自动控制原理总总结
自动控制原理总经典总结

《自动控制原理》总复习第一章自动控制的基本概念一、学习要点1. 自动控制基本术语:自动控制、系统、自动控制系统、被控量、输入量、干扰量、受控对象、控制器、反馈、负反馈控制原理等。
2. 控制系统的基本方式:①开环控制系统;②闭环控制系统;③复合控制系统。
3. 自动控制系统的组成:由受控对象和控制器组成。
4. 自动控制系统的类型:从不同的角度可以有不同的分法,常有:恒值系统与随动系统;线性系统与非线性系统;连续系统与离散系统;定常系统与时变系统等05. 对自动控制系统的基本要求:稳、快、准。
6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自动控制系统稳、准、快三方面的基本要求。
3. 了解控制系统的典型输入信号。
4. 掌握由系统工作原理图画方框图的方法。
三、内容结构图第二章控制系统的数学模型一、学习要点1数学模型的数学表达式形式(1)物理系统的微分方程描述;(2)数学工具一拉氏变换及反变换;(3)传递函数及典型环节的传递函数;(4)脉冲响应函数及应用。
2•数学模型的图形表示(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求1正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入响应、零状态响应等概念有清楚的理解。
4、正确理解传递函数的定义、性质和意义。
熟练掌握由传递函数派生出来的系统开环传递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
(井)5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结构图及结构图的简化,并能用梅逊公式求系统传递函数。
自动控制原理知识点总结

自动控制原理知识点总结1. 控制系统基本概念:自动控制系统是通过对被控对象进行测量、比较和纠正等操作,使其输出保持在期望值附近的技术体系。
控制系统由传感器、控制器和执行器组成。
2. 反馈控制原理:反馈是指对被控对象输出进行测量,并将测量结果与期望值进行比较,通过纠正控制信号来消除误差。
反馈控制系统具有稳定性好、抗干扰能力强的特点。
3. 控制回路的结构:控制回路通常包括输入端、输出端、传感器、控制器和执行器等组成。
传感器用于将被测量的物理量转换为电信号;控制器根据测量结果和期望值进行计算,并输出控制信号;执行器根据控制信号,对被控对象进行操作。
4. 控制器的分类:控制器按照控制操作的方式可以分为比例控制器、积分控制器和微分控制器。
比例控制器根据误差的大小与一定的系数成比例地输出控制信号;积分控制器根据误差的累积值输出控制信号;微分控制器根据误差变化率的大小输出控制信号。
5. 稳定性分析:稳定性是指控制系统在无限时间内,输出能够在期望值附近波动。
常用的稳定性分析方法有判据法、频域法和根轨迹法等。
6. 控制系统的频域分析:频域分析是一种通过研究系统对不同频率的输入信号的响应特性,来分析控制系统的方法。
常用的频域分析方法有频率响应曲线、伯德图和封闭环传递函数等。
7. 根轨迹法:根轨迹法是一种用于分析和设计控制系统稳定性和性能的图形方法。
根轨迹是指系统极点随参数变化而形成的轨迹,通过分析根轨迹的形状,可以得到系统的稳定性和性能信息。
8. 灵敏度分析:灵敏度是指输出响应对于某个参数的变化的敏感程度。
灵敏度分析可以用于确定系统设计中的参数范围,以保证系统的稳定性和性能。
9. 鲁棒性分析:鲁棒性是指控制系统对于模型参数变化和外部干扰的抵抗能力。
鲁棒性分析可以用于设计具有稳定性好和抗干扰能力强的控制系统。
10. 自适应控制:自适应控制是指控制系统能够根据被控对象的变化自动调整控制策略和参数。
自适应控制通常使用系统辨识技术来识别被控对象的模型,并根据模型参数进行自动调整。
自动控制原理知识点汇总

自动控制原理知识点汇总自动控制原理是现代工程中的重要学科,它研究如何利用自动化技术实现对各种工业过程和系统进行控制和调节。
本文将对自动控制原理的相关知识点进行汇总,并进行详细说明。
1. 自动控制系统的基本组成自动控制系统主要由控制对象、感知器、执行器和控制器四个部分组成。
控制对象是需要被控制和调节的物理系统或工艺过程,感知器用于感知控制对象的运行状态,执行器负责根据控制器的指令执行相应的动作,而控制器则是整个系统的核心,根据感知器采集到的信号进行处理,并通过执行器对控制对象进行控制。
2. 控制系统的闭环与开环控制控制系统可以分为闭环控制和开环控制两类。
闭环控制是通过对控制对象的输出进行实时测量,并与预设的目标值进行比较,从而实现对系统状态的反馈控制。
开环控制则是不考虑控制对象的实际输出,仅根据预设的输入信号进行控制,无法实时调节系统状态。
3. 控制系统的稳定性控制系统的稳定性是指系统在受到外界扰动或控制指令变化时,能够恢复到稳定状态的能力。
稳定性分为绝对稳定和相对稳定两种。
绝对稳定是指系统在任何初始条件下都能恢复到稳定状态,相对稳定则是指系统在一定初始条件下能恢复到稳定状态。
稳定性分析常用的方法有根轨迹法、Nyquist稳定判据和Bode稳定判据等。
4. 控制系统的系统响应控制系统的系统响应描述了系统对输入信号的响应速度和质量。
常用的系统响应指标有超调量、调整时间、稳态误差和频率响应等。
超调量是指系统响应超过目标值的最大偏差,调整时间是系统从开始响应到稳定所需的时间,稳态误差是系统在稳定状态下与目标值之间的偏差,频率响应是系统对不同频率信号的响应特性。
5. PID控制器PID控制器是自动控制系统中最常用的控制器之一,它由比例项(P 项)、积分项(I项)和微分项(D项)组成。
比例项用于根据误差大小调节控制量,积分项用于对误差进行积分,以解决稳态误差问题,微分项用于预测误差的未来变化趋势,以减小超调和提高系统响应速度。
自动控制原理知识点总结

自动控制原理知识点总结咱们先来聊聊啥是自动控制原理哈。
想象一下,你有一辆遥控小汽车,你想让它按照你期望的速度和方向跑,这中间的种种操作和规律,就是自动控制原理要研究的东西。
这门学问里,首先得知道啥是控制系统。
简单说,就是一堆能让某个东西按照咱想法动起来的部件组合。
比如说家里的空调,你设定个温度,它就能自己调节制冷制热,让屋里保持在那个温度,这里面就有控制系统在工作。
再来说说反馈,这可是个重要概念。
就像你考试完了,老师给你打分告诉你哪儿对哪儿错,你才能知道咋改进,下次考得更好。
控制系统里也是这样,通过反馈,能把实际情况和期望情况做比较,然后进行调整。
开环控制和闭环控制也是不得不提的。
开环控制就像你蒙着眼睛扔飞镖,扔出去就不管了,结果咋样全靠运气。
闭环控制呢,则是你睁着眼睛扔,能看到飞镖的位置,随时调整扔的力度和角度,直到命中目标。
咱举个例子哈,比如说你想做个自动浇花的装置。
如果是开环控制,你就设定好每天几点浇水,浇多长时间,不管花需不需要,都这么浇。
但要是闭环控制,就会有个传感器能检测土壤的湿度,湿度不够了才浇水,够了就不浇,这多智能!还有系统的稳定性,这就好比你骑自行车,要是车不稳,东倒西歪的,你肯定骑不了。
控制系统也一样,不稳定就没法正常工作。
传递函数也是个关键知识点。
它就像是系统的“身份证”,通过它能了解系统的特性。
在自动控制原理里,时域分析能让我们直接看到系统对输入的响应随时间的变化。
比如说,你按了一下遥控器,遥控车多长时间能达到你想要的速度,这就是时域分析要研究的。
频域分析呢,则是从另一个角度看系统的性能。
就好像你听音乐,不同的频率有不同的声音,频域分析就是研究系统对不同频率输入的反应。
根轨迹法能帮我们分析系统参数变化对系统性能的影响。
想象一下,你调整遥控车的某个零件,看看车的速度和灵活性会怎么变,这就是根轨迹法在起作用。
最后说说校正装置,这就像是给系统“治病”。
如果系统性能不好,通过加上校正装置,能让它变得更好用。
自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的基本理论和方法的学科,它对于理解和设计各种控制系统具有重要意义。
下面将对自动控制原理的一些关键知识点进行总结。
一、控制系统的基本概念控制系统是由控制对象、控制器和反馈环节组成的。
控制对象是需要被控制的物理过程或设备,例如电机的转速、温度的变化等。
控制器则是根据输入的控制信号和反馈信号来产生控制作用,以实现对控制对象的期望控制。
反馈环节则将控制对象的输出信号反馈给控制器,形成闭环控制,从而提高系统的控制精度和稳定性。
在控制系统中,常用的术语包括输入量、输出量、偏差量等。
输入量是指施加到系统上的外部激励,输出量是系统的响应,而偏差量则是输入量与反馈量的差值。
二、控制系统的数学模型建立控制系统的数学模型是分析和设计控制系统的基础。
常见的数学模型有微分方程、传递函数和状态空间表达式。
微分方程描述了系统输入与输出之间的动态关系,通过对系统的物理规律进行分析和推导,可以得到微分方程形式的数学模型。
传递函数则是在零初始条件下,输出量的拉普拉斯变换与输入量的拉普拉斯变换之比。
它将复杂的微分方程转化为简单的代数形式,便于系统的分析和设计。
状态空间表达式则是用一组状态变量来描述系统的内部动态特性,能够更全面地反映系统的性能。
三、控制系统的性能指标为了评估控制系统的性能,需要定义一些性能指标。
常见的性能指标包括稳定性、准确性和快速性。
稳定性是控制系统能够正常工作的前提,如果系统不稳定,输出将无限制地增长或振荡,无法实现控制目标。
准确性通常用稳态误差来衡量,它表示系统在稳态时输出与期望输出之间的偏差。
快速性则反映了系统从初始状态到达稳态的速度,常用上升时间、调节时间等指标来描述。
四、控制系统的稳定性分析判断控制系统的稳定性是自动控制原理中的重要内容。
常用的稳定性判据有劳斯判据和赫尔维茨判据。
劳斯判据通过计算系统特征方程的系数来判断系统的稳定性,具有计算简单、直观的优点。
(完整版)自动控制原理知识点总结

@~@自动控制原理知识点总结第一章1.什么是自动控制?(填空)自动控制:是指在无人直接参与的情况下,利用控制装置操纵受控对象,是被控量等于给定值或按给定信号的变化规律去变化的过程。
2.自动控制系统的两种常用控制方式是什么?(填空)开环控制和闭环控制3.开环控制和闭环控制的概念?开环控制:控制装置与受控对象之间只有顺向作用而无反向联系特点:开环控制实施起来简单,但抗扰动能力较差,控制精度也不高。
闭环控制:控制装置与受控对象之间,不但有顺向作用,而且还有反向联系,既有被控量对被控过程的影响。
主要特点:抗扰动能力强,控制精度高,但存在能否正常工作,即稳定与否的问题。
掌握典型闭环控制系统的结构。
开环控制和闭环控制各自的优缺点?(分析题:对一个实际的控制系统,能够参照下图画出其闭环控制方框图。
)4.控制系统的性能指标主要表现在哪三个方面?各自的定义?(填空或判断)(1)、稳定性:系统受到外作用后,其动态过程的振荡倾向和系统恢复平衡的能力(2)、快速性:通过动态过程时间长短来表征的e来表征的(3)、准确性:有输入给定值与输入响应的终值之间的差值ss第二章1.控制系统的数学模型有什么?(填空)微分方程、传递函数、动态结构图、频率特性2.了解微分方程的建立?(1)、确定系统的输入变量和输入变量(2)、建立初始微分方程组。
即根据各环节所遵循的基本物理规律,分别列写出相应的微分方程,并建立微分方程组(3)、消除中间变量,将式子标准化。
将与输入量有关的项写在方程式等号的右边,与输出量有关的项写在等号的左边3.传递函数定义和性质?认真理解。
(填空或选择)传递函数:在零初始条件下,线性定常系统输出量的拉普拉斯变换域系统输入量的拉普拉斯变换之比5.动态结构图的等效变换与化简。
三种基本形式,尤其是式2-61。
主要掌握结构图的化简用法,参考P38习题2-9(a)、(e)、(f)。
(化简)等效变换,是指被变换部分的输入量和输出量之间的数学关系,在变换前后保持不变。
自动控制原理知识点总结

自动控制原理知识点总结自动控制原理是一门研究自动控制系统的分析与设计的学科,它对于理解和实现各种工程系统的自动化控制具有重要意义。
以下是对自动控制原理中一些关键知识点的总结。
一、控制系统的基本概念控制系统由控制对象、控制器和反馈通路组成。
控制的目的是使系统的输出按照期望的方式变化。
开环控制系统没有反馈环节,输出不受控制,精度较低;闭环控制系统通过反馈将输出与期望的输入进行比较,从而实现更精确的控制。
二、控制系统的数学模型数学模型是描述系统动态特性的工具,常见的有微分方程、传递函数和状态空间表达式。
微分方程是最直接的描述方式,但求解较为复杂。
传递函数适用于线性定常系统,将输入与输出的关系以代数形式表示,便于分析系统的稳定性和性能。
状态空间表达式则能更全面地反映系统内部状态的变化。
三、时域分析在时域中,系统的性能可以通过单位阶跃响应来评估。
重要的性能指标包括上升时间、峰值时间、调节时间和超调量。
一阶系统的响应具有简单的形式,其时间常数决定了系统的响应速度。
二阶系统的性能与阻尼比和无阻尼自然频率有关,不同的阻尼比会导致不同的响应曲线。
四、根轨迹法根轨迹是指系统开环增益变化时,闭环极点在复平面上的轨迹。
通过绘制根轨迹,可以直观地分析系统的稳定性和动态性能。
根轨迹的绘制遵循一定的规则,如根轨迹的起点和终点、实轴上的根轨迹段等。
根据根轨迹,可以确定使系统稳定的开环增益范围。
五、频域分析频域分析使用频率特性来描述系统的性能。
波特图是常用的工具,包括幅频特性和相频特性。
通过波特图,可以评估系统的稳定性、带宽和相位裕度等。
奈奎斯特稳定判据是频域中判断系统稳定性的重要方法。
六、控制系统的校正为了改善系统的性能,需要进行校正。
校正装置可以是串联校正、反馈校正或前馈校正。
常见的校正方法有超前校正、滞后校正和滞后超前校正。
校正装置的设计需要根据系统的性能要求和原系统的特性来确定。
七、采样控制系统在数字控制系统中,涉及到采样和保持、Z 变换等概念。
自动控制原理工作总结报告

自动控制原理工作总结报告
自动控制原理是现代工程技术中的重要理论基础,它涉及到控制系统的设计、
分析和实现。
本报告旨在总结自动控制原理的工作,并探讨其在工程领域中的应用。
首先,自动控制原理的工作涉及到控制系统的建模和分析。
通过对控制系统的
动态特性进行建模,可以得到系统的数学描述,并通过分析系统的稳定性、性能和鲁棒性等指标,从而设计出合适的控制策略。
这些工作对于控制系统的稳定性和性能至关重要。
其次,自动控制原理的工作还涉及到控制器的设计和实现。
控制器是控制系统
中的核心部件,它根据系统的输入和输出信号,实时调节系统的状态,以实现系统的稳定性和性能要求。
通过自动控制原理的工作,可以设计出各种类型的控制器,如比例-积分-微分(PID)控制器、模糊控制器和模型预测控制器等,并将其实现
在实际工程系统中。
最后,自动控制原理的工作还涉及到控制系统的应用。
控制系统广泛应用于工
业生产、交通运输、航空航天、机器人技术等领域,为人类社会的发展做出了重要贡献。
通过自动控制原理的工作,可以实现工程系统的自动化控制,提高生产效率和质量,降低能耗和成本,从而推动工程技术的进步。
总而言之,自动控制原理的工作是现代工程技术中的重要组成部分,它为工程
系统的设计、分析和实现提供了理论基础和方法论。
通过不断地研究和应用自动控制原理,我们可以更好地理解和掌握工程系统的运行规律,实现工程技术的创新和发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
自动控制原理总总结集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#
《自动控制原理》总复习
1. 2. 3. 4. 5. 对自动控制系统的基本要求:稳、快、准。
6. 典型输入信号:脉冲、阶跃、斜坡、抛物线、正弦。
二、基本要求
1. 对反馈控制系统的基本控制和方法有一个全面的、整体的了解。
2. 掌握自动控制系统的基本概念、术语,了解自动控制系统的组成、分类,理解对自
动控制系统稳、准、快三方面的基本要求。
3. 了解控制系统的典型输入信号。
4. 掌握由系统工作原理图画方框图的方法。
三、内容结构图
1
(1
(3
2
(1)结构图及其等效变换,梅逊公式的应用;(2)信号流图及梅逊公式的应用。
二、基本要求
1、正确理解数学模型的特点,对系统的相似性、简化性、动态模型、静态模型、输入变
量、输出变量、中间变量等概念,要准确掌握。
2、了解动态微分方程建立的一般方法及小偏差线性化的方法。
3、掌握运用拉氏变换解微分方程的方法,并对解的结构、运动模态与特征根的关系、零输入
响应、零状态响应等概念有清楚的理解。
4、正确理解传递函数的定义、性质和意义。
熟练掌握由传递函数派生出来的系统开环传
递函数、闭环传递函数、误差传递函数、典型环节传递函数等概念。
(#)
5、掌握系统结构图和信号流图两种数学模型的定义和绘制方法,熟练掌握控制系统的结
构图及结构图的简化,并能用梅逊公式求系统传递函数。
(##)
6、传递函数的求取方法:
1)直接法:由微分方程直接得到。
2)复阻抗法:只适用于电网络。
3)结构图及其等效变换,用梅逊公式。
4)信号流图用梅逊公式。
4.一般了解高阶系统的暂态响应,掌握闭环主导极点的概念。
5.了解稳定性的概念,掌握线性定常系统稳定的充要条件(#)。
6.重点掌握判断稳定性的Routh代数判据及应用(#)(#),对Hurwitz判据有一
般了解。
能根据系统要求确定满足稳定的系统参数范围(#)(#)。
7.了解稳态误差的概念、定义、产生原因、类型。
8.重点掌握给定稳态误差终值的计算,稳态误差系数的计算,扰动稳态误差终值的计
算及减小稳态误差的方法,并能根据系统对稳态误差的要求确定系统参数。
(#)(#)
1.
(1
(2
2.
(1
(2
(3
3.
4.利用根轨迹分析系统
①稳定性;②运动形式;③主导极点;④超调量;⑤调节时间;⑥实数零、极点的影响;
⑦偶极子及其处理。
二、基本要求
1.重点掌握绘制常规负反馈系统根轨迹的基本条件和基本法则;(#)(#)
2.理解参量根轨迹和零度根轨迹的绘制;
3.了解多回路控制系统的根轨迹;
4.掌握增加开环零极点对根轨迹的影响;(#)
5.能根据根轨迹分析系统性能随参数变化的趋势。
(#)
(2)对数频率特性曲线(Bode图)
3.典型环节的频率特性及最小相位系统
(1)典型环节频率特性
(2)最小相位系统与非最小相位系统
4.稳定判据
(1)奈奎斯特稳定判据
(2)对数频率特性的稳定判据
5.开环频域指标
(1)幅值裕度
(2)相角裕度
6.闭环频域指标
(1)零频幅值M(0)
ω
(2)带宽频率b
(3)谐振峰值M r和谐振频率rω
(4)闭环系统频域指标与时域指标的关系
7.开环对数频率特性与时域性能指标:
(1)三频段的概念
(2)开环系统频域指标与时域性能指标的关系
二、基本要求
1.正确理解频率特性的概念,掌握典型环节的频率特性并运用频率特性分析系统的
稳态响应。
(#)
2.熟练掌握绘制开环系统Nyquist图和Bode图的方法,会求剪切频率cω(#)
(#)。
3.重点掌握奈奎斯特稳定判据及其在系统分析中的应用。
(#)(#)
4.重点掌握相角裕度、幅值裕度的计算。
(#)(#)
5.掌握开环对数频率特性与系统性能之间的关系,正确理解三频段的概念。
(#)
6.正确理解并掌握用实验数据确定传递函数,由最小相位系统的Bode图确定系统
的传递函数的方法,会求开环放大系数K。
(#)(#)
三、内容结构图
二、基本要求
1.熟悉典型的无源校正装置,掌握校正网络的频率特性及其作用。
2.正确选择校正网络。
3.掌握串联校正的频率设计方法,重点掌握三种串联校正方式的特点与作用(#)
(#)。
4.重点掌握期望特性的求取方法及串联校正的期望特性法。
(#)(#)
5.重点掌握校正前后相角裕度、幅值裕度的计算。
(#)(#)
6.了解反馈校正的频率设计法。
1.
2.
3.
3.
(1)离散系统稳定性分析
(2)准确性分析(离散系统的稳态误差分析)
(3)快速性分析与时间响应
(4)校正:校正方法,数字校正装置的实现,最少拍系统的校正,无稳态误差的最少拍系统的校正
二、基本要求
1、掌握离散控制系统的相关概念及离散控制系统与连续控制系统的主要区别。
2、掌握z变换、z反变换的概念及其主要性质。
3、充分理解采样定理及采样周期对离散控制系统的影响。
4、理解零阶保持器的具体含义及作用,熟悉零阶保持器的传递函数、频率特性及特点。
5、重点掌握脉冲传递函数的概念及其求解离散控制系统开环、闭环脉冲传递函数的方
法。
(#)(#)
6、正确理解离散控制系统稳定性的含义及其稳定的充要条件,熟练掌握离散控制系统的稳定
性判断方法,能根据系统要求确定满足稳定性的系统参数范围。
(#)(#)
7、重点掌握计算离散控制系统的稳态误差方法。
(#)(#)
8、了解离散控制系统极点分布与系统瞬态响应之间的关系,能根据给定输入求取离散控制系
统的时间响应。
9、正确理解离散系统的校正方法和数字校正装置的实现方法;能对离散系统进行最少拍系统的校正和无稳态误差的最少拍系统的校正。
1.
2.
3.
(1
(2)相平面法:①基本概念:相平面、相轨迹、奇点、平衡点、相轨迹的走向、极限环等。
②相轨迹描述方法:解析法、等倾线法。
二、基本要求
1、从系统组成、数学描述、动态过程及分析方法等几方面来正确理解线性系统和非线
性系统的基本概念和本质区别。
2、正确理解描述函数法的基本概念和应用前提。
3、利用描述函数法能够对系统作定性分析及求出一般近似解。
4、掌握负倒描述函数曲线的绘制方法。
(#)
5、重点掌握基于描述函数法计算系统自振参数及判断系统稳定性的方法。
(##)
6、正确理解相平面法的基本概念和特点。
7、掌握开关线、奇点及其类型、极限环等概念,尤其能判断奇点及其类型。
8、掌握线性系统和非线性系统的相轨迹绘制方法(解析法、等倾线法)。