八年级数学多边形及其内角和
部编版八年级数学上册《多边形及其内角和》教案及教学反思

部编版八年级数学上册《多边形及其内角和》教案及教学反思一、教学目标1. 知识目标1.了解多边形的概念和性质;2.掌握求解多边形内角和的方法;3.掌握多边形的分类。
2. 能力目标1.能够通过给定的多边形求解其内角和;2.能够应用所学知识解答相关数学题目。
3. 情感目标1.培养学生对于数学知识的兴趣和探究欲望;2.提高学生解决实际问题的能力。
二、教学重难点1.求解多边形内角和;2.掌握多边形的分类。
三、教学方法1.演讲法;2.示范法;3.案例法;4.互动式教学。
四、教学内容安排第一课时:引入与概念教学目标1.介绍多边形的概念;2.介绍多边形的性质;3.引导学生了解多边形的基本特征。
教学内容1.课前引入:介绍多边形在日常生活中的应用,例如:地图等;2.教师讲解多边形的概念和性质;3.教师演示多边形变化的过程。
教学方法1.演讲法;2.示范法;3.互动式教学。
第二课时:求解多边形内角和教学目标1.了解多边形内角和的概念;2.掌握求解多边形内角和的方法。
教学内容1.教师讲解求解多边形内角和的方法;2.通过案例演示求解多边形内角和。
教学方法1.演讲法;2.示范法;3.案例法。
第三课时:多边形的分类教学目标1.掌握多边形的分类;2.能够判断多边形的种类。
教学内容1.教师讲解多边形的分类;2.通过案例演示多边形的分类。
教学方法1.演讲法;2.示范法;3.案例法;4.互动式教学。
第四课时:教学反思教学目标1.自我评价本次教学;2.总结本次教学中的不足与优点。
教学内容1.学生自我评价本次教学;2.教师掌握学生的评价,并进行总结和反思。
教学方法1.互动式教学;2.思维导图法。
五、教学评价1. 对于学生的评价1.通过本次教学,学生掌握了多边形的概念、性质、分类等知识;2.学生参与度高,积极表现。
2. 对于教师的评价1.教师讲解内容清晰易懂;2.教师在教学中注重互动和案例分析。
六、教学反思本次教学中,教师注重课前问题引导,举例子讲解等教学方法,使学生更好地理解和掌握多边形的知识。
八年级上册数学多边形及其内角和

八年级上册数学多边形及其内角和示例文章篇一:《趣谈八年级上册数学之多边形及其内角和》嘿,你知道多边形吗?我跟你说呀,多边形就像一群神秘又有趣的小伙伴,在数学这个大乐园里等着我们去探索呢。
我第一次接触多边形的时候,就觉得它们像各种各样的拼图块。
三角形就是最简单的那种,只有三条边,就像一个小小的金字塔的底面,稳稳当当的。
那时候老师在黑板上画了一个三角形,然后告诉我们三角形的内角和是180度。
我当时就想,怎么会这么神奇呢?这就像是一个固定的魔法数字一样。
后来,我们开始学习四边形。
四边形可就比三角形复杂一点啦。
你看,四边形有四条边,就像一个有四个边的小框框。
我和同桌就拿着尺子在本子上画各种各样的四边形,有长方形、正方形,还有那些歪歪扭扭的普通四边形。
我们还争论呢,我同桌说长方形是最特殊的四边形,因为它的四个角都是直角。
我就不服气啦,我说正方形才特殊呢,它不但四个角是直角,四条边还都相等。
这时候前面的同学转过头来说:“你们别争啦,它们都很特殊,都是四边形家族里的明星成员。
”哈哈,想想还真是呢。
那四边形的内角和是多少呢?老师告诉我们是360度。
我就想啊,三角形内角和是180度,四边形内角和是360度,这四边形的内角和好像是三角形内角和的两倍呢。
这是为啥呢?再后来呀,我们开始探索更多边的多边形。
五边形就像一个五角星少了一个角的样子,有五条边呢。
那五边形的内角和又是多少呢?我当时就觉得脑袋有点晕晕的,这可不好算呀。
可是数学就是这么神奇,老师给我们讲了一个办法。
我们可以把五边形分成三角形来计算内角和。
我就照着老师说的做,从五边形的一个顶点出发,向其他顶点连线,哇,一下子就分成了三个三角形。
我一下子就明白了,一个三角形内角和是180度,三个三角形内角和不就是180×3 = 540度嘛。
这就像是把一个大难题拆成了几个小问题,一下子就简单多了。
那六边形呢?六边形就像一个蜂窝的小格子一样,有六条边。
我用同样的方法,从一个顶点出发向其他顶点连线,能分成四个三角形,那内角和就是180×4 = 720度。
八年级上册数学11.3.2多边形内角和

提示: 1.六边形的每一个外角和相邻的 内角有什么关系? 2.六边形的6个外角加上与它们相 邻的内角,所得总和是多少? 3.上述总和与六边形的内角和、 外角和有什么关系?
E 5
4
D3
F
C
6
2
A1 B
1.六边形的每一个外角和相邻的内角有什么关系? 任意一个外角加上与它相邻的内角等于180°.
2.六边形的6个外角加上与它们相邻的内角,所得总 和是多少? 每一个外角加上与它相邻的内角等于180°,所以 六个外角加上与它们相邻的内角等于180°×6.
解:(1)四边形的内角和为360°,
则x°+x°+140°+90°=360°,解得x=65.
(2)四边形的内角和为360°,
则∠1+75°+120°+80°=360°,解得∠1=85°,
因为∠1+x°=180°,所以x=95.
例4 一个多边形的各内角都等于120°,它是几边形?
解:设这个多边形的边数为n,
内角的大小,并计算出四个内角的和是多少? 经过测量发现四边形的四个内角和为360°.
试用三角形内角和定理来证明任意一个四边形的内 角和为360°.利用对角线将四边形分成三角形来求 解.
如图,在四边形ABCD中,连接对角线AC,求四边形 ABCD的内角和.
解:∵对角线AC将四边形分为△ACD和△ACB,
(2)小李同学在计算一个n边形的内角和时不小心多加了一 个内角,得到的内角之和是1 380°,则这个多边形的 边数n的值是多少?多加的这个内角度数是多少? 解:设多加的这个内角度数为α,则(n-2)·180°= 1 380°-α.∵1 380°=7×180°+120°,多边形的 内角和应是180°的倍数,∴n=9,α=120°. 答:这个多边形的边数n的值是9,多加的这个内角 度数是120°.
2023-2024学年八年级上数学:多边形及其内角和(精讲教师版)

2023-2024学年八年级上数学:第十一章三角形
11.3
多边形及其内角和
一、多边形及其相关概念
1.多边形:在平面内,由一些线段首尾顺次相接组成的封闭图形叫
做多边形.多边形按组成它的线段的条数分成三角形、四边形、五边
形……,如果一个多边形由n条线段组成,那么这个多边形就叫做n边
形.
2.相关概念:①多边形相邻两边组成的角叫做它的内角.②多边形
的边与它的邻边的延长线组成的角叫做多边形的外角.③连接多边形
不相邻的两个顶点的线段,叫做多边形的对角线.
二、多边形的对角线
1.定义:多边形的对角线:连接多边形不相邻的两个顶点的线段,
叫做多边形的对角线.
第1页(共12页)。
人教版八年级数学课件-多边形及其内角和

作 第2、3、4、5、6題.
業
已知一個多邊形除了一個內
角外,其餘各內角的和是
2750°,求這個多邊形的
邊數.
1
1
問題3:你能類比三角形的組成要
素,說一說下麵圖形各部分的名稱
是什麼?
頂點
邊
內角 外角 對角線
1
連接多邊形不相鄰的兩個頂點 的線段叫做多邊形的對角線.
練習:畫出五邊形ABCDE的所有對角線. A E
B
C
D
1
問題4:我們現在研究的是如圖1所
示的多邊形,是凸多邊形; 如圖2所示 的多邊形,是凹多邊形,但不在現在研 究的範圍中.比較這兩種多邊形的區別是 什麼?
從一個頂點出發所有 的對角線(條)
0 1 2 3…
n-3
從一個頂點出發分成 三角形(個)
1234
…
n-2
對角線總數(條)
0
2
5
9
… n(n 3) 21
練習測試
1、 課本81頁練習第1、2題. 2、(1)一個多邊形自一個頂點出發的 對角線把它分成6個三角形,則它是__邊 形.
(2)下列圖形哪些是凸多邊形,哪些 不是?
6
2
A1B
內角有什麼關係?
(3)六邊形的6個外角加上與它們相鄰的內角,所得
總和是多少?
(4)上述總和與六邊形的內角和、外角和有什麼關
係? 1
例3 三角形、六邊形的外角和都是360°,那
麼n邊形的外角和(n是不小於3的任意整數)
還是360°嗎?若是,證明你的結論;若不是, 請說明你的理由.
n 180 (n 2) 180 2 180 360
1
3.達標測評
人教版同步教参数学八年级-三角形:多边形及其内角和

三角形第3节 多边形及其内角和【知识梳理】一、多边形的概念(1)在同一平面内,由不在同一直线上的n (n ≥3的整数)条线段首尾顺次相接而成的图形叫做n 边形。
注意:(1)有几条边就是几边形;三角形、四边形是最简单的多边形。
(2)多边形相邻两边组成的角是它的内角,一个n 边形有n 个内角;(3)多边形的边和它邻边延长线组成的角是它的外角,一个n 边形有n 个外角,同一个顶点的内角和外角是互为邻补角。
(4)连接多边形不相邻的两个顶点的线段是它的对角线,四边形有两条对角线,五边形有五条对角线,n 边形有(3)2n n 条对角线,从同一个顶点出发的对角线有(n -3)条。
(5)各个角相等,各条边都相等的多边形是正多边形。
(6)下面两图中,图(1)任何一条边所在的直线,整个图形都在这条直线同一侧,这样的图形我们称为凸多边形,而图(2)就不满足上述凸多边形的特征,因为我们画BD 所在直线,整个n 边形不都在这条直线的同一侧。
我们称这样的多边形为凹多边形,今后我们课本提到的多边形,如果不加特别说明,一般指的是凸多边形。
二、多边形的内角和n 边形的内角和等于(n -2)·180°。
二、多边形的外角和 多边形的外角和等于360°注意:多边形的外角和与它的边数无关。
A BCDABC D【诊断自测】1、平面内,由________叫做多边形。
组成多边形的线段叫做____。
如果一个多边形有n条边,那么这个多边形叫做_____。
多边形_____叫做它的内角,多边形的边与它的邻边的_____组成的角叫做多边形的外角。
连接多边形_______的线段叫做多边形的对角线。
2、画出多边形的任何一条边所在的直线,如果整个多边形都在______,那么这个多边形称作凸多边形。
3、各个角______,各条边_____的_____叫做正多边形。
4、n变形的内角和等于____.这是因为,从n变形的一个顶点出发,可以引_____条对角线,它们将此n边形分为_____个三角形。
八年级数学上册教案多边形的内角和

2 方法二:矩形的性质 3 方法三:梯形的性质
矩形的对角线相等且平分
梯形两组对角线短边之和
平行四边形的对角线互相
相等,同时两组内角之和源自平分也相等。五边形内角和的计算方法
方法一:
将五边形剖分成三角形和四边形
方法二:
将五边形剖分成三个三角形
六边形内角和的计算方法
1
2
3
方法一:三角形之和
由此可得六边形的内角和等 于720度。
多边形的内角和
多边形是几何学中一种基本的图形,在这个演示中我们将着重介绍如何计 算一个多边形内角和。
三角形内角和的计算方法
方法一:角度之和
三角形的内角和等于180度。
方法二:底角性质
在直角三角形中,直角边上的内角等于90度,另外 两个内角之和等于90度。
四边形内角和的计算方法
1 方法一:平行四边
通过合适的分割方法可以更容易地计算多边形的内角和。
一个五边形内角和的计算示例
步骤一:
将五边形分割成3个三角形
步骤二:
计算每个三角形的内角和(180 度)
步骤三:
将每个三角形的内角和相加,即 可得到五边形的内角和。(3 × 180度 = 540度)
多边形的内角和:总结
1 内角和与边数的关系
多边形的内角和随着边数的增加而增加。
2 内角和与分割方式的关系
方法二:分割成三角形
把六边形分成4个三角形, 计算每个三角形的内角和,
再相加即可。
方法三:剖分成一对 对的三角形
在六边形中添加一条连线, 将六边形剖分成4个三角形 ,从而求得六边形的总内角
和。
n边形内角和的通用公式
公式:
(n-2) × 180
人教版 八年级数学 多边形及其内角和讲义 (含解析)

第2讲多边形及其内角和知识定位讲解用时:5分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习多边形及其内角和,首先要学会判断凸多边形和凹多边形,然后要学会计算多边形的内角和和外角和,能够处理多边形的一些基础题目。
知识梳理讲解用时:20分钟凸多边形、凹多边形1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
2、凸多边形:如果把一个多边形的所有边中,有一条边向两方无限延长成为一直线时,其他各边不都在此直线的同旁,那么这个多边形就叫做凹多边形,其内角中至少有一个钝角。
3、凹多边形:如果把一个多边形的所有边中,任意一条边向两方无限延长成为一直线时,其他各边都在此直线的同旁,那么这个多边形就叫做凸多边形,其内角应该全不是钝角,任意两个顶点间的线段位于多边形的内部或边上。
目前我们研究的都是凸多边形1、多边形的内角:多边形相邻两边组成的角叫做它的内角。
2、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
3、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
4、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
从同一个顶点引出对角线的条数:0 1 2 3 n-3 (n≥3)分割出三角形的个数:0 2 3 4 n-2 (n≥3)多边形内角和:180° 360° 540° 720° (n-2)·180°课堂精讲精练【例题1】设四边形内角和等于,五边形外角和等于,则与之间的关系是( ) A.B.C.D.【答案】B【解析】四边形的内角和是360°,多边形的内角和也是360°.解:多边形边数为,则内角和为,四边形内角和,多边形外角和为, 五边形外角和, 因此. 故正确答案为:.讲解用时:2分钟解题思路:此题比较简单,熟记多边形的内角和和外角和公式做题即可. 教学建议:掌握多边形的内角和和外角和公式,灵活做题.难度: 3 适应场景:当堂例题 例题来源:无 年份:2018【练习1.1】下列图形中,多边形有( )总结:1、多边形对角线的条数:(1)从n 边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题1 我们知道,三角形的内角和是180°,三 角形的外角和是360°.得出三角形的外角和是360° 有多种方法.如图,你能说说怎样由外角与相邻内角
互补的关系得出这个结论吗? E
B2 F
A
1
3
D
C
探索四边形、五边形、六边形的外角和
由 ∠1 +∠BAE =180°,∠2 +∠CBF =180°,
∠3 +∠ACD =180°,
八年级 上册
11.3 多边形及其内角和 (第2课时)
课件说明
• 本节课内容主要是在学习了三角形的内角和、外角 和、多边形的内角和的基础上,进一步研究多边形 的外角和.
课件说明
• 学习目标: 探索并掌握多边形的外角和公式.
• 学习重点: 探索并掌握多边形的外角和公式.
探索四边形、五边形、六边形的外角和
探索n 边形的外角和
我们也可以在问题4 的基础上这样理解多边形外角 和等于360°.
如图,从多边形的一 个顶点A 出发,沿多边形 的各边走过各顶点,再回 到点A,然后转向出发的 方向.
A
探索n 边形的外角和
我们也可以在问题4 的基础上这样理解多边形外角 和等于360°.
在行程中转过的各个
角的和,就是多边形的外
练习1 一个多边形的内角和与外角和相等,它是 几边形?
四边形
课堂练习
练习2 是否存在一个多边形,它的每个内角都等 于相邻外角的 1 ?为什么?
5 解:不存在.
理由:如果存在这样的多边形,设它的一个外角
为x ,则对应的内角为180°-x ,
于是
1 5x
=180°-
x,解得
x =150°.
这个多边形的边数为:360°÷150°=2.4,而边数
由 ∠BAD +∠1 =180°, ∠ABC +∠2 =180°,
A1 B
2
∠BCD +∠3 =180°,
∠ADC +∠4 =180°, D
C
得∠BAD + ∠1 + ∠ABC
4
3
+∠2 +∠BCD +∠3 +∠ADC +∠4 =180°×4.
由∠BAD +∠ABC +∠BCD +∠ADC =180°×2,得
∠1 +∠2 +∠3 +∠4 =180°×4 - 180°×2 =360°.
探索四边形、五边形、六边形的外角和
问题3 五边形的外角和等于多少度?六边形呢? 仿照上面的方法试一试.
类比求三角形、四边形的外角和的方法求出五边 形的外角和是360°,六边形的外角和是360°(解答 过程略).
探索n 边形的外角和
得 ∠1 +∠2 +∠3 +∠BAE +∠CBF +∠ACD =540°.
由 ∠1 + ∠2 + ∠3 = 180°,得
∠BAE +∠CBF +∠ACD
E
= 540° - 180°
A
= 360°.
1
B2 F
3
D
C
探索四边形、五边形、六边形的外角和
问题2 如图,你能仿照上面的方法求四边形的外
角和吗?
应是整数,因此不存在这样的多边形.
课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎样得到“多边形外角和等于360°”这
一结论的?
布置作业
教科书习题11.3第6题.
角和.由于走了一周,所
转过的各个角的和等于一
个周角,所以多边形外角
和等于360°.
A
巩固多边形外角和公式
例1 一个多边形的内角和等于它的外角和的3 倍, 它是几边形?
解:设这个多边形为 n 边形, 根据题意,可列方程 ( n -2)×180°=3×360°. 解得 n =8.
答:它是八边形.
Hale Waihona Puke 堂练习问题4 你能仿照上面的方法求n 边形(n 是不小 于3 的任意整数)的外角和吗?
因为n 边形的每个内角与它相邻的外角是邻补角, 它们的和是180°,所以n 边形内角和加外角和等于 n ·180°,所以, n 边形的外角和为:
n ·180°-(n -2)·180°= 360°. 任意多边形的外角和等于360°.