数学建模小实例
数学建模 几何在生活中应用

数学建模几何在生活中应用
数学建模在几何学的应用在生活中非常广泛,以下是一些具体的应用实例:
1.购房贷款:在购房过程中,数学模型可以帮助我们理解和分析贷款的各种可能方案。
例
如,利用数学模型,我们可以比较等额本金和等额本息这两种不同的还款方式,并计算出在不同利率和还款期限下,每种方式的还款总额和每月还款金额。
这样,我们就可以选择最适合自己的还款方案。
2.时尚穿搭:高跟鞋是一种时尚单品,但穿多高的高跟鞋才能达到最佳的视觉效果呢?这
时,我们可以借助数学模型来解决这个问题。
根据黄金分割原理,当女生的腿长和身高比值是0.618时,身材会显得最迷人。
因此,我们可以计算出最适合女生身高的高跟鞋高度,使她们在穿搭上更加出彩。
3.银行利率:在金融领域,数学建模也发挥着重要作用。
例如,我们可以通过建立数学模
型来分析银行利率的变化对存款或贷款的影响。
这种分析可以帮助我们更好地理解金融市场的运作,从而做出更明智的决策。
数学建模简单实例

一些简单实例
% 用二分法求山崖高度 k = 0.05; g = 9.81; left = 0.0; right = 3.9; eps = 1.0; while (abs(eps) > 0.1) t2 = (left + right) / 2; t1 = 3.9 - t2; h2 = 340 * t2; h1 = g * (t1 + exp(-k * t1) / k) / k - g / k^2; eps = h1 - h2; if (eps > 0) left = t2; 运行结果为: else >> shanyagaodu1 right = t2; t2 = end 0.1871 end h= t2 63.6130 h = 340 * t2
2 2
A(0,b) 航母,速度V1
θ1 θ2
O
B(0,-b) 护卫舰,速度V2
X
令:
a2 1 2ab h 2 b, r 2 a 1 a 1
10
一些简单实例
则上式可简记成 :
x ( y - h) r y (tan 2 ) x b (护卫舰的路线方程) y (tan 1 ) x b (航母的路线方程)
n
25
an=0
一些简单实例
对第二问:假设还贷k个月后,利率发生了
变化。则第k个月后还应还给银行的总金额
为:
ak= a0(1+r)k-x[(1+r)k-1]/[(1+r)-1]
而我们可以将此总金额作为最初的贷款额,
而需还贷的时间则是n-k个月。
26
D L
间内,车辆仍将向前行驶一段距离 L。
4
一些简单实例
数学建模的实例与分析

数学建模的实例与分析在现代社会中,数学建模作为一种重要的科学方法,被广泛应用于各个领域。
通过数学模型的构建和分析,我们能够深入了解问题的本质,预测未来的趋势,并为决策提供科学依据。
本文将为大家介绍两个关于数学建模的实例,并对其进行详细分析。
实例一:股票价格预测股票市场一直以来都备受人们的关注,因为其价格的波动会对投资者的财富造成重大影响。
为了帮助投资者更好地预测股票价格,数学建模成为了一种重要的工具。
在股票价格预测的建模过程中,一般使用时间序列分析方法。
首先,我们需要获取一段时间内的历史股票数据,包括每日的股票价格和交易量。
然后,通过统计学方法对这些数据进行分析,例如平均值、标准差等。
接下来,我们可以利用时间序列模型,如ARIMA模型,来对未来的股票价格进行预测。
除了时间序列分析,机器学习算法也可以应用于股票价格的预测。
例如,可以使用支持向量机(SVM)或人工神经网络(ANN)等算法,通过训练模型来捕捉股票价格的变化规律,并进行预测。
这些算法能够根据历史数据中的模式和趋势,预测未来股票价格的走势。
通过数学建模,我们能够更好地理解股票市场的运行规律,并及时预测股票价格的变化,为投资者提供决策参考。
实例二:交通拥堵模拟随着城市化的发展,交通拥堵成为了一个普遍存在的问题。
为了有效地缓解交通拥堵,数学建模可以帮助我们研究交通流的特性,并设计出更好的交通管理策略。
在交通拥堵模拟中,常常使用微观模型和宏观模型相结合的方法。
微观模型关注个体车辆的行为,例如车辆的加速度、减速度以及车头间距等。
而宏观模型则关注整体交通流的特性,例如道路容量、流量以及速度等。
通过对交通流的建模和仿真,我们可以模拟城市道路网络中交通流的变化,以及拥堵的产生和扩散过程。
借助于数学建模,我们可以预测在不同交通管理策略下,拥堵情况的变化以及交通状况的优化效果。
此外,数学建模还可以结合其他领域的知识,如人工智能和大数据分析,来进一步提高交通拥堵模拟的准确性和可靠性。
数学建模在生活中的应用

数学建模在生活中的应用数学建模是将真实世界中的问题转化为数学模型并进行求解的过程。
这样就可以通过分析数学模型得出对问题的解决方案和预测未来发展趋势。
现代生活中数学建模的应用非常广泛,以下是其中的几个例子。
1. 交通流量预测城市交通拥堵是一个普遍存在的问题,交通流量预测可以帮助城市规划者和交通管理部门更好地组织交通流量。
数学建模可以通过收集历史交通数据、道路拓扑结构、公共交通等因素,建立交通流量预测模型。
在此基础上,通过计算预测出交通流量峰值,及时采取合适的交通管理措施来避免拥堵。
2. 风险评估与保险在金融领域中,数学建模可以用于风险评估和保险计算。
对于保险公司来说,通过数学建模可以评估风险和建立合适的保险方案。
这样保险公司不仅可以根据风险程度收取合理的保费,而且可以保证公司的盈利。
3. 医疗应用医学研究因其数据复杂性而需要使用数学建模。
医学数学建模主要应用于疾病预测、疾病分类、治疗优化等方面。
例如,肿瘤生长模型可以帮助医生预测肿瘤的发展趋势,从而为合适的治疗方案提供基础。
4. 客流管理在公共交通系统,数学建模可以用于客流管理。
这些模型可以帮助人们更好地规划使用公共交通工具的时间和路线。
通过收集历史客流数据和公共交通运营数据,建立客流管理模型,就可以在客流高峰期和交通停机时间段内提供更好的公共交通服务。
5. 工业生产优化数学建模可以为工业企业提供优化生产方案的支持。
生产优化模型可以在减少物料浪费、提高生产效率和优化工程任务分配的同时,最小化生产成本。
总之,数学建模在现代生活中的应用非常广泛。
通过数学建模的分析、设计和优化,我们可以在各个领域中提高效率,提高准确性,从而更好地满足人们的需求。
数学建模实例

数学建模实例
数学建模是将实际问题转化为数学模型,通过对模型进行分析和求解来解决问题的一种方法。
以下是数学建模的一些实例:
1. 客流热力学模型:在城市轨道交通拥挤情况下,建立客流热力学模型,分析出客流分布的状况,有效提高轨道交通系统的运行性能。
2. 互联网广告投放模型:针对互联网广告投放的问题,建立数学模型,分析各种广告投放策略的影响,提出最佳的广告投放策略。
3. 股票价格预测模型:针对股票市场,建立数学模型,通过对历史数据的分析和预测,预测未来股票价格的走势,为投资决策提供科学依据。
4. 生态系统模型:建立生态系统稳定性数学模型,探究物种间相互作用的影响,预测生态系统发展趋势,为环境保护提供科学依据。
5. 智能交通路网模型:建立智能交通路网数学模型,分析路网拥堵状况,提出最优路径,实现交通系统的智能化管理。
6. 供应链管理模型:建立供应链管理数学模型,分析供应链各环节的影响,优化供应链各环节的质量和效率,提升企业综合效益。
7. 机器学习模型:应用机器学习算法,通过对大量历史数据的分析和学习,预测未来数据的走势,为商业决策提供科学依据。
数学建模简单13个例子

出,黄灯起的是警告的作用,意思是马上
要转红灯了,假如你能停住,请立即停车。
停车是需要时间的,在这段时间内,车辆
仍将向前行驶一段距离 L。这就是说,在
离街口距离为 L处存在着一条停车线(尽
管它没被画在地上),见图。对于那些黄
D
灯亮时已过线的车辆,则应当保证它们仍 能穿过马路。
L
马路的宽度D是容易测得的,问题的关键在于L的确
则所提问题变为在自然数集上求解方程
7
(2ki 1) 26
i 1
于是,我们有了该问题的数学语言表达——数学模型
求解: 用反证法容易证明本问题的解不存在。
返回
3、相遇问题
某人平时下班总是按预定时间到达某处,然 然后他妻子开车接他回家。有一天,他比平时提早 了三十分钟到达该处,于是此人就沿着妻子来接他 的方向步行回去并在途中遇到了妻子,这一天,他 比平时提前了十分钟到家,问此人共步行了多长时 间?
1、从包汤圆(饺子)
通常,1公斤面, 1公斤馅,包100个汤圆(饺子)
今天,1公斤面不变,馅比 1公斤多了,问应多包几 个(小一些),还是少包几个(大一些)?
问题
圆面积为S的一个皮,包成体积为V的汤圆。若 分成n个皮,每个圆面积为s,包成体积为v。
S
s s … s (共n个)
vv
v
V
V和 nv 哪个大? 定性分析
4、爬山问题
某人早8时从山下旅店出发沿一条路径上山,下午5 时到达山顶并留宿,次日早8时沿同一路径下山,下午5 时回到旅店,则这人在两天中的同一时刻经过途中的 同—地点,为什么?
解法一: 将两天看作一天,一人两天的运动看作一天两人 同时分别从山下和山顶沿同一路径相反运功,因为两 人同时出发,同时到达目的地,又沿向一路径反向运 动,所以必在中间某一时刻t两人相遇,这说明某人在 两天中的同一时刻经过路途中的同一地点。
生活中的若干建模实例3

p1 p2 这时不公平程度可用 来衡量。 n1 n2 如 p1 120, p2 100, n1 n2 10 p1 p2 则 2 n1 n2
又如 p1 1020, p2 1000, n1 n2 10
pபைடு நூலகம் p2 不妨设 > n1 n2
p1 p2 则 2 n1 n2
显然 p1 - p2 只是衡量的不公平的绝对程度,但是
Q1最大,于是这1席应分给甲系.
Q3最大,于是这1席应分给丙系.
评注
1.席位的分配应对各方都要公平 2.解决问题 的关键在于建立衡量公平程度既合 理又简明的数量指标。 这个模型提出的相对不公平值 它是确定分配方案的前提.
rA , rB
§3 双层玻璃窗的功效问题
我们注意到北方有些建筑物的窗户是双层的,即 窗户装两层玻璃且中间留有一定空隙,如图所示 墙 墙
当总席位增加1席时,计算
Qi p i2 ni ( ni 1) , i =1,2, ,m
则增加的一席应分配给Q值大的一方. 这种席位分配的方法称为Q值法. 下面用Q值法重新讨论本节开始提出的甲乙 丙三系分配21个席位的问题.
先按照比例将整数部分的19 席分配完毕,有
n1 10,n2 6,n3 3
由假设(3),任何位置至少有三只脚着地,所以 对于任意的θ, f ( ), g( ) 至少有一个为0.
当θ=0时,不妨设
g(0) 0, f (0) 0
这样改变椅子的位置使四只脚同时着地就归结 为证明如下的数学命题:
已知f ( )和g ( )都是 的连续函数,对任意 , f ( ) g ( ) 0且g ( 0) 0,f ( 0) 0,则存在 0使 f ( 0 ) g ( 0 ) 0
数学建模的实例分析

数学建模的实例分析数学建模是一种将实际问题转化为数学模型进行求解的方法。
通过对问题的分析、建立适当的模型,运用数学方法进行求解,从而得到对实际问题的理解和解决方案。
本文将通过一个实例来具体分析数学建模在实际问题中的应用。
一、问题描述假设某城市的道路交通堵塞问题日益严重,市政府计划对交通信号灯进行优化。
为了合理地调配交通信号灯的时长,需要考虑到车辆流量、道路长度、红绿灯周期等多个因素。
具体问题如下:如何合理地设置交通信号灯的时长,以最大程度地提高交通效率并减少交通拥堵。
二、问题分析针对上述的问题,我们可以首先将道路网络抽象为一个图论模型。
将路口作为节点,道路作为边,通过各个路口之间的连接关系来描述交通情况。
而交通信号灯的时长则可以视为图论中边的权重,表示车辆通过该边所需要的时间。
基于上述分析,我们将问题进行数学建模:1. 定义变量:- $N$:路口数量- $G = (V, E)$:图,其中 $V$ 表示路口的集合,$E$ 表示道路的集合- $L$:红绿灯周期长度- $T(e)$:边 $e$ 的通过时间2. 建立模型:- 目标函数:最小化车辆的平均通过时间 $C$,即\[C = \frac{1}{N} \sum_{e \in E} \frac{T(e)}{T(L)}\]- 约束条件:- 路口的通过时间必须满足红绿灯周期长度 $L$,即对于任意路口 $i \in V$,有\[\sum_{e \in E(i)} T(e) = L\]其中 $E(i)$ 表示与路口 $i$ 相关联的道路集合。
3. 求解方法:- 利用优化算法,如遗传算法、模拟退火算法等,求解上述问题模型,得到最优的交通信号灯时长。
三、实例分析以某城市的一个交通繁忙的路口为例来具体分析。
1. 数据采集:- 通过交通监控摄像头,采集车辆通过路口的数据,并记录通过时间。
- 统计各个道路的车辆流量、道路长度等信息。
2. 建模过程:- 根据采集到的数据,构建图模型。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、司乘人员配备问题
某昼夜服务得公交路线每天各时间区段内需司机与乘务人员如下:
设司机与乘务人员分别在各时间区段一开始上班,并连续工作八小时,问该公交线路至少配备多少名司机与乘务人员?
解: 设为第班应报到得人员,建立线性模型如下:
LINGO程序如下:
MODEL:
min=x1+x2+x3+x4+x5+x6;
x1+x6>=60;
x1+x2>=70;
x2+x3>=60;
x3+x4>=50;
x4+x5>=20;
x5+x6>=30;
END
得到得解为:
x1=60,x2=10,x3=50,x4=0,x5=30 ,x6=0;
配备得司机与乘务人员最少为150人。
2、铺瓷砖问题
要用40块方形瓷砖铺下图所示形状得地面,但当时市场上只有长方形瓷砖,每块大小等于方形得两块。
一人买了20块长方形瓷砖,试着铺地面,结果无法铺好。
试问就是这人得功夫不到家还就是这个问题根本无解呢?
3、棋子颜色问题
在任意拿出黑白两种颜色得棋子共n个,随机排成一个圆圈。
然后在两颗颜色相同得棋子中间放一颗黑色棋子,在两颗颜色不同得棋子中间放一颗白色棋子,放完后撤掉原来所放得棋子,再重复以上得过程,这样放下一圈后就拿走前次得一圈棋子,问这样重复进行下去各棋子得颜色会怎样变化呢?
分析与求解:
由于在两颗同色棋子中放一颗黑色棋子,两颗不同色得棋子中间放一颗白色棋子,故可将黑色棋子用1表示,白色棋子用-1表示。
这就是因为-1×(-1)=1,1×1=1,这代表两颗同色棋子中放一颗黑色棋子;1×(-1)= -1,这代表两颗不同色得棋子中间放一颗白色棋子。
设棋子数为,为初始状态。
当n=3时
步数状态(舍掉偶次项)
1
2
3
4
说明当n=3时,经过3步进入初始状态。
当n=4时
步数状态(舍掉偶次项)
1
2
3
4
说明当n=4时,经过4步全变为黑色棋子。
既不循环也不全为黑子
结论:当棋子数为时,至多经过次操作,就可以全部变为黑子,当棋子数不为时则一般不能全变为黑子。
Matlab程序:进行实验
%棋子颜色问题演示
% 1---黑子,-1 -----白子
n=4; %定义棋子数
times=6;%定义迭代次数
x0=zeros(1,n);
x1=zeros(1,n); %定义数组
for i=1:n
k=rand(1,1);
if(k>0、5) x0(i)=1;
else x0(i)=-1;
end
end; % 赋初值
x0
for i=1:times
i
for k=1:n-1
x1(k)=x0(k)*x0(k+1);
end
x1(n)=x0(n)*x0(1);
x1 %显示各次结果
x0=x1;
end
程序语句解释:
1、zeros(m,n),产生一个m×n得0矩阵,通常用于定义一个指定大小得矩阵、zeros(1,n)
则产生一个全部为0得行向量。
2、rand(m,n),产生一个m×n得随机矩阵,每个元素都服从[0,1]上得均匀分布、rand(1,1)则产生一个服从[0,1]上得均匀分布得数字。
4、选修课策略问题
某学校规定,运筹学专业得学生毕业时必须至少学习过两门数学课、三门运筹学课与两门计算机课。
这些课程得编号、名称、学分、所属类别与先修课要求如表1所示。
那么,毕业时学生最少可以学习这些课程中哪些课程。
如果某个学生既希望选修课程得数量少,又希望所获得得学分多,她可以选修哪些课程?
模型得建立
1不考虑学分情形:
记i=1,2,…,9表示9门课程得编号。
设表示第i门课程选修,表示第i门课程不选。
问题得目标为选修得课程总数最少,即
约束条件包括两个方面:
第一方面就是课程数量得约束:
每个人最少要学习2门数学课,则
每个人最少要学习3门运筹学课,则
每个人最少要学习2门计算机课,则有:
第二方面就是先修课程得关系约束:
如“数据结构”得先修课程就是“计算机编程”,这意味着如果,必须,这个条件可以表示为(注意当时对没有限制)。
这样,所有课程得先修课要求可表为如下得约束
“最优化方法”得先修课就是“微积分”与“线性代数”,有:
“数据结构”得先修课程就是“计算机编程”,有:
“应用统计”得先修课就是“微积分”与“线性代数”,有:
“计算机模拟”得先修课程就是“计算机编程”,有:
“预测理论”得先修课程就是“应用统计”,有:
“数学实验”就是“微积分”与“线性代数”,有:
这样一来,总得0-1规划模型为:
12345356894679313247
5
1526785
9192
129232,..,,,,,01
x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x
x x x ++++≥⎧⎪++++≥⎪⎪+++≥⎪
≤≤⎪⎪≤⎪⎨
≤≤⎪⎪≤⎪
≤⎪⎪≤≤⎪⎪=⎩L 或 解得:
1236791,1,1,1,1,1x x x x x x ======。
即选修课程为:微积分,线性代数、最优化方法,计算机模拟,计算机编程,数学实验。
LINGO 程序为: model: sets:
item/1、、9/:c,x; endsets data:
c=5,4,4,3,4,3,2,2,3; enddata
min=@sum(item(i):x(i));!课程最少; x(1)+x(2)+x(3)+x(4)+x(5)>=2; x(3)+x(5)+x(6)+x(8)+x(9)>=3; x(4)+x(6)+x(7)+x(9)>=2; x(3)<=x(1); x(3)<=x(2); x(4)<=x(7); x(5)<=x(1); x(5)<=x(2); x(6)<=x(7); x(8)<=x(5); x(9)<=x(1); x(9)<=x(2);
@for(item(i):@bin(x(i)));
end
2 考虑学分情形:
当要求学分最多时,设各门课程学分为,则增加学分最大得目标函数为:
这样总得双目标0-1规划模型为:
12345356894679313247
5
1526785
9192
129232,..,,,,,01
x x x x x x x x x x x x x x x x x x x x s t x x x x x x x x x x x x
x x x ++++≥⎧⎪++++≥⎪⎪+++≥⎪
≤≤⎪⎪≤⎪⎨
≤≤⎪⎪≤⎪
≤⎪⎪≤≤⎪⎪=⎩L 或 当把选修课程指定为6门时,对学分最大求最优,解得:
1235791,1,1,1,1,1x x x x x x ======。
最大学分为z=22。
即选修课程为:微积分,线性代数、最优化方法, 应用统计,计算机编程,数学实验。
学分达到22分。
LINGO 程序为: model: sets:
item/1、、9/:c,x; endsets data:
c=5,4,4,3,4,3,2,2,3; enddata
max=@sum(item(i):c(i)*x(i)); @sum(item(i):x(i))=6; !课程为6门; x(1)+x(2)+x(3)+x(4)+x(5)>=2; x(3)+x(5)+x(6)+x(8)+x(9)>=3; x(4)+x(6)+x(7)+x(9)>=2; x(3)<=x(1); x(3)<=x(2); x(4)<=x(7); x(5)<=x(1); x(5)<=x(2); x(6)<=x(7); x(8)<=x(5);
x(9)<=x(1);
x(9)<=x(2);
@for(item(i):@bin(x(i))); end。