式的乘积是数与行列式中某一行(列) 的每一个元素相乘。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式
根据行列式定义确定乘积项的符号(排列的逆序数及奇偶性),余子式和代数余
子式,行列式基本性质的运用
行列式的计算:四阶行列式2题(1题不含字母、1题含字母)
矩阵
矩阵的运算(加法、数乘、乘法、转置),矩阵求逆,矩阵的秩和标准形(A 的
秩为r ,则A 的标准形为⎪⎪⎭⎫ ⎝
⎛000r E .如⎪⎪⎪⎭⎫ ⎝⎛123456789的标准形⎪⎪⎪⎭⎫ ⎝⎛000010001 ),初等变换和初等矩阵
矩阵计算题3题:矩阵运算、求逆矩阵、解矩阵方程(如,已知A 和一个含X 、
A 、和1-A 或*A 或T A 的一个等式,求X )
矩阵证明题(例如,设A E A 562-=,证明E A 3+可逆,并求1)3(-+E A .) 线性方程组
判定线性方程组有无解,齐次线性方程组的基础解系,解(齐次或非齐次)线
性方程组(并写出通解),非齐次线性方程组b Ax =和齐次线性方程组0=Ax 解之间的关系.
向量
向量组的线性组合和线性表示,线性相关和线性无关的性质和证明,向量组的
等价,向量组的秩和极大(最大)线性无关组(其余向量用无关组表示). 向量空间及其基和维数(例1,{}R x x x x x x x x x V ∈=543215432,,,,|),,,,0(的维数
是4,)0,0,0,1,0(2=ε,)0,0,1,0,0(3=ε,)0,1,0,0,0(4=ε,)1,0,0,0,0(5=ε组成一个基;例2,{}R z y x y x z y x V ∈=,,|),,,,(的维数是3,)0,1,0,0,1(1=α,)1,0,0,1,0(2=α,)0,0,1,0,0(3=α组成一个基,任意向量都可表示成基的线性组合:321),,,,(αααz y x y x z y x ++=;)
向量的内积、长度、正交等概念,向量组的正交化方法
计算题:求向量组的极大线性无关组并将其余向量用极大无关组表示
证明题:向量组的等价、线性无关等
矩阵的对角化和二次型
矩阵的相似:存在可逆阵P 使得B AP P =-1
矩阵的相似对角化:B AP P =-1,B (为对角阵)其主对角线上元素是A 的全部
特征向量,矩阵P 的列向量是一组线性无关的特征向量
矩阵的合同:存在可逆阵C 使得B AC C T =
二次型及其矩阵,二次型的秩和标准形(不唯一),化标准形的方法(正交变换
法、配方法)
正定二次型,正定矩阵及其判定
二次型的惯性定理和规范形
计算题:已知矩阵,求其特征值;已知矩阵的特征值(直接告知,或间接给出,
如与对角阵相似,则对角阵主对角线上元素就是全部特征值),求其特征向-1为对角形
量;求P使B
AP
P=。

相关文档
最新文档