初中数学竞赛专题选讲-一元二次方程的根(含答案)
初中数学竞赛一元二次方程卷(一)及解答

一元二次方程卷(一)一、填空:1.方程x 2-丨2x -1丨-4=0的根是________________________.[提示:分2x -1≥0和2x -1<0两种情况讨论.注意:当2x -1≥0时,求出的根必须满足2x -1 ≥0,否则应舍去;同样,当2x -1<0时,求出的根必须满足2x -1<0,否则应舍去]2.当b=______时,方程x 2+bx+1=0和方程x 2-x -b=0有一个公共根.[提示:设公共根为α,代入两个方程得到方程组,解方程组(两方程相减)得b 的值,再验算b 值能否使Δ≥0.]3.已知实数x 、y 满足x 2-2x -4y=5,则x -2y 的最大值是________.[提示:设x -2y= m,消去x,得到关于y 的一元二次方程,再由Δ≥0解得m 的取值范围]4.设x 1、x 2是方程x 2-x -4=0的两根,则x 13+5x 22+10的值为______.[提示:用根的定义和韦达定理.先将x 1和x 2分别代入原方程,并用一次式表示出x 12及x 22,再代入原式.]5.设ΔABC 的一边为1,另两边的长是方程x 2-2x+m=0的两个根x 1和x 2,则m 的取值范围是_________.[提示:由Δ≥0、两边之和大于笫三边、两边之差小于笫三边以及韦达定理列出不等式组]6.已知实数a 、b 、c 满足a 2-a -bc+1=0,2a 2-2bc -b -c+2=0,则a 的取值范围是_______.[提示:先用a 表示出b+c 及bc,则以b 和c 为根的一元二次方程是?,再由Δ≥0解得a 的取值范围]7.要使关于x 的两个方程x 2-5x=a 和x 2-5x=-a 有且只有一个方程有两个不同的实数根,则a 的取值范围是________.8.已知方程组223320x y x y +=⎧⎨+=⎩的两组解是(x 1,y 1)和(x 2,y 2),则x 1y 2+x 2y 1的值是_____. 9.已知关于x 的方程(a -1)x 2+2x -a -1=0的根都是整数,则整数a 的值为__________.10.已知xy+x+y=11,x 2y+xy 2=30,则x 2+y 2的值为_____.[提示:构造以x+y 和xy 为根的方程]二、解下列各题:1.已知关于x 的一元二次方程ax 2+bx+c=0没有实数根,甲由于看错了二次项系数,误求得两根为2和3,乙由于看错了某一项系数的符号,误求得两根为-1和3,求(2b+3c)∶a 的值.[提示:设甲把a 看成a ’,乙是否看错b 的符号?由韦达定理列出方程,再设法求b a 和c a的值]2.设三个方程x2+4mx+4m2+2m+3=0, x2+(2m+1)x+m2=0, (m-1)x2+2mx+m-1=0中至少有一个方程有实数根,求m的取值范围. [提示:先求三个方程都无实根时m的取值范围]3.实数a取何值时,分式方程222(2)x x x ax x x x--++=--只有一个实数根?4.已知方程ax2+2(2a-1)x+4(a-3)=0 (a为正整数)至少有一个整数根,求a的值.参考答案:一.1. 2. 2;3. 92; 4. 39; 5. 314m <≤; 6. 1a ≥; 7. 2525或44a a ≥≤-; 8. 10;9. 1,2,3,0,-1;10. 26或13.二.1.4.2.31或24m m ≤-≥-; 3.a=72,4,8. 4.(求参法)由原方程得(x+2)2a=2x+12,求得a=2212(2)x x ++, (x ≠-2) (*) 由a 为正整数,有a ≥1, 即2212(2)x x ++≥1, 解得-4≤x ≤2,∴整数x 的一切可能值为-4,-3,-3,-2,-1,0,1, 分别代入(*),得正整数a=1,3,6,10.。
201X中考数学专题训练 一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1 C. D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2 C. 1 D. -14.方程的解是( )A. B. C. , D. ,5.关于x的一元二次方程的一个根为2,则的值是()A. B. C. D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1 D. ﹣28.若α,β是方程x2+2x﹣xx=0的两个实数根,则α2+3α+β的值为()A. xxB. 2003C. ﹣xxD. 40109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A. B. 7 C. 5 D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B. C. D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2 C. 1 D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1 D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则xx﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.23.先化简,再求值:÷(a﹣1+ ),其中a是方程x2﹣x=6的根.24.已知m是方程x2﹣x﹣1=0的一个根,求m(m+1)2﹣m2(m+3)+4的值.四、解答题25.已知关于x的一元二次方程x2﹣6x+k=0的一根为2,求方程的另一根及k的值.26.已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.27.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?五、综合题28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE= ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。
初中数学竞赛:韦达定理(附练习题及答案)

初中数学竞赛:韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的。
韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等。
韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路。
韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法。
【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 。
思路点拨:所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A 、22123 B 、22125或2 C 、22125 D 、22123或2思路点拨:可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件。
注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式。
【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根。
(2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x 。
思路点拨:对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手。
【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值。
初中数学竞赛第三讲充满活力的韦达定理(含答案)

第三讲 充满活力的韦达定理一元二次方程的根与系数的关系,通常也称为韦达定理,这是因为该定理是由16世纪法国最杰出的数学家韦达发现的.韦达定理简单的形式中包含了丰富的数学内容,应用广泛,主要体现在:运用韦达定理,求方程中参数的值;运用韦达定理,求代数式的值;利用韦达定理并结合根的判别式,讨论根的符号特征;利用韦达定理逆定理,构造一元二次方程辅助解题等.韦达定理具有对称性,设而不求、整体代入是利用韦达定理解题的基本思路.韦达定理,充满活力,它与代数、几何中许多知识可有机结合,生成丰富多彩的数学问题,而解这类问题常用到对称分析、构造等数学思想方法.【例题求解】【例1】 已知α、β是方程012=--x x 的两个实数根,则代数式)2(22-+βαα的值为 .思路点拨 所求代数式为α、β的非对称式,通过根的定义、一元二次方程的变形转化为(例【例2】如果a 、b 都是质数,且0132=+-m a a ,0132=+-m b b ,那么ba ab +的值为( ) A .22123 B .22125或2 C .22125 D .22123或2 思路点拨 可将两个等式相减,得到a 、b 的关系,由于两个等式结构相同,可视a 、b 为方程0132=+-m x x 的两实根,这样就为根与系数关系的应用创造了条件.注:应用韦达定理的代数式的值,一般是关于1x 、2x 的对称式,这类问题可通过变形用1x +2x 、1x 2x 表示求解,而非对称式的求值常用到以下技巧:(1)恰当组合;(2)根据根的定义降次;(3)构造对称式.【例3】 已知关于x 的方程:04)2(22=---m x m x (1)求证:无论m 取什么实数值,这个方程总有两个相异实根. (2)若这个方程的两个实根1x 、2x 满足212+=x x ,求m 的值及相应的1x 、2x . 思路点拨 对于(2),先判定1x 、2x 的符号特征,并从分类讨论入手.【例4】 设1x 、2x 是方程02324222=-++-m m mx x 的两个实数根,当m 为何值时,2221x x +有最小值?并求出这个最小值.思路点拨 利用根与系数关系把待求式用m 的代数式表示,再从配方法入手,应注意本例是在一定约束条件下(△≥0)进行的.注:应用韦达定理的前提条件是一元二次方程有两个实数根,即应用韦达定理解题时,须满足判别式△≥0这一条件,转化是一种重要的数学思想方法,但要注意转化前后问题的等价性.【例5】 已知:四边形ABCD 中,AB ∥CD ,且AB 、CD 的长是关于x 的方程047)21(222=+-+-m mx x 的两个根. (1)当m =2和m>2时,四边形ABCD 分别是哪种四边形?并说明理由.(2)若M 、N 分别是AD 、BC 的中点,线段MN 分别交AC 、BD 于点P ,Q ,PQ =1,且AB<CD ,求AB 、CD 的长.思路点拨 对于(2),易建立含AC 、BD 及m 的关系式,要求出m 值,还需运用与中点相关知识找寻CD 、AB 的另一隐含关系式.注:在处理以线段的长为根的一元二次方程问题时,往往通过韦达定理、几何性质将几何问题从“形”向“数”(方程)转化,既要注意通过根的判别式的检验,又要考虑几何量的非负性.学历训练A 组1.(1)已知1x 和2x 为一元二次方程013222=-+-m x x 的两个实根,并1x 和2x 满足不等式142121<-+x x x x ,则实数m 取值范围是 . (2)已知关于x 的一元二次方程07)1(82=-+++m x m x 有两个负数根,那么实数m 的取值范围是 .2.已知α、β是方程的两个实数根,则代数式2223βαββαα+++的值为 .3.CD 是Rt △ABC 斜边上的高线,AD 、BD 是方程0462=+-x x 的两根,则△ABC 的面积是 .4.设1x 、2x 是关于x 的方程02=++q px x 的两根,1x +1、2x +1是关于x 的方程02=++p qx x 的两根,则p 、q 的值分别等于( )A .1,-3B .1,3C .-1,-3D .-1,35.在Rt △ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,a 、b 是关于x 的方程0772=++-c x x 的两根,那么AB 边上的中线长是( )A .23B .25 C .5 D .2 6.方程019972=++px x 恰有两个正整数根1x 、2x ,则)1)(1(21++x x p 的值是( ) A .1 B .-l C .21- D .21 7.若关于x 的一元二次方程的两个实数根满足关系式:)1)(1()1()1(212211++=+++x x x x x x ,判断4)(2≤+b a 是否正确?8.已知关于x 的方程01)32(22=++--k x k x .(1) 当k 是为何值时,此方程有实数根;(2)若此方程的两个实数根1x 、2x 满足:312=+x x ,求k 的值.B 组9.已知方程02=++q px x 的两根均为正整数,且28=+q p ,那么这个方程两根为 .10.已知α、β是方程012=--x x 的两个根,则βα34+的值为 .11.△ABC 的一边长为5,另两边长恰为方程01222=+-m x x 的两根,则m 的取值范围是 .12.两个质数a 、b 恰好是整系数方程的两个根,则b a a b +的值是( ) A .9413 B .1949413 C .999413 D .979413 13.设方程有一个正根1x ,一个负根2x ,则以1x 、2x 为根的一元二次方程为( )A .0232=---m x xB .0232=--+m x xC .02412=---x m xD .02412=+--x m x14.如果方程0)2)(1(2=+--m x x x 的三根可以作为一个三角形的三边之长,那么实数m 的取值范围是( )A .0≤m ≤1B .m ≥43C .143≤<m D .43≤m ≤115.如图,在矩形ABCD 中,对角线AC 的长为10,且AB 、BC(AB>BC)的长是关于x 的方程的两个根.(1)求rn 的值;(2)若E 是AB 上的一点,CF ⊥DE 于F ,求BE 为何值时,△CEF 的面积是△CED 的面积的31,请说明理由.16.设m 是不小于1-的实数,使得关于x 的方程工033)2(222=+-+-+m m x m x 有两个不相等的实数根1x 、2x .(1) 若62221=+x x ,求m 的值.(2)求22212111x mx x mx -+-的最大值.17.如图,已知在△ABC 中,∠ACB=90°,过C 作CD ⊥AB 于D ,且AD =m ,BD=n ,AC 2:BC 2=2:1;又关于x 的方程012)1(24122=-+--m x n x 两实数根的差的平方小于192,求整数m 、n 的值.18.设a 、b 、c 为三个不同的实数,使得方程和012=++ax x 和02=++c bx x 有一个相同的实数根,并且使方程02=++a x x 和02=++b cx x 也有一个相同的实数根,试求c b a ++的值.参考答案。
专题培优-一元二次方程的整数根(含答案)

一元二次方程的整数根1.使一元二次方程x2+3x+m=0有整数根的非负整数m的个数为( ).A. 0B. 1C. 2D. 32.满足(n2-n-1)n+2=1的整数n有________个.3.已知关于x的方程(a-1)x2+2x-a-1=0的根都是整数,那么符合条件的整数a有________个.4.方程x2+px+q=0的两个根都是正整数,并且p+q=1992,则方程较大根与较小根的比等于________.5.已知k为整数,且关于x的方程(k2-1)x2-3(3k-1)x+18=0有两个不相同的正整数根,则k=________.6.关于x的一元二方程4x2+4mx+m2+m-10=0(m为正整数)有整数根,则满足条件的m值的个数为________个.7.已知关于x的方程((m2−1)x2−3(3m−1)x+18=0有两个正整数根(m是整数).△ABC的三边a,b,c满足c=2√3,m2+a2m−8a=0,m2+b2m−8b=0.求:(1)m的值;(2)△ABC的面积.8.当k为何整数时,方程(k2-1)x2-6(3k-1)x+72=0有两个不相等的正整数根?9.当n为何整数时,关于x的一元二次方程x2-3nx+2n2-6=0的两根都为整数?10.求这样的正整数a,使得方程ax2+2(2a-1)x+4a-7=0至少有一个整数解.11.设关于x的一元二次方程(k2-6k+8)x2+(2k2-6k-4)x+k2=4的两根都是整数,求满足条件的所有实数k的值.12.已知m,n为正整数,关于x的方程x2-mnx+(m+n)=0有正整数解,求m,n的值.13.k为何值时,关于x的方程x2-4mx+4x+3m2-2m+4k=0的根是有理数?14.已知关于x的一元二次方程x2+cx+a=0的两个整数根恰好比方程x2+ax+b=0的两个根都大1,求a+b+c的值.15.已知一元二次方程x2+ax+b=0,①有两个连续的整数根,一元二次方程x2+bx+a=0,②有整数根,求a,b的值.答案1.C2.43.54.9975.26.47.解:(1)∵关于x 的方程(m 2-1)x 2-3(3m -1)x +18=0有两个正整数根(m 是整数).∵a =m 2-1,b =-9m +3,c =18,∴b 2-4ac =(9m -3)2-72(m 2-1)=9(m -3)2≥0,设x 1,x 2是此方程的两个根,∴x 1•x 2=c a =18m 2−1,∴18m 2−1也是正整数,即m 2-1=1或2或3或6或9或18, 又m 为正整数,∴m =2;(2)把m =2代入两等式,化简得a 2-4a +2=0,b 2-4b +2=0当a =b 时,a =b =2±√当a ≠b 时,a 、b 是方程x 2-4x +2=0的两根,而△>0,由韦达定理得a +b =4>0,ab =2>0,则a >0、b >0.①a ≠b ,c =2√3时,由于a 2+b 2=(a +b )2-2ab =16-4=12=c2 故△ABC 为直角三角形,且∠C =90°,S △ABC =12ab =1.②a =b =2-√2,c =2√3时,因2(2−√2)<2√3,故不能构成三角形,不合题意,舍去. ③a =b =2+√2,c =2√3时,因2(2+√>2√3,故能构成三角形.S △ABC =12×(2√)×√=√综上,△ABC 的面积为1或√. 8.解:∵k 2-1≠0∴k ≠±1∵△=36(k -3)2>0∴km ≠3用求根公式可得:x 1=6k−1,x 2=12k+1∵x 1,x 2是正整数∴k -1=1,2,3,6,k +1=1,2,3,4,6,12,解得k =2.这时x 1=6,x 2=4. 9.解:原方程变形得(x −2n)(x −n)=6,∵x ,n 均为整数,∴原方程化为{x −2n =±2,x −n =±3或{x −2n =±3,x −n =±2或{x −2n =±6,x −n =±1或{x −2n =±1,x −n =±6,解得n =-1或1或-5或5.10.解:原方程变形为(x +2)2a =2x +7(x ≠−2),解得a =2x +7(x +2)2.∵a ≥1,∴2x +7(x +2)2⩾1,∴-3≤x ≤1,∴x 可取值为-3,-1,0,1,分别代入a =2x +7(x +2)2中,解得a =1或a =5或a =74或a =1.又∵a 是正整数,∴当a =1或a =5时,方程至少有一个整数解. 11.解:原方程可化为[(k −4)x +(k −2)][(k −2)x +(k +2)]=0,∵k 2−6k +8=(k −4)(k −2)≠0,∴x 1=−k−2k−4=−1−2k−4,x 2=−k +2k−2=−1−4k−2, ∴k −4=−2x 1+1,k −2=−4x 2+1(x 1≠−1,x 2≠−1),消去k ,得x 1x 2+3x 1+2=0. ∴x 1(x 2+3)=−2.由于x 1,x 2都是整数,∴{x 1=−2,x 2+3=1或{x 1=1,x 2+3=−2或{x 1=2,x 2+3=−1.或{x 1=−2,x 2=−2或{x 1=1,x 2=−5或{x 1=2,x 2=−4. ∴k =6或3或103.经检验均满足题意.12.解:设方程x 2−mnx +(m +n )=0的两根分别为:x 1,x 2,∵m ,n 为正整数,∴x 1+x 2=mn >0,x 1⋅x 2=m +n >0,∴这两个根x 1,x 2均为正数,又∵(x 1−1)(x 2−1)+(m −1)(n −1)=x 1x 2−(x 1+x 2)+1−[mn −(m +n )+1]=(m +n )−mn +1+[mn −(m +n )+1]=2, 其中(x 1−1)(x 2−1),m −1,n −1均非负,而为两个非负整数和的情况仅有0+2;1+1;2+0.∵(x 1−1)(x 2−1)=x 1x 2−(x 1+x 2)+1=m +n −mn +1,(m −1)(n −1)=mn −(m +n )+1,∴{m +n −mn +1=0mn −(m +n)+1=2或{m +n −mn +1=1mn −(m +n )+1=1或{m +n −mn +1=2mn −(m +n)+1=0,解得:{m =2n =3或{m =3n =2或{m =2n =2或{m =1n =5或{m =5n =1.13.解:根据题意得:△=(-4m +4)2-4×(3m 2-2m +4k )=4(m 2-6m +4-4k ),∵方程的解为有理数,∴4(m 2-6m +4-4k )是一个完全平方数,即4-4k =9,解得:k =-54. 14.解:设方程x 2+ax +b =0的两个根为α,β,∵方程有整数根,设其中 α,β为整数,且α≤β,则方程x 2+cx +a =0的两根为α+1,β+1,∴α+β=-a ,(α+1)(β+1)=a ,两式相加,得 αβ+2α+2β+1=0,即 (α+2)(β+2)=3,∴{α+2=1β+2=3或{α+2=−3β+2=−1.解得{α=−1β=1或{α=−5β=−3.又 ∵a =-(α+β)=-[(-1)+1]=0,b =αβ=-1×1=-1,c =-[(α+1)+(β+1)]=-[(-1+1)+(1+1)]=-2, 或a =-(α+β)=-[(-5)+(-3)]=8,b =αβ=(-5)×(-3)=15,c =-[(α+1)+(β+1)]=-[(-5+1)+(-3+1)]=6, ∴a =0,b =-1,c =-2;或者a =8,b =15,c =6,∴a +b +c =0+(-1)+(-2)=-3或a +b +c =8+15+6=29,故a +b +c =-3,或29.15.解:设方程①的两个根式n ,n +1,则{n +(n +1)=−a n(n +1)=b∴a =-(2n +1),b =n (n +1),则方程②可变为x 2+n (n +1)x -(2n +1)=0③,∵方程③有整数根,视n 为主元,∴n 2x +n (x -2)+x 2-1=0④有整数解,∴设△=(x -2)2-4x (x 2-1)=x 2+4-4x 3=p 2(p 为正整数),∴x 2(1-4x )=(p +2)(p -2)⑤.∵p +2>p -2,∴{p +2=x 2p −2=1−4x ⑥,{p +2=x p −2=(1−4x)x ⑦,{p +2=1−4x p −2=x2⑧,{p +2=(1−4x)x p −2=x ⑨, 由⑥得:x 2+4x -1=0,解得:x 1=-5,x 2=1,把x 1=-5代入③得:n =-3或n =85(不合题意,舍去),当n =-3时,a =5,b =6, 把x 2=1代入③得:n 1=0,n 2=1,当n =0时,a =-1,b =0,当n =1时,a =-3,b =2, 对⑦,⑧,⑨继续讨论.综上所述,{a =−1b =0或{a =−3b =2或{a =5b =6.。
2019中考数学专题训练 一元二次方程的根(含解析)

一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1C.D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2C. 1D. -14.方程的解是( )A. B. C., D. ,2 25.关于x 的一元二次方程的一个根为2,则 的值是( )A.B.C.D.6.一元二次方程ax 2+x+c=0,若4a-2b+c=0,则它的一个根是( ) A. -2B.C. -4D. 27.一元二次方程x 2+px ﹣2=0的一个根为2,则p 的值为( ) A. 1 B. 2 C. ﹣1 D. ﹣28.若α,β是方程x 2+2x ﹣2005=0的两个实数根,则α2+3α+β的值为( ) A. 2005 B . 2003 C. ﹣2005 D. 40109.已知一个直角三角形的两条直角边的长恰好是方程x 2-7x+12=0的两根,则这个三角形的斜边长是( )A.B. 7C. 5D. 12 10.若一元二次方程有一个根为,则下列等式成立的是( )A.B.C.D.11.若关于x 的一元二次方程(m ﹣1)x 2+5x+m 2﹣3m+2=0有一个根为0,则m 的值( ) A. 0 B. 1或2C. 1D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1 D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;34 4当y=4时,x 2=4,∴x=±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.请你按照上述解题思想解方程(x 2+x )2﹣4(x 2+x )﹣12=0. 23.先化简,再求值:÷(a ﹣1+ ),其中a 是方程x 2﹣x=6的根.24.已知m 是方程x 2﹣x ﹣1=0的一个根,求m (m+1)2﹣m 2(m+3)+4的值. 四、解答题25.已知关于x 的一元二次方程x 2﹣6x+k=0的一根为2,求方程的另一根及k 的值. 26.已知m 是方程x 2+x ﹣1=0的一个根,求代数式(m+1)2+(m+1)(m ﹣1)的值. 27.如图△ABC 中,∠C=90º,∠A=30º,BC=5cm ;△DEF 中,∠D=90º,∠E=45º,DE=3cm.现将△DEF 的直角边DF 与△ABC 的斜边AB 重合在一起,并将△DEF 沿AB 方向移动(如图).在移动过程中,D 、F 两点始终在AB 边上(移动开始时点D 与点A 重合,一直移动至点F 与点B 重合为止).(1)在△DEF 沿AB 方向移动的过程中,有人发现:E 、B 两点间的距离随AD 的变化而变化,现设AD=x , BE=y,请你写出y 与x 之间的函数关系式及其定义域. (2)请你进一步研究如下问题:问题①:当△DEF 移动至什么位置,即AD 的长为多少时,E 、B 的连线与AC 平行? 问题②:在△DEF 的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD 的长度;如果不存在,请说明理由.问题③:当△DEF 移动至什么位置,即AD 的长为多少时,以线段AD 、EB 、BC 的长度为三边长的三角形是直角三角形? 五、综合题28.如图,在平面直角坐标系中,四边形ABCD 是平行四边形,AD=6,若OA 、OB 的长是关于x 的一元二次方程x 2﹣7x+12=0的两个根,且OA >OB .(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE = ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.56 6 答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。
中考数学专题训练一元二次方程的根(含解析)
一元二次方程的根一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.2.一元二次方程x2﹣1=0的根是()A. 1B. ﹣1 C. D. ±13.关于x的一元二次方程x2-5x+p2-2p+5=0的一个根为1,则实数p的值是()A. 4B. 0或2 C. 1 D. -14.方程的解是( )A. B. C. , D. ,5.关于x的一元二次方程的一个根为2,则的值是()A. B. C.D.6.一元二次方程ax2+x+c=0,若4a-2b+c=0,则它的一个根是()A. -2B.C. -4D. 27.一元二次方程x2+px﹣2=0的一个根为2,则p的值为()A. 1B. 2C. ﹣1 D. ﹣28.若α,β是方程x2+2x﹣2005=0的两个实数根,则α2+3α+β的值为()A. 2005B. 2003C. ﹣2005 D. 40109.已知一个直角三角形的两条直角边的长恰好是方程x2-7x+12=0的两根,则这个三角形的斜边长是()A. B. 7 C. 5D. 1210.若一元二次方程有一个根为,则下列等式成立的是()A. B. C.D.11.若关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0有一个根为0,则m的值()A. 0B. 1或2 C. 1 D. 212.下面是李刚同学在一次测验中解答的填空题,其中答对的是()A. 若x2=4,则x=2B. 若x2+2x+k=0有一根为2,则k=﹣8C. 方程x(2x﹣1)=2x﹣1的解为x=1D. 若分式的值为零,则x=1,213.若关于x的一元二次方程x2﹣x﹣m=0的一个根是x=1,则m的值是()A. 1B. 0C. ﹣1 D. 2二、填空题14.若x=2是关于x的方程的一个根,则a 的值为________.15.若方程x2+mx+1=0的一个根是2,则m=________.16.关于x的方程a(x+m)2+b=0的解是x1=2,x2=﹣1,(a,b,m均为常数,a≠0),则方程a(x+m+2)2+b=0的解是________ .17.若x=﹣2是关于x的方程x2﹣2ax+8=0的一个根,则a=________.18.方程=﹣x的根是________.19.已知关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013﹣a﹣b的值是________.20.已知x=1是一元二次方程x2+ax+b=0的一个根,则代数式a2+b2+2ab的值是________三、计算题21.先化简,再求值,其中m是方程x2+3x﹣1=0的根.22.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.请你按照上述解题思想解方程(x2+x)2﹣4(x2+x)﹣12=0.23.先化简,再求值:÷(a﹣1+ ),其中a是方程x2﹣x=6的根.24.已知m是方程x2﹣x﹣1=0的一个根,求m(m+1)2﹣m2(m+3)+4的值.四、解答题25.已知关于x的一元二次方程x2﹣6x+k=0的一根为2,求方程的另一根及k的值.26.已知m是方程x2+x﹣1=0的一个根,求代数式(m+1)2+(m+1)(m﹣1)的值.27.如图△ABC中,∠C=90º,∠A=30º,BC=5cm;△DEF中,∠D=90º,∠E=45º,DE=3cm.现将△DEF的直角边DF与△ABC的斜边AB重合在一起,并将△DEF沿AB方向移动(如图).在移动过程中,D、F两点始终在AB边上(移动开始时点D与点A重合,一直移动至点F 与点B重合为止).(1)在△DEF沿AB方向移动的过程中,有人发现:E、B两点间的距离随AD的变化而变化,现设AD=x , BE=y,请你写出y与x之间的函数关系式及其定义域.(2)请你进一步研究如下问题:问题①:当△DEF移动至什么位置,即AD的长为多少时,E、B的连线与AC平行?问题②:在△DEF的移动过程中,是否存在某个位置,使得∠EBD=22.5°,如果存在,求出AD的长度;如果不存在,请说明理由.问题③:当△DEF移动至什么位置,即AD的长为多少时,以线段AD、EB、BC的长度为三边长的三角形是直角三角形?五、综合题28.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴正半轴上的点,且S△AOE= ,求经过D、E两点的直线解析式及经过点D的反比例函数的解析式,并判断△AOE与△AOD是否相似.(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,直接写出F点的坐标,若不存在,请说明理由.29.关于x的一元二次方程x2﹣6x+p2﹣2p+5=0的一个根为2.(1)求p值.(2)求方程的另一根.答案解析部分一、单选题1.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根是0,则a值为()A. 1B. -1C. 1或-1 D.【答案】B【考点】一元二次方程的解【解析】【分析】由题意把x=0代入一元二次方程(a-1)x2+x+a2-1=0即可得到关于a的方程,求得a的值,再结合二次项系数不为0即可求得结果。
九年级数学尖子生培优竞赛专题辅导第二讲一元二次方程根的判别式(含答案)
第二讲一元二次方程根的判别式趣通引路】话说小精灵拜数学高手为师,苦练了十八般数学技艺.一日师傅韦达对小精灵逍:“师傅给你一件随身法宝——“△”,岀去闯荡一下吧!”“小精灵拜别师傅韦达,来到''方程堡”,守门将喝道:“来者何人?”小精灵拱手答道:''晚辈小精灵奉师傅之命前来方程经见识见识守门将道:“先要破我一方程方能进堡!“说时迟,那时快,只见守门将挥手将许多数字、字母和符号排成2x24-2n^7y2-10.Y-18.y+19=0,并且问道:“你能说出实数x、y 的值吗?”小精灵取出法宝灵机一动,将上式中的y看成已知数,把它整理成关于x的一元二次方程2 + (2$—10比+(7尸一18〉,+⑼=0.好哇!因为x是实数,上而的方程必有实数根,所以上0,即(2y-10)2 -4x2(7y2-18y+19)>0,可得(>—1)2<0, 一下子便得到了)=1,再将1代人原方程就可得x=2.小精灵这里用的法宝“△”是什么呢?它就是一元二次方程根的判别式.一元二次方程卅+加+。
=0 (“丸),当A>0时,有两个不相等的实数根;当』=0时,有两个相等的实数根:当AV0时,没有实数根,反过来也成立.知识延伸】例1已知关于x的二次方程0+肿+©=0与"+必卄92=0,求证:当刃力=2(0+化)时,这两个方程中至少有一个方程有实根.证明设这两个方程的判别式为■,则厶|+4=斤+局一4如+砂.:°/刀“2 = 2(</1+§2),.*.A1+A2= P I + Pt ~2p\pi =(J)1 —/?2)2>0.AAi>0与A2>0中至少有一个成立,即两个方程中必有一个方程有实根.点评:两个方程中至少有一个方程有实根,可转化为证明A.+A2>0:本题还可用反证法来证明,即假设WO且A2<0,则A14-A2<O,但A1+A2=(/71~P2)2>O,两者矛盾,从而导出原题结论成立.例2求函数y=(4-x)+2jF +9的最小值.解析设"=2 yjx2 +9 —x,则“>0 且y=4+“..•.(“+劝2=4("+9),即3Q—2”x+36—“2=0.•:xWR,故以上方程有解.A=(2w)2-4x3x(36-w2fe0,即u>27.又“>0,:.U>3y/3.y = 4-X + 2W+9的最小值为4 + 3血(当x=^3时取得).好题妙解】佳题新题品味例【L知实数"[,“2 , “3,“4 满足("f + «22 )«42 ~ 加2 ("l + “3 )“4 + U2 + Ct3= ° '求证:“2'之】,“3解析把已知等式看成关于心的方程。
初中数学竞赛:一元二次方程求参数高难度题(三种方法)
初中数学竞赛:一元二次方程求参数高难度题(三种方法)设p为质数,且关于x的方程x²+px-1170p=0的一个根为正整数,求p的值;题目如上,很简洁,那么相对的,难度也会很不简单。
首先根据十字相乘法,将-1170p拆分因数,可得-、3、3、10、13、p,那么要求组合而成的两个因数之和还必须=p,那么我们可以看到除了10和p之外,其他三个数的个位都是3,首先可以排除1170×p这种形式,那么就可以确定不含p的一个因数的个位必定为3、9或7,同时p肯定要比1170小,所以我们可以分情况来讨论,先将负号放在一边,那么:①若其中一个因数为3×3=9,那么另一个则为130p,明显不行;②若其中一个因数为3×13=39,那么另一个则为30p,由于p至少得是2,所以无论p取哪个质数,39和30p的差值都不会是p,也不行;③若其中一个因数为3×10=30,那么另一个则为39p,同②也不行;④若其中一个因数为3×3×10=90,那么另一个则为13p,则需要p乘以13后个位数与p相同,那么p的个位数只能是5,而个位是5的质数只有5,当p=5时,也不行;⑤若其中一个因数为3×3×13=117时,那么另一个为10p,这个更没有合适的p;⑥若其中一个因数位10×13=130时,那么另一个为9p,当p=13时,9p=117,130与117的差值刚好为13=p,所以这个合适;所以最终就能得到p=13;这是一个一个情况罗列出来求解,那么能不能不这么麻烦呢?我们重新看一下1170拆分出来的3、3、10、13、p这五个因数,想要组成的两个因数差值等于p,那么也就是说不含p的那个因数里面含有p-1或者p+1这个因数,而其他部分的因数组成完全相同,那么这样一来,我们就可以将这四个已知的因数先分一下组,有两个因数3,那么假设这两个3分别在两个因数中,那么剩余的10、13、p这三个因数怎么也不可能凑出来差值等于p,为什么呢?因为有三个因数,怎么分呢?所以,剩余三个因数肯定是没法分的,那么也就是说两个3要在同一组当中,那么我们可以将两个3看做一个因数9,现在就变成了四个因数9、10、13、p,需要其中有两个因数相同,那么p肯定是9、10、13中的其中一个,那么别忘了,不相同的两个因数差值必须是1,才能凑出p这个差值,那么我们就可以先选出差值是1的两个因数9和10,也就是说,p就只能和剩下的那个13相等了,将p=13放进去,验证一个因数为130,另一个因数为117,130-117=13=p成立,所以p=13符合;老师用的方法和答案上提供的不同,题后答案如下:x²=p(1170-p),因为p是质数,所以x中肯定含有p这个因数,所以设x=np,那么(np)²=p(1170-p),所以n²p=1170-p,变形为n(n+1)p=9×10×13那么p=13;这个方法确实要简单些,不过却不容易想到将x替换为np,一般来说,谁能想到这个?老师提供的第二种方法也包含了部分这个方法中的一些设想,只不过路线不同罢了,所以同一道题方法有很多,有些只是我们还未发现而已,并不代表不存在。
初中数学竞赛专题选讲 一元二次方程的根(含答案)
初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1. 一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的.根公式是:x=aac b b 242-±-. (b 2-4ac ≥0) 2. 根的判别式① 实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.② 有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式⇔方程有有理数根.③整系数方程x 2+px+q=0有两个整数根⇔p 2-4q 是整数的平方数.3. 设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么① ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0), ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);② x 1=a ac b b 242-+-, x 2=aac b b 242--- (a ≠0, b 2-4ac ≥0); ③ 韦达定理:x 1+x 2= a b -, x 1x 2=ac (a ≠0, b 2-4ac ≥0). 4. 方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数.特殊的例子有:C=0⇔x 1=0 , a+b+c=0⇔x 1=1 , a -b+c=0⇔x 1=-1.二、例题例1. 已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b由①得b ≥41,b+1 ≥45代入③,得 a -c=b+1≥45, 4c ≤4a -5 ④ ②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2. 已知首项系数不相等的两个方程:(a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和12-+a a ; 方程②两根是b 和12-+b b . 由已知a>1, b>1且a ≠b.∴公共根是a=12-+b b 或b=12-+a a . 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3, (a -1)(b -1)=3.∵a,b 都是正整数, ∴ ⎩⎨⎧=-3111b a =-; 或⎩⎨⎧=-1131b a =-. 解得⎩⎨⎧=42b a =; 或⎩⎨⎧==24b a . 又解: 设公共根为x 0那么⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x a 先消去二次项: ①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0.整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1,∴a -1=0,∴方程①不是二次方程.∴x 0不是公共根.当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程y 2+ny+m=0的两根差相等.求:m+n 的值.解:方程①两根差是21x x -=221)x x -(=212214)(x x x x -+=n m 42-同理方程②两根差是21y y -=m n 42- 依题意,得n m 42-=m n 42-.两边平方得:m 2-4n=n 2-4m.∴(m -n )(m+n+4)=0∵m ≠n ,∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根.证明:设方程有一个有理数根n m (m, n 是互质的整数). 那么a(n m )2+b(nm )+c=0, 即an 2+bmn+cm 2=0. 把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数.① 当m, n 同为奇数时,则an 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0;② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③ 当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述不论m, n 取什么整数,方程a(n m )2+b(nm )+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d.根据题意,得 k ab cdb a dc ==++.∴c+d=(a+b)k, cd=abk.由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△ =[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k ≥4ab.∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k(k ≥1).例6. k 取什么整数值时,下列方程有两个整数解?①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0.解:①用因式分解法求得两个根是:x 1=112+k , x 2=16-k .由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±6, ±12.由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5.答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221 ∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.) 把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合.答:当k 取2和-2时,方程②有两个整数解.三、练习1. 写出下列方程的整数解:① 5x 2-3x=0的一个整数根是___.② 3x 2+(2-3)x -2=0的一个整数根是___.③ x 2+(5+1)x+5=0的一个整数根是___.2. 方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3. 已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4. 若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y -5=0. 那么yx 11+=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.) 5. 如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6. 若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7. 如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定8. 当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?9. 两个方程x 2+kx -1=0和x 2-x -k=0有一个相同的实数根,则这个根是( )(A)2 (B )-2 (C )1 (D )-110. 已知:方程x 2+ax+b=0与x 2+bx+a=0仅有一个公共根,那么a, b 应满足的关系是: ___________.11. 已知:方程x 2+bx+1=0与x 2-x -b=0有一个公共根为m ,求:m ,b 的值.12. 已知:方程x 2+ax+b=0的两个实数根各加上1,就是方程x 2-a 2x+ab=0的两个实数根.试求a, b 的值或取值范围.13. 已知:方程ax 2+bx+c=0(a ≠0)的两根和等于s 1,两根的平方和等于s 2, 两根的立方和等于s 3.求证:as 3+bs 2+cs 1=0.14. 求证:方程x 2-2(m+1)x+2(m -1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b 是方程x 2+mx+p=0的两个实数根;c, d 是方程x 2+nx+q=0的两个实数根.求证:(a -c )(b -c)(a -d)(b -d)=(p -q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________.17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥43 (C )43<m ≤1 (D )43≤m ≤1 18. 方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4 或-2<k<-1 (D )无解参考答案1. ①0, ②1, ③-12. 03. 1(舍去-2)4. 52 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a : 13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1,m>1) 15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛专题选讲-一元二次方程的根(含答案)初中数学竞赛专题选讲(初三.1)一元二次方程的根一 、内容提要1.一元二次方程ax 2+bx+c=0(a ≠0)的实数根,是由它的系数a, b, c 的值确定的. 根公式是:x=. (b 2-4ac ≥0)2.根的判别式①实系数方程ax 2+bx+c=0(a ≠0)有实数根的充分必要条件是:b 2-4ac ≥0.②有理系数方程ax 2+bx+c=0(a ≠0)有有理数根的判定是:b 2-4ac 是完全平方式方程有有理数根. ③整系数方程x 2+px+q=0有两个整数根p 2-4q 是整数的平方数.3.设x 1, x 2 是ax 2+bx+c=0的两个实数根,那么①ax 12+bx 1+c=0 (a ≠0,b 2-4ac ≥0),ax 22+bx 2+c=0 (a ≠0, b 2-4ac ≥0);②x 1=, x 2= (a ≠0, b 2-4ac ≥0);a acb b 242-±-⇔⇔a acb b 242-+-a acb b 242---③ 韦达定理:x 1+x 2= , x 1x 2= (a ≠0, b 2-4ac ≥0).4.方程整数根的其他条件整系数方程ax 2+bx+c=0 (a ≠0)有一个整数根x 1的必要条件是:x 1是c 的因数. 特殊的例子有: C=0x 1=0 , a+b+c=0x 1=1 , a -b+c=0x 1=-1.二、例题例1.已知:a, b, c 是实数,且a=b+c+1.求证:两个方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有a b -ac ⇔⇔⇔两个不相等的实数根.证明 (用反证法)设 两个方程都没有两个不相等的实数根,那么△1≤0和△2≤0.即由①得b ≥,b+1 ≥代入③,得a -c=b+1≥, 4c ≤4a -5 ④②+④:a 2-4a+5≤0,即(a -2)2+1≤0,这是不能成立的.既然△1≤0和△2≤0不能成立的,那么⎪⎩⎪⎨⎧++=≤-≤ ③ ② ①-1040412c b a c a b 414545必有一个是大于0.∴方程x 2+x+b=0与x 2+ax+c=0中,至少有一个方程有两个不相等的实数根.本题也可用直接证法:当△1+△2>0时,则△1和△2中至少有一个是正数.例2.已知首项系数不相等的两个方程: (a -1)x 2-(a 2+2)x+(a 2+2a)=0和 (b -1)x 2-(b 2+2)x+(b 2+2b)=0 (其中a,b 为正整数)有一个公共根. 求a, b 的值.解:用因式分解法求得:方程①的两个根是 a 和; 方程②两根是b 和.由已知a>1, b>1且a ≠b. ∴公共根是a= 或b=. 两个等式去分母后的结果是一样的.即ab -a=b+2, ab -a -b+1=3,(a -1)(b -1)=3. ∵a,b 都是正整数, ∴ ; 或.12-+a a 12-+b b 12-+b b 12-+a a ⎩⎨⎧=-3111b a =-⎩⎨⎧=-1131b a =-解得; 或.又解: 设公共根为x 0那么 先消去二次项:①×(b -1)-②×(a -1) 得[-(a 2+2)(b -1)+(b 2+2)(a -1)]x 0+(a 2+2a)(b -1)-(b 2+2b)(a -1)=0. 整理得 (a -b )(ab -a -b -2)(x 0-1)=0.∵a ≠b ∴x 0=1; 或 (ab -a -b -2)=0.当x 0=1时,由方程①得 a=1, ∴a -1=0,∴方程①不是二次方程. ∴x 0不是公共根. 当(ab -a -b -2)=0时, 得(a -1)(b -1)=3 ……解法同上.例3. 已知:m, n 是不相等的实数,方程x 2+mx+n=0的两根差与方程⎩⎨⎧=42b a =⎩⎨⎧==24b a ⎪⎩⎪⎨⎧=+++--=+++-- ②( ①0)2()2()10)2()2()1(22202220b b x b x b a a x a x ay 2+ny+m=0的两根 差相等.求:m+n 的值. 解:方程①两根差是===同理方程②两根差是 =依题意,得=.两边平方得:m 2-4n=n 2-4m. ∴(m -n )(m+n+4)=0 ∵m ≠n , ∴ m+n+4=0, m+n =-4.例4. 若a, b, c 都是奇数,则二次方程ax 2+bx+c=0(a ≠0)没有有理数根. 证明:设方程有一个有理数根(m, n 是互质的整数).那么a()2+b()+c=0, 即an 2+bmn+cm 2=0.把m, n 按奇数、偶数分类讨论,∵m, n 互质,∴不可能同为偶数. ① 当m, n 同为奇数时,则21x x -221)x x-(212214)(x x x x -+n m 42-21y y -mn 42-n m 42-m n 42-nm n m n man 2+bmn+cm 2是奇数+奇数+奇数=奇数≠0; ② 当m 为奇数, n 为偶数时,an 2+bmn+cm 2是偶数+偶数+奇数=奇数≠0;③当m 为偶数, n 为奇数时,an 2+bmn+cm 2是奇数+偶数+偶数=奇数≠0.综上所述 不论m, n 取什么整数,方程a()2+b()+c=0都不成立. 即 假设方程有一个有理数根是不成立的.∴当a, b, c 都是奇数时,方程ax 2+bx+c=0(a ≠0)没有有理数根.例5. 求证:对于任意一个矩形A ,总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1). 证明:设矩形A 的长为a, 宽为b ,矩形B 的长为c, 宽为d. 根据题意,得 .∴c+d=(a+b)k, cd=abk.n m nm k abcd b a d c==++ 由韦达定理的逆定理,得c, d 是方程z 2-(a+b)kz+abk=0 的两个根.△=[-(a+b )k ]2-4abk=(a 2+2ab+b 2)k 2-4abk=k [(a 2+2ab+b 2)k -4ab ]∵k ≥1,a 2+b 2≥2ab,∴a 2+2ab+b 2≥4ab ,(a 2+2ab+b 2)k≥4ab. ∴△≥0.∴一定有c, d 值满足题设的条件.即总存在一个矩形B ,使得矩形B 与矩形A 的周长比和面积比都等于k (k ≥1).例6. k 取什么整数值时,下列方程有两个整数解? ①(k 2-1)x 2-6(3k -1)x+72=0 ; ②kx 2+(k 2-2)x -(k+2)=0. 解:①用因式分解法求得两个根是:x 1=, x 2=. 由x 1是整数,得k+1=±1, ±2, ±3, ±4, ±112 k 16-k6, ±12. 由x 2是整数,得k -1=±1, ±2, ±3, ±6.它们的公共解是:得k=0, 2, -2, 3, -5. 答:当k=0, 2, -2, 3, -5时,方程①有两个整数解.②根据韦达定理∵x 1, x 2, k 都是整数,∴k=±1,±2. (这只是整数解的必要条件,而不是充分条件,故要进行检验.)把k=1,-1, 2, -2, 分别代入原方程检验,只有当k=2和k=-2 时适合. 答:当k 取2和-2时,方程②有两个整数解.三、练习1.写出下列方程的整数解:①5x 2-x=0的一个整数根是___.②3x 2+(-3)x -=0的一个整数根是___.⎪⎪⎩⎪⎪⎨⎧--=+-=+-=--=+k k k k x x k k k k x x 222221221322③x 2+(+1)x+=0的一个整数根是___.2.方程(1-m )x 2-x -1=0 有两个不相等的实数根,那么整数m 的最大值是____.3.已知方程x 2-(2m -1)x -4m+2=0 的两个实数根的平方和等于5,则m=___.4.若x ≠y ,且满足等式x 2+2x -5=0 和y 2+2y-5=0.那么=___.(提示:x, y 是方程z 2+5z -5=0 的两个根.)5.如果方程x 2+px+q=0 的一个实数根是另一个实数根的2倍,那么p, q 应满足的关系是:___________.6.若方程ax 2+bx+c=0中a>0, b>0, c<0. 那么两实数根的符号必是______.7.如果方程mx 2-2(m+2)x+m+5=0 没有实数根,那么方程(m -5)x 2-2mx+m=0实数根的个数是( ).(A)2 (B )1 ( C )0 (D )不能确定 8.当a, b 为何值时,方程x 2+2(1+a)x+(3a 2+4ab+4b 2+2)=0 有实数根?55yx 119. 两个方程x2+kx-1=0和x2-x-k=0有一个相同的实数根,则这个根是( )(A)2 (B)-2 (C)1 (D)-1 10.已知:方程x2+ax+b=0与x2+bx+a=0仅有一个公共根,那么a, b应满足的关系是:___________.11. 已知:方程x2+bx+1=0与x2-x-b=0有一个公共根为m,求:m,b的值.12. 已知:方程x2+ax+b=0的两个实数根各加上1,就是方程x2-a2x+ab=0的两个实数根.试求a, b的值或取值范围. 13. 已知:方程ax2+bx+c=0(a≠0)的两根和等于s1,两根的平方和等于s2, 两根的立方和等于s3.求证:as3+bs2+cs1=0.14. 求证:方程x2-2(m+1)x+2(m-1)=0 的两个实数根,不能同时为负.(可用反证法)15. 已知:a, b是方程x2+mx+p=0的两个实数根;c, d是方程x2+nx+q=0的两个实数根.求证:(a-c)(b-c)(a-d)(b-d)=(p-q)2.16. 如果一元二次方程的两个实数根的平方和等于5,两实数根的积是2,那么这个方程是:__________. 17. 如果方程(x -1)(x 2-2x+m)=0的三个根,可作为一个三角形的三边长,那么实数m 的取值范围是 ( )(A ) 0≤m ≤1 (B )m ≥ (C )<m ≤1 (D )≤m ≤118.方程7x 2-(k+13)x+k 2-k -2=0 (k 是整数)的两个实数根为α,β且0<α<1,1<β<2,那么k 的取值范围是( )(A )3<k<4 (B)-2<k<-1 (C) 3<k<4或-2<k<-1 (D )无解434343参考答案1. ①0, ②1, ③-12. 03.1(舍去-2) 4. 5. 9q=2p 2 6. 一正一负 7. D 8. a=1,b=-0.5 9. C10. a+b+1=0, a ≠b 11. m=-1,b=2 12.13. 左边=a(x 13+x 23)+b(x 12+x 22)+c(x 1+x 2)=……14. 用反证法,设x 1<0,x 2<0,由韦达定理推出矛盾(m<-1, m>1)15. 由韦达定理,把左边化为 p, q16. x 2±3x+2=0 17. C 18. C52⎩⎨⎧-=-=⎪⎩⎪⎨⎧≤=.1,241,1b a b a :。