2023青海高考数学文科试题及解析详解

合集下载

精品解析:2023年全国高考甲卷数学(文)试题(解析版)

精品解析:2023年全国高考甲卷数学(文)试题(解析版)

绝密★启用前2023年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必用黑色碳素笔将自己地姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上地准考证号、姓名、考场号、座位号及科目,在规定地位置贴好条形码.2.回答选择题时,选出每小题解析后,用铅笔把答题卡上对应题目地解析标号涂黑,如需改动,用橡皮擦干净后,再选涂其他解析标号.回答非选择题时,将解析写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出地四个选项中,只有一项是符合题目要求地.1. 设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎬⎩⎭∣,则A B = ( )A. {}0,1,2 B. {2,1,0}-- C. {0,1}D. {1,2}【解析】A 【解析】【分析】根据集合地交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2. 某社区通过公益讲座以普及社区居民地垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题地正确率如下图:则( )A. 讲座前问卷答题地正确率地中位数小于70%B. 讲座后问卷答题地正确率地平均数大于85%C. 讲座前问卷答题地正确率地标准差小于讲座后正确率地标准差D. 讲座后问卷答题地正确率地极差大于讲座前正确率地极差【解析】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差地概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题地正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题地正确率地平均数大于85%,所以B 对;讲座前问卷答题地正确率更加分散,所以讲座前问卷答题地正确率地标准差大于讲座后正确率地标准差,所以C 错;讲座后问卷答题地正确率地极差为100%80%20%-=,讲座前问卷答题正确率地极差为95%60%35%20%-=>,所以D 错.故选:B3. 若1i z =+.则|i 3|z z +=( )A.B.C.D. 【解析】D的.【解析】【分析】根据复数代数形式地运算法则,共轭复数地概念以及复数模地计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4. 如图,网格纸上绘制地是一个多面体地三视图,网格小正方形地边长为1,则该多面体地体积为( )A. 8B. 12C. 16D. 20【解析】B 【解析】【分析】由三视图还原几何体,再由棱柱地体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱地体积2422122V +=⨯⨯=.故选:B.5. 将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭地图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω地最小值是( )A.16B.14C.13D.12【解析】C 【解析】【分析】先由平移求出曲线C 地解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω地最小值.【详解】由题意知:曲线C 为sin sin(2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎥⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω地最小值为13.故选:C.6. 从分别写有1,2,3,4,5,6地6张卡片中无放回随机抽取2张,则抽到地2张卡片上地数字之积是4地倍数地概率为( )A.15B.13C.25D.23【解析】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4地倍数地情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4地倍数地有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7. 函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦地图象大致为( )A. B.C. D.【解析】A 【解析】【分析】由函数地奇偶性结合指数函数、三角函数地性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎥⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8. 当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=( )A. 1- B. 12-C.12D. 1【解析】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x '=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9. 在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成地角均为30°,则( )A. 2AB AD= B. AB 与平面11AB C D 所成地角为30°C. 1AC CB =D. 1B D 与平面11BB C C 所成地角为45︒【解析】D 【解析】【分析】根据线面角地定义以及长方体地结构特征即可求出.【详解】如下图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体地结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D==,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为tan c BAE a ∠==所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,11sin 2CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10. 甲、乙两个圆锥地母线长相等,侧面展开图地圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.【解析】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥地侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥地高,再根据圆锥地体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r rl+=,所以1221,33r l r l ==,所以甲圆锥地高1h ==,乙圆锥地高2h ==,所以2112221313r h V V r h ππ===甲乙.故选:C.11. 已知椭圆2222:1(0)x y C a b a b+=>>地离心率为13,12,A A 分别为C 地左、右顶点,B 为C 地上顶点.若121BA BA ⋅=-,则C 地方程为( )A. 2211816x y += B. 22198x y += C. 22132x y += D. 2212x y +=【解析】B【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 地等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆地方程为22198x y +=.故选:B.12. 已知910,1011,89m m m a b ==-=-,则( )A. 0a b >> B. 0a b >> C. 0b a >> D. 0b a>>【解析】A 【解析】【分析】根据指对互化以及对数函数地单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数地单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13. 已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【解析】34-##0.75-的【分析】直接由向量垂直地坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故解析为:34-.14. 设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 地方程为______________.【解析】22(1)(1)5x y -++=【解析】【分析】设出点M 地坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆地方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点地距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 地方程为22(1)(1)5x y -++=.故解析为:22(1)(1)5x y -++=15. 记双曲线2222:1(0,0)x y C a b a b -=>>地离心率为e ,写出满足条件"直线2y x =与C 无公共点"地e 地一个值______________.【解析】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求地e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 地渐近线方程为b y x a=±,结合渐近线地特点,只需02b a <≤,即224b a≤,可满足条件"直线2y x =与C 无公共点"所以==≤=c e a 又因为1e >,所以1e <≤,故解析为:2(满足1e <≤皆可)16. 已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB 后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥=-,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m =.故解析为1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试卷考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 甲、乙两城之间地长途客车均由A和B两家公司运营,为了解这两家公司长途客车地运行情况,随机调查了甲、乙两城之间地500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间地长途客车准点地概率;(2)能否有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bcKa b c d a c b d-=++++, ()2P K k…0.1000.0500.010 k 2.706 3.841 6.635【解析】(1)A,B两家公司长途客车准点地概率分别为12 13,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型地概率公式可求得结果;(2)根据表格中数据及公式计算2K,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A共有班次260次,准点班次有240次,设A家公司长途客车准点事件为M,则24012 ()26013==P M;B共有班次240次,准点班次有210次,设B家公司长途客车准点事件为N,则210 ()27840==P N.A 家公司长途客车准点地概率为1213;B 家公司长途客车准点地概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%地把握认为甲、乙两城之间地长途客车是否准点与客车所属公司有关.18. 记n S 为数列{}n a 地前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 地最小值.【解析】(1)证明见解析; (2)78-.【解析】【分析】(1)依题意可得222n nS n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项地性质求出1a ,即可得到{}n a 地通项公式与前n 项和,再根据二次函数地性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差地等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19. 小明同学参加综合实践活动,设计了一个封闭地包装盒,包装盒如下图所示:底面ABCD 是边长为8(单位:cm )地正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在地平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒地容积(不计包装盒材料地厚度).【解析】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 地中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,即可知四边形EMNF 为平行四边形,于是//EF MN ,最后根据线面平行地判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE -体积地4倍,即可解出.【小问1详解】如下图所示:,分别取,AB BC 地中点,M N ,连接MN ,因为,EAB FBC 为全等地正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直地性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如下图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体地体积等于长方体KMNL EFGH -地体积加上四棱锥B MNFE-体积地4倍.因为MN NL LK KM ====,8sin 60EM == 点B 到平面MNFE 地距离即为点B 到直线MN 地距离d ,d =,所以该几何体地体积(2143V =⨯+⨯⨯=+=20. 已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处地切线也是曲线()y g x =地切线.(1)若11x =-,求a ;(2)求a 地取值范围.【解析】(1)3 (2)[)1,-+∞【解析】【分析】(1)先由()f x 上地切点求出切线方程,设出()g x 上地切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上地切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 地取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处地切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处地切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '地变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭()0,11()1,+∞()h x '-0+0-+()h x527141-则()h x 地值域为[)1,-+∞,故a 地取值范围为[)1,-+∞.21. 设抛物线2:2(0)C y px p =>地焦点为F ,点(),0D p ,过F 地直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 地方程;(2)设直线,MD ND 与C 地另一个交点分别为A ,B ,记直线,MN AB 地倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 地方程.【解析】(1)24y x =; (2):4AB x =+.【解析】【分析】(1)由抛物线地定义可得=2pMF p +,即可得解;(2)设点地坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角地正切公式及基本不等式可得AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线地准线为2px =-,当MD 与x 轴垂直时,点M 地横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 地方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 地倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 1tan 11tan tan 122k k k k αβαβαβ--===≤=+++,当且仅当12k k =即k =,等号成立,所以当αβ-最大时,AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题地关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间地关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做地第一题计分.[选修4-4:坐标系与参数方程]22. 在直角坐标系xOy 中,曲线1C地参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C地参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 地普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 地极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点地直角坐标,及3C 与2C 交点地直角坐标.【解析】(1)()2620y x y =-≥;(2)31,C C 地交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 地交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 地普通方程;(2)将曲线23,C C 地方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 地普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 地普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标1,12⎛⎫--⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23. 已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【解析】(1)见解析 (2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,的为即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学(全国甲卷)文科数学(含答案及详细解析)

2023年高考数学真题试卷(全国甲卷)文科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集,集合,则()A.B.C.D.2.()A.B.1C.D.3.已知向量,则()A.B.C.D.4.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.B.C.D.5.记为等差数列的前项和.若,则()A.25B.22C.20D.156.执行下边的程序框图,则输出的()A.21B.34C.55D.897.设为椭圆的两个焦点,点在上,若,则()A.1B.2C.4D.58.曲线在点处的切线方程为()A.B.C.D.9.已知双曲线的离心率为,其中一条渐近线与圆交于A,B两点,则()A.B.C.D.10.在三棱锥中,是边长为2的等边三角形,,则该棱锥的体积为()A.1B.C.2D.311.已知函数.记,则()A.B.C.D.12.函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为()A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.13.记为等比数列的前项和.若,则的公比为.14.若为偶函数,则.15.若x,y满足约束条件,则的最大值为.16.在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.记的内角的对边分别为,已知.(1)求;(2)若,求面积.18.如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.19.一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.218.820.221.322.523.225.826.527.530.132.634.334.835.635.635.836.237.340.543.2试验组的小白鼠体重的增加量从小到大排序为7.89.211.412.413.215.516.518.018.819.219.820.221.622.823.623.925.128.232.336.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m,再分别统计两样本中小于m与不小于m的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i)中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.841 6.63520.已知函数.(1)当时,讨论的单调性;(2)若,求的取值范围.21.已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.22.已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.23.已知.(1)求不等式的解集;(2)若曲线与轴所围成的图形的面积为2,求.答案解析部分1.【答案】A【解析】【解答】,故选:A【分析】先计算补集,再求并集即得答案.2.【答案】C【解析】【解答】,故选:C【分析】利用复数乘法运算计算由得出答案。

2023年青海省高考文科数学真题及参考答案

2023年青海省高考文科数学真题及参考答案

2023年青海省高考文科数学真题及参考答案一、选择题1.=++3222ii ()A .1B .2C .5D .52.设集合{}8,6,4,2,1,0=U ,集合{}6,4,0=M ,{}6,1,0=N ,则=⋃N C M U ()A .{}8,6,4,2,0B .{}8,6,4,1,0C .{}8,6,4,2,1D .U3.如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为()A .24B .26C .28D .304.在ABC ∆中,内角C B A ,,的对边分别是c b a ,,,若c A b B a =-cos cos ,且5π=C ,则=∠B ()A .10πB .5πC .103πD .52π5.已知()1-=ax xe xe xf 是偶函数,则=a ()A .2-B .1-C .1D .26.正方形ABCD 的边长是2,E 是AB 的中点,则=⋅ED EC ()A .5B .3C .52D .57.设O 为平面坐标系的坐标原点,在区域(){}41,22≤+≤y x y x 内随机取一点A ,则直线OA 的倾斜角不大于4π的概率为()A .81B .61C .41D .218.函数()23++=ax x x f 存在3个零点,则a 的取值范围是()A .()2-∞-,B .()3-∞-,C .()14--,D .()0,3-9.某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A .65B .32C .21D .3110.已知函数()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,直线6π=x 和32π=x 为函数()x f y =的图象的两条对称轴,则=⎪⎭⎫⎝⎛-125πf ()A .23-B .21-C .21D .2311.已知实数y x ,满足042422=---+y x y x ,则y x -的最大值是()A .2231+B .4C .231+D .712.已知B A ,是双曲线1922=-y x 上两点,下列四个点中,可为AB 中点的是()A .()1,1B .()2,1-C .()3,1D .()4,1-二、填空题13.已知点()51,A 在抛物线px y C 22=:上,则A 到C 的准线的距离为.14.若⎪⎭⎫ ⎝⎛∈30πθ,,21tan =θ,则=-θθcos sin .15.若y x ,满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则y x z -=2的最大值为.16.已知点C B A S ,,,均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则=SA .三、解答题(一)必做题17.某厂为比较甲乙两种工艺对橡胶产品伸缩率处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i i y x ,()10,2,1 =i ,试验结果如下试验序号i 12345678910伸缩率i x 545533551522575544541568596548伸缩率iy 536527543530560533522550576536记i i i y x z -=()10,2,1 =i ,记1021,z z z 的样本平均数为z ,样本方差为2s ,(1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果1022s z ≥,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高).18.记n S 为等差数列{}n a 的前n 项和,已知112=a ,4010=S .(1)求{}n a 的通项公式;(2)求数列{}n a 前n 项和n T .19.如图,在三棱锥ABC P -中,BC AB ⊥,2=AB ,22=BC ,6==PC PB ,BC AP BP ,,的中点分别为O E D ,,,点F 在AC 上,AO BF ⊥.(1)证明:EF ∥平面ADO ;(2)若︒=∠120POF ,求三棱锥ABC P -的体积.20.已知函数()()1ln 1+⎪⎭⎫⎝⎛+=x a x x f .(1)当1-=a 时,求曲线()x f 在()()1,1f 的切线方程;(2)若()x f 在()∞+,0单调递增,求a 的取值范围.21.已知椭圆C :()012222>>=+b a bx a y 的离心率为35,点()02,-A 在C 上.(1)求C 的方程;(2)过点()3,2-的直线交曲线C 于Q P ,两点,直线AQ AP ,交y 轴于N M ,两点,证明:线段MN 中点为定点.(二)选做题【选修4-4】22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为⎪⎭⎫ ⎝⎛≤≤=24sin 2πθπθρ,曲线2C :⎩⎨⎧==ααsin 2cos 2y x (α为参数,παπ<<2).(1)写出1C 的直角坐标方程;(2)若直线m x y +=既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】23.已知()22-+=x x x f .(1)求不等式()x x f -≤6的解集;(2)在直角坐标系xOy 中,求不等式组()⎩⎨⎧≤-+≤06y x yx f 所确定的平面区域的面积.参考答案一、选择题123456789101112CADCDBCBADCD1.解:∵i i i i 212122232-=--=++,∴()52121222232=-+=-=++i ii 3.解:如图所示,在长方体1111D C B A ABCD -中,2==BC AB ,31=AA ,点K J I H ,,,为所在棱上靠近点1111,,,A D C B 的三等分点,N M L O ,,,为所在棱的中点,则三视图所对应的几何体为长方体1111D C B A ABCD -去掉长方体11LMHB ONIC -之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方体.4.解:∵C B A -=+π,∴()B A C +=sin sin ,∵c A b B a =-cos cos ,由正弦定理得:B A B A C A B B A sin cos cos sin sin cos sin cos sin +==-∴0cos sin =A B ,∵()π,0∈B ,∴0sin ≠B ,∴0cos =A ,∴2π=A ∵5π=C ,∴10352πππ=-=B .5.解:∵()1-=ax xe xe xf 是偶函数,则()()=--x f x f ()()[]01111=--=-------axx a x ax x axx e e e x e e x e xe ,又∵x 不恒为0,可得()01=--xa xee ,则()x a x 1-=,∴2=a .6.解:以AD AB ,为基底表示:AD AB BC EB EC +=+=21,AD AB AD EA ED +-=+=21,∴31441212122=-=-=⎪⎭⎫⎝⎛+-⎪⎭⎫ ⎝⎛+=⋅AB AD AD AB AD AB ED EC7.解:∵区域(){}41,22≤+≤y x y x 表示以()00,O 为圆心,外圆半径2=R ,内圆半径1=r 的圆环,则直线OA 的倾斜角不大于4π的部分如阴影所示,在第一象限对应的圆心角4π=∠MON ,结合对称性可得所求概率为41242=⨯=ππp .8.解:由条件可知()032=+='a x x f 有两根,∴0<a 要使函数()x f 存在3个零点,则03>⎪⎪⎭⎫ ⎝⎛--a f 且03<⎪⎪⎭⎫⎝⎛-a f ,解得3-<a 9.解:有条件可知656626=⨯=A P .10.解:∵()()ϕω+=x x f sin 在区间⎪⎭⎫⎝⎛326ππ,单调递增,∴26322πππ=-=T ,且0>ω,则π=T ,22==Tπω.当6π=x 时,()x f 取得最小值,则Z k k ∈-=+⋅,2262ππϕπ,则Z k k ∈-=,652ππϕ,不妨取0=k 则()⎪⎭⎫ ⎝⎛-=652sin πx x f ,则2335sin 125=⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-ππf .11.解:由042422=---+y x y x 得()()91222=-+-y x ,令t y x =-,则0=--t y x ,圆心()1,2到直线0=--t y x 的距离为321111222≤-=+--t t ,解得231231+≤≤-t ,∴y x -的最大值为231+.12.解:由对称性只需考虑()1,1,()2,1,()3,1,()4,1即可,注意到()3,1在渐近线上,()1,1,()2,1在渐近线一侧,()4,1在渐近线的另一侧.下证明()4,1点可以作为AB 的中点.设直线AB 的斜率为k ,显然k 存在.设()41+-=x k y l AB :,直线与双曲线联立()⎪⎩⎪⎨⎧=-+-=194122y x x k y ,整理得()()()094429222=------k x k k xk,只需满足⎩⎨⎧>∆=+0221x x ,∴()29422=--k k k ,解得49=k ,此时满足0>∆.二、填空题13.49;14.55-;15.8;16.213.解:由题意可得:()1252⨯=p ,则52=p ,∴抛物线的方程为x y 52=,准线方程为45-=x ,点A 到C 的准线的距离为49451=⎪⎭⎫ ⎝⎛--.14.解:∵⎪⎭⎫⎝⎛∈20πθ,,∴0cos ,0sin >>θθ,由⎪⎩⎪⎨⎧===+21cos sin tan 1cos sin 22θθθθθ,解得552cos ,55sin ==θθ,∴55cos sin -=-θθ.15.解:作出可行域如下图所示,∵y x z -=2,∴z x y -=2,联立有⎩⎨⎧=+-=-9213y x y x ,解得⎩⎨⎧==25y x 设()2,5A ,显然平移直线x y 2=使其经过点A ,此时截距z -最小,则z 最大,代入得8=z .16.解:如图所示,根据题中条件2==OS OA ,3===AC BC AB ,∴3323321=⎪⎪⎭⎫ ⎝⎛⨯⨯==A O r ,∴()⎪⎩⎪⎨⎧+-=+=2121221212A O OO SA OS A O OO OA即()⎪⎩⎪⎨⎧+-=+=222222r d SA R r d R ,代入数据得()⎪⎩⎪⎨⎧+-=+=343422d SA d ,解得2=SA 或1-=SA (舍)三、解答题(一)必做题17.解:(1)∵i i i y x z -=()10,2,1 =i ,∴9536545111=-=-=y x z ;62=z ;83=z ;84-=z ;155=z ;116=z ;197=z ;188=z ;209=z ;1210=z .()()[]1112201819111588691011011021=++++++-+++⨯=++=z z z z ∵()∑=-=1012101i i z z s ,将各对应值代入计算可得612=s (2)由(1)知:11=z ,612=s ,∴5122106121061210222=⨯==s ,121112==z ,∴1022s z ≥∴甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高18.解:(1)设等差数列{}n a 的公差为d ,由题意可得⎪⎩⎪⎨⎧=⨯+==+=402910101111012d a S d a a 解得⎩⎨⎧-==2131d a ,∴数列{}n a 的通项公式为()n d n a a n 21511-=-+=.(2)由(1)知n a n 215-=,令0215>-=n a n 得*∈≤<N n n ,70∴当*∈≤<N n n ,70时,()n n a a n T n n 14221+-=+=;当*∈≥N n n ,8时,nn a a a a a a T +++++++= 98721n a a a a a a ----+++= 98721()n a a a a a a +++-+++= 98721()981414492222777+-=+--⨯=-=--=n n n n T T T T T n n 综上所述⎪⎩⎪⎨⎧∈≤++-∈≤+-=**Nn n n n Nn n n n T n ,7,814,7,142219.解:(1)∵BC AB BF AO ⊥⊥,,∴OAB FBC ∠=∠.22tan ==∠AB OB OAB ,22tan ==∠BC AB ACB ,∴ACB FBC ∠=∠.又点O 为BC 中点,∴BC OF ⊥.又BC AB ⊥∴AB OF ∥.∴点F 为AC 中点.∵点E 为P A 中点,∴PC EF ∥.∵点O D ,分别为BC BP ,中点,∴PC DO ∥,即EFDO ∥∵⊄EF 平面ADO ,⊂DO 平面ADO ,∴EF ∥平面ADO .(2)过点P 作OF PH ⊥,垂足为H .由(1)知BC OF ⊥,在PBC ∆中,PC PB =,∴BC PO ⊥.∵O PO OF =⋂,∴BC ⊥平面POF .又⊂PH 平面POF ,∴PH BC ⊥.又∵OF PH ⊥,O BC OF =⋂,∴PH ⊥平面ABC .在PBC ∆中,222=-=OC PC PO .在POH Rt ∆中,︒=∠60POH ,3sin =∠⋅=POH PO PH ∴362213131=⋅⋅⨯=⋅=∆-BC AB PH S PH V ABC ABC P .20.解:(1)(1)当1-=a 时,()(),1ln 11+⎪⎭⎫⎝⎛-=x x x f ,则()()11111ln 12+⨯⎪⎭⎫⎝⎛-++⨯-='x x x x x f ,据此可得()()2ln 1,01-='=f f ,函数在()()11f ,处的切线方程为()12ln 0--=-x y ,即()02ln 2ln =-+y x .(2)由题意知()()()()()11ln 11111ln 1222+++-+=+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-='x x x x x ax x a x x x x f .若()x f 在()∞+,0上单调递增,则方程()()01ln 12≥++-+x x x ax 在()∞+,0上恒成立,令()()()0,1ln 12>++-+=x x x x ax x h ,则()()1ln 2+-='x ax x h .当21≥a 时,()()01ln 2≥+-='x ax x h 成立,()x h 单调递增且()00=h ,()0≥x h 成立,符合题意.当210<<a 时,()()()0112,1ln 2=+-=''+-='x a x h x ax x h ,则121-=a x ,则()x h '在⎪⎭⎫ ⎝⎛-121,0a 上单调递减,在⎪⎭⎫ ⎝⎛∞+-,121a 上单调递增,()00='h 则()x h 在⎪⎭⎫⎝⎛-121,0a 上单调递减,()00=h ,则⎪⎭⎫⎝⎛-∈121,0a x 上时,()0<x h 不合题意,舍去.当0≤a 时,()()01ln 2<+-='x ax x h ,()x h 单调递减,()00=h ,则()0<x h 不合题意,舍去.∴a 的取值范围为⎪⎭⎫⎢⎣⎡∞+,21.21.解:(1)由题意可得⎪⎪⎪⎩⎪⎪⎪⎨⎧==+==352222a c e c b a b ,解得⎪⎩⎪⎨⎧===523c b a ,∴椭圆的方程为14922=+x y 。

青海2023年高考文科数学真题及答案(详细)

青海2023年高考文科数学真题及答案(详细)

青海2023年高考文科数学真题及答案(详细)青海2023年高考文科数学真题及答案(详细)2023高考志愿怎么填“志愿填报说大也大,比如涉及生涯规划的问题,2000多所高校,林林总总120多个专业,但说小也小,实际上对于多数人没有太大选择余地,也比较简单。

”学校优先原则原则上能上985,不上211,以此类推虽然现在官方不叫985.211了,但传统仍存在。

能上985,不上211,以此类推。

社会上用人单位对毕业学校的评价,实际只有以下几个硬标准,最高的是985,其次是211,其次是本科、专科等等。

在招聘时,经常会对毕业学校有一个要求,即便不公开说,也会悄悄地立下这个规矩。

随着大学招的大学生越来越多,学生分层严重的同时,大学在出口把关不严,看出身只能越来越多,而不会减少。

目前,全国招收700多万大学生,每年毕业700多万,淘汰率很低,没有办法,只能看入口了,这是大家看出身的根本原因。

大家不要拿80年代大学生层次区别不大说事,那时的人如果能上专科学校,放到现在至少都是985了。

其实看出身是世界通则,不止中国,比如哈佛的人,嘴上不说,暗地里也会在意这一点。

哈佛本科的申请录取比只有5%左右,但到了硕士层面,平均下来就超过40-50%了。

本科是你第一出身,一辈子也无法改变,因此需要更加重视。

这里特别要提醒家长与考生的是,在录取时的一本二本等等划分,是最坑人的,千万不要在意这个东西。

一本二本不是一个明确的层次区别,更不是社会上的学校层次区别,只是当地招生办为录取而决定的一个东西。

有的学校在这个省参加一本招生,在另外一个省可能就是二本,比比皆是。

你恰恰需要充分利用这样一点。

比如,如果有985学校部分专业在二本招生,那就去报,最后那块牌子最重要。

听说北大医学部护理专业在一些地区是二本招生,为什么不去先拿一个北大的招牌?在这里,我想提醒,有几个985学校因为地域原因,比较好上。

第一就是西北农林科技大学,地域的确受限制,不仅在西北,还不在西安,在杨凌镇。

2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)(解析版)

2023年全国统一高考数学试卷(文科)(甲卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A.{2,3,5}B.{1,3,4}C.{1,2,4,5}D.{2,3,4,5}【答案】A【解答】解:因为U={1,2,3,4,5},集合M={1,4},N={2,5},所以∁U M={2,3,5},则N∪∁U M={2,3,5}.故选:A.2.(5分)=( )A.﹣1B.1C.1﹣i D.1+i【答案】C【解答】解:==1﹣i.故选:C.3.(5分)已知向量=(3,1),=(2,2),则cos〈+,﹣〉=( )A.B.C.D.【答案】B【解答】解:根据题意,向量=(3,1),=(2,2),则+=(5,3),﹣=(1,﹣1),则有|+|==,|﹣|==,(+)•(﹣)=2,故cos〈+,﹣〉==.故选:B.4.(5分)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .B .C .D .【答案】D【解答】解:某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,基本事件总数n ==6,这2名学生来自不同年级包含的基本事件个数m ==4,则这2名学生来自不同年级的概率为P ===.故选:D .5.(5分)记S n 为等差数列{a n }的前n 项和.若a 2+a 6=10,a 4a 8=45,则S 5=( )A .25B .22C .20D .15【答案】C【解答】解:等差数列{a n }中,a 2+a 6=2a 4=10,所以a 4=5,a 4a 8=5a 8=45,故a 8=9,则d ==1,a 1=a 4﹣3d =5﹣3=2,则S 5=5a 1+=10+10=20.故选:C .6.(5分)执行下边的程序框图,则输出的B =( )A.21B.34C.55D.89【答案】B【解答】解:模拟执行程序框图,如下:n=3,A=1,B=2,k=1,k≤3,A=1+2=3,B=3+2=5,k=2,k≤3,A=3+5=8,B=8+5=13,k=3,k≤3,A=8+13=21,B=21+13=34,k=4,k>3,输出B=34.故选:B.A.1B.2C.4D.5【答案】B【解答】解:根据题意,点P在椭圆上,满足•=0,可得∠F1PF2=,又由椭圆C:+y2=1,其中c2=5﹣1=4,可得|PF1|•|PF2|=2,故选:B.8.(5分)曲线y=在点(1,)处的切线方程为( )A.y=x B.y=x C.y=x+D.y=x+【答案】C【解答】解:因为y=,y′==,故函数在点(1,)处的切线斜率k=,切线方程为y﹣=(x﹣1),即y=.故选:C.9.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,C的一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,则|AB|=( )A.B.C.D.【答案】D【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得c=a,所以b=2a,所以双曲线的渐近线方程为:y=±2x,一条渐近线与圆(x﹣2)2+(y﹣3)2=1交于A,B两点,圆的圆心(2,3),半径为1,圆的圆心到直线y=2x的距离为:=,所以|AB|=2=.故选:D.10.(5分)在三棱锥P﹣ABC中,△ABC是边长为2的等边三角形,PA=PB=2,PC=,则该棱锥的体积为( )A.1B.C.2D.3【答案】A【解答】解:如图,PA=PB=2,AB=BC=2,取AB的中点D,连接PD,CD,可得AB⊥PD,AB⊥CD,又PD∩CD=D,PD、CD⊂平面PCD,∴AB⊥平面PCD,在△PAB与△ABC中,求得PD=CD=,在△PCD中,由PD=CD=,PC=,得PD2+CD2=PC2,则PD⊥CD,∴,∴×AB=.故选:A.11.(5分)已知函数f(x)=.记a=f(),b=f(),c=f(),则( )A.b>c>a B.b>a>c C.c>b>a D.c>a>b【答案】A【解答】解:令g(x)=﹣(x﹣1)2,则g(x)的开口向下,对称轴为x=1,∵,而=,∴,∴,∴由一元二次函数的性质可知g()<g(),∵,而,∴,∴,综合可得,又y=e x为增函数,∴a<c<b,即b>c>a.故选:A.12.(5分)函数y=f(x)的图象由y=cos(2x+)的图象向左平移个单位长度得到,则y=f(x)的图象与直线y=x﹣的交点个数为( )A.1B.2C.3D.4【答案】C【解答】解:y=cos(2x+)的图象向左平移个单位长度得到f(x)=cos (2x+)=﹣sin2x,在同一个坐标系中画出两个函数的图象,如图:y=f(x)的图象与直线y=x﹣的交点个数为:3.故选:C.二、填空题:本大题共4小题,每小题5分,共20分。

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

精品解析:2023年高考全国甲卷数学(文)真题(解析版)

2023年普通高等学校招生全国统一考试(全国甲卷)文科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集,集合,则( )A. B. C. D. 【答案】A 【解析】【分析】利用集合的交并补运算即可得解.【详解】因为全集,集合,所以,又,所以,故选:A.2.( )A. B. 1C. D. 【答案】C 【解析】【分析】利用复数的四则运算求解即可.【详解】故选:C.3. 已知向量,则( ){}1,2,3,4,5U ={}{}1,4,2,5M N ==U N M = ð{}2,3,5{}1,3,4{}1,2,4,5{}2,3,4,5{1,2,3,4,5}U ={1,4}M ={}2,3,5U M =ð{2,5}N ={2,3,5}U N M = ð()()()351i 2i 2i +=+-1-1i-1i+()()351i 51i 1i(2i)(2i)5+-==-+-()()3,1,2,2a b ==cos ,a b a b +-=A.B.C.D.【答案】B 【解析】【分析】利用平面向量模与数量积的坐标表示分别求得,从而利用平面向量余弦的运算公式即可得解.【详解】因为,所以,则,所以.故选:B.4. 某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B.C.D.【答案】D 【解析】【分析】利用古典概率的概率公式,结合组合的知识即可得解.【详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有件,其中这2名学生来自不同年级的基本事件有,所以这2名学生来自不同年级的概率为.故选:D.5. 记为等差数列的前项和.若,则( )A. 25 B. 22C. 20D. 15【答案】C 【解析】【分析】方法一:根据题意直接求出等差数列的公差和首项,再根据前项和公式即可解出;方法二:根据等差数列的性质求出等差数列的公差,再根据前项和公式的性质即可解出.117()(),,a b a b a b a b +-+⋅-(3,1),(2,2)a b ==()()5,3,1,1a b a b +=-=- a b b +==== ()()()51312a b a b +⋅-=⨯+⨯-= ()()cos ,a b a b a b a b a b a b+⋅-+-===+- 1613122324C 6=1122C C 4=4263=n S {}n a n 264810,45a a a a +==5S ={}n a n {}n a n【详解】方法一:设等差数列的公差为,首项为,依题意可得,,即,又,解得:,所以.故选:C.方法二:,,所以,,从而,于是,所以.故选:C.6. 执行下边的程序框图,则输出的( )A. 21B. 34C. 55D. 89【答案】B 【解析】【分析】根据程序框图模拟运行即可解出.【详解】当时,判断框条件满足,第一次执行循环体,,,;当时,判断框条件满足,第二次执行循环体,,,;当时,判断框条件满足,第三次执行循环体,,,;{}n a d 1a 2611510a a a d a d +=+++=135a d +=()()48113745a a a d a d =++=11,2d a ==515455210202S a d ⨯=+⨯=⨯+=264210a a a +==4845a a =45a =89a =84184a a d -==-34514a a d =-=-=53520S a ==B =1k =123A =+=325B =+=112k =+=2k =358A =+=8513B =+=213k =+=3k =81321A =+=211334B =+=314k =+=当时,判断框条件不满足,跳出循环体,输出.故选:B.7. 设为椭圆的两个焦点,点在上,若,则( )A. 1B. 2C. 4D. 5【答案】B 【解析】【分析】方法一:根据焦点三角形面积公式求出的面积,即可解出;方法二:根据椭圆定义以及勾股定理即可解出.【详解】方法一:因为,所以,从而,所以.故选:B.方法二:因为,所以,由椭圆方程可知,,所以,又,平方得:,所以.故选:B.8. 曲线在点处的切线方程为( )A. B. C. D. 【答案】C 【解析】【分析】先由切点设切线方程,再求函数的导数,把切点的横坐标代入导数得到切线的斜率,代入所设方程即可求解.【详解】设曲线在点处的切线方程为,因为,的4k =34B =12,F F 22:15x C y +=P C 120PF PF ⋅= 12PF PF ⋅=12PF F △120PF PF ⋅= 1290FPF ∠=122121tan 4512FP F S b PF PF ===⨯⋅122PF PF ⋅=120PF PF ⋅= 1290FPF ∠= 25142c c =-=⇒=22221212416PF PF F F +===122PF PF a +==22121212216220PF PF PF PF PF PF ++=+=122PF PF ⋅=e 1=+x y x e 1,2⎛⎫ ⎪⎝⎭e 4y x =e 2y x =e e 44y x =+e 3e24y x =+e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭()e 12y k x -=-e 1xy x =+所以,所以所以所以曲线在点处的切线方程为.故选:C9. 已知双曲线交于A ,B 两点,则( )A. B. C.D.【答案】D 【解析】【分析】根据离心率得出双曲线渐近线方程,再由圆心到直线的距离及圆半径可求弦长.【详解】由,则,解得,所以双曲线的一条渐近线不妨取,则圆心到渐近线的距离,所以弦长.故选:D10. 在三棱锥中,是边长为2的等边三角形,为( )A. 1 B.C. 2D. 3【答案】A()()()22e 1e e 11x xxx x y x x +-'==++1e|4x k y ='==()e e124y x -=-e 1xy x =+e 1,2⎛⎫ ⎪⎝⎭e e 44y x =+22221(0,0)x y a b a b -=>>22(2)(3)1x y -+-=||AB =e =222222215c a b b a a a+==+=2ba=2y x =(2,3)d ==||AB ===-P ABC ABC 2,PA PB PC ===【解析】【分析】证明平面,分割三棱锥为共底面两个小三棱锥,其高之和为AB 得解.【详解】取中点,连接,如图,是边长为2的等边三角形,,,又平面,,平面,又,,故,即,所以,故选:A11. 已知函数.记,则( )A. B. C. D. 【答案】A 【解析】【分析】利用作差法比较自变量大小,再根据指数函数的单调性及二次函数的性质判断即可.【详解】令,则开口向下,对称轴为,,而,由二次函数性质知,的AB ⊥PEC AB E ,PE CE ABC 2PA PB ==,PE AB CE AB ∴⊥⊥,PE CE ⊂PEC PE CE E = AB ∴⊥PEC 2PE CE ===PC =222PC PE CE =+PE CE ⊥11121332B PEC A PEC PEC V V V S AB --=+=⋅=⨯=△()2(1)e x f x --=,,a f b f c f ===b c a >>b a c>>c b a>>c a b>>2()(1)g x x =--()g x 1x =4112⎛---=- ⎝22491670-=+-=>41102⎛--=-> ⎝11->g g <,而,,所以,综上,,又为增函数,故,即.故选:A.12. 函数的图象由的图象向左平移个单位长度得到,则的图象与直线的交点个数为( )A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】先利用三角函数平移的性质求得,再作出与的部分大致图像,考虑特殊点处与的大小关系,从而精确图像,由此得解.【详解】因为向左平移个单位所得函数为,所以,而显然过与两点,作出与的部分大致图像如下,考虑,即处与的大小关系,4112⎛--=- ⎝22481682)0-=+=-=-<11-<-g g >g g g <<e x y =a c b <<b c a >>()y f x =cos 26y x π⎛⎫=+ ⎪⎝⎭6π()y f x =1122y x =-()sin 2f x x =-()f x 1122y x =-()f x 1122y x =-πcos 26y x ⎛⎫=+⎪⎝⎭π6πππcos 2cos 2sin 2662y x x x ⎡⎤⎛⎫⎛⎫=++=+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦()sin 2f x x =-1122y x =-10,2⎛⎫- ⎪⎝⎭()1,0()f x 1122y x =-3π3π7π2,2,2222x x x =-==3π3π7π,,444x x x =-==()f x 1122y x =-当时,,;当时,,;当时,,;所以由图可知,与的交点个数为.故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13. 记为等比数列的前项和.若,则的公比为________.【答案】【解析】【分析】先分析,再由等比数列的前项和公式和平方差公式化简即可求出公比.【详解】若,则由得,则,不合题意.所以.当时,因为,所以,即,即,即,解得.故答案为:14. 若偶函数,则________.【答案】2【解析】【分析】根据常见函数的奇偶性直接求解即可.为3π4x =-3π3πsin 142f ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭13π1π4284312y +⎛⎫=⨯--=-<- ⎪⎝⎭3π4x =3π3πsin 142f ⎛⎫=-= ⎪⎝⎭13π13π412428y -=⨯-=<7π4x =7π7πsin 142f ⎛⎫=-= ⎪⎝⎭17π17π412428y -=⨯-=>()f x 1122y x =-3n S {}n a n 6387S S ={}n a 12-1q ≠n q 1q =6387S S =118673a a ⋅=⋅10a =1q ≠1q ≠6387S S =()()6311118711a q a q qq--⋅=⋅--()()638171q q ⋅-=⋅-()()()33381171q q q ⋅+-=⋅-()3817q ⋅+=12q =-12-()2π(1)sin 2f x x ax x ⎛⎫=-+++ ⎪⎝⎭=a【详解】,且函数为偶函数,,解得,故答案为:215. 若x ,y 满足约束条件,则的最大值为________.【答案】15【解析】【分析】由约束条件作出可行域,根据线性规划求最值即可.【详解】作出可行域,如图,由图可知,当目标函数过点时,有最大值,由可得,即,所以.故答案为:1516. 在正方体中,为的中点,若该正方体的棱与球的球面有公共点,则球的半径的取值范围是________.【答案】【解析】【分析】当球是正方体的外接球时半径最大,当边长为的正方形是球的大圆的内接正方形时半径达到最小.【详解】设球的半径为.()()()222π1sin 1cos (2)1cos 2f x x ax x x ax x x a x x ⎛⎫=-+++=-++=+-++ ⎪⎝⎭20a ∴-=2a =323,2331,x y x y x y -≤⎧⎪-+≤⎨⎪+≥⎩32z x y =+322zy x =-+A z 233323x y x y -+=⎧⎨-=⎩33x y =⎧⎨=⎩(3,3)A max 332315z =⨯+⨯=1111ABCD A B C D -4,AB O =1AC OO 4R当球是正方体的外接球时,恰好经过正方体的每个顶点,所求的球的半径最大,若半径变得更大,球会包含正方体,导致球面和棱没有交点,正方体的外接球直径为体对角线长,即,故;分别取侧棱的中点,显然四边形是边长为的正方形,且为正方形的对角线交点,连接,则的外接圆,球的半径达到最小,即的最小值为综上,.故答案为:三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 记的内角的对边分别为,已知.(1)求;(2)若,求面积.【答案】(1) (2【解析】分析】(1)根据余弦定理即可解出;【2R '1AC ==2R R ''==max R =1111,,,AA BB CC DD ,,,M H G N MNGH 4O MNGH MG MG =MNGH R R ∈ABC ,,A B C ,,a b c 2222cos b c aA+-=bc cos cos 1cos cos a B b A ba Bb A c--=+ABC 1(2)由(1)可知,只需求出即可得到三角形面积,对等式恒等变换,即可解出.【小问1详解】因为,所以,解得:.【小问2详解】由正弦定理可得,变形可得:,即,而,所以,又,所以,故的面积为.18. 如图,在三棱柱中,平面.(1)证明:平面平面;(2)设,求四棱锥的高.【答案】(1)证明见解析. (2)【解析】【分析】(1)由平面得,又因为,可证平面,从而证得平面平面;(2) 过点作,可证四棱锥的高为,由三角形全等可证,从而证得为中点,设,由勾股定理可求出,再由勾股定理即可求.sin A 2222cos a b c bc A =+-2222cos 22cos cos b c a bc Abc A A+-===1bc =cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A B aB b A c A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B B A B A B A B ---=-==+++()()sin sin sin A B A B B --+=2cos sin sin A B B -=0sin 1B <≤1cos 2A =-0πA <<sin A =ABC 11sin 122ABC S bc A ==⨯=△111ABC A B C -1A C ⊥,90ABC ACB ∠=︒11ACC A ⊥11BB C C 11,2AB A B AA ==111A BB C C -11A C ⊥ABC 1A C BC ⊥AC BC ⊥BC ⊥11ACC A 11ACC A ⊥11BCC B 1A 11A O CC ⊥1AO 1A C AC =O 1CC 1A C AC x ==x 1AO【小问1详解】证明:因为平面,平面,所以,又因为,即,平面,,所以平面,又因为平面,所以平面平面.【小问2详解】如图,过点作,垂足为.因为平面平面,平面平面,平面,所以平面,所以四棱锥的高为.因为平面,平面,所以,,又因为,为公共边,所以与全等,所以.设,则,所以为中点,,1A C ⊥ABC BC ⊂ABC 1A C BC ⊥90ACB ∠= ACBC ⊥1,A C AC ⊂11ACC A 1AC AC C ⋂=BC⊥11ACC A BC ⊂11BCC B 11ACC A ⊥11BCC B 1A 11A O CC ⊥O 11ACC A ⊥11BCC B 11ACC A 111BCC B CC =1A O ⊂11ACC A 1A O ⊥11BCC B 111A BB C C -1AO 1A C ⊥ABC ,AC BC ⊂ABC 1A C BC ⊥1A C AC ⊥1A B AB =BC ABC 1A BC 1A C AC =1A C AC x ==11A C x =O 1CC 11112OC AA ==又因为,所以,即,解得,所以,所以四棱锥的高为.19. 一项试验旨在研究臭氧效应,试验方案如下:选40只小白鼠,随机地将其中20只分配到试验组,另外20只分配到对照组,试验组的小白鼠饲养在高浓度臭氧环境,对照组的小白鼠饲养在正常环境,一段时间后统计每只小白鼠体重的增加量(单位:g ).试验结果如下:对照组的小白鼠体重的增加量从小到大排序为15.2 18.8 20.2 21.3 22.5 23.2 25.8 26.5 27.5 30.132.6 34.3 34.8 35.6 35.6 35.8 36.2 37.3 40.5 43.2试验组的小白鼠体重的增加量从小到大排序为7.8 9.2 11.4 12.4 13.2 15.5 16.5 18.0 18.8 19.219.8 20.2 21.6 22.8 23.6 23.9 25.1 28.2 32.3 36.5(1)计算试验组的样本平均数;(2)(ⅰ)求40只小白鼠体重的增加量的中位数m ,再分别统计两样本中小于m 与不小于m 的数据的个数,完成如下列联表对照组试验组(ⅱ)根据(i )中的列联表,能否有95%的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异?附:,0.1000.0500.0102.7063.8416.635【答案】(1)1A C AC ⊥22211AC AC AA +=2222x x +=x=11A O ===111A BB C C -1m<m≥()()()()22()n ad bc K a b c d a c b d -=++++()2P K k ≥k19.8(2)(i );列联表见解析,(ii )能【解析】【分析】(1)直接根据均值定义求解;(2)(i )根据中位数的定义即可求得,从而求得列联表;(ii )利用独立性检验的卡方计算进行检验,即可得解.【小问1详解】试验组样本平均数为:【小问2详解】(i )依题意,可知这40只小鼠体重的中位数是将两组数据合在一起,从小到大排后第20位与第21位数据的平均数,由原数据可得第11位数据为,后续依次为,故第20位为,第21位数据为,所以,故列联表为:合计对照组61420试验组14620合计202040(ii )由(i )可得,,所以能有的把握认为小白鼠在高浓度臭氧环境中与在正常环境中体重的增加量有差异.20. 已知函数.(1)当时,讨论的单调性;23.4m =23.4m =1(7.89.211.412.413.215.516.518.018.819.219.820.220+++++++++++39621.622.823.623.925.128.232.336.5)19.820++++++++==18.819.2,19.8,20.2,20.2,21.3,21.6,22.5,22.8,23.2,23.6, 23.223.623.223.623.42m +==m<m≥2240(661414) 6.400 3.84120202020K ⨯⨯-⨯==>⨯⨯⨯95%()2sin π,0,cos 2x f x ax x x ⎛⎫=-∈ ⎪⎝⎭1a =()f x(2)若,求的取值范围.【答案】(1)在上单调递减(2)【解析】【分析】(1)代入后,再对求导,同时利用三角函数的平方关系化简,再利用换元法判断得其分子与分母的正负情况,从而得解;(2)法一:构造函数,从而得到,注意到,从而得到,进而得到,再分类讨论与两种情况即可得解;法二:先化简并判断得恒成立,再分类讨论,与三种情况,利用零点存在定理与隐零点的知识判断得时不满足题意,从而得解.【小问1详解】因为,所以,则,令,由于,所以,所以,因为,,,所以在上恒成立,所以在上单调递减.【小问2详解】法一:()sin 0f x x +<a ()f x π0,2⎛⎫⎪⎝⎭0a ≤1a =()f x ()f x '()()sin g x f x x =+()0g x <()00g =()00g '≤0a ≤0a =a<02sin sin 0cos xx x-<0a =a<00a >0a >1a =()2sin π,0,cos 2x f x x x x ⎛⎫=-∈ ⎪⎝⎭()()22432cos cos 2cos sin sin cos 2sin 11cos cos x x x x xx xf x xx--+'=-=-()3333222cos cos 21cos coscos 2cos cos x x xx x xx---+-==cos t x =π0,2x ⎛⎫∈ ⎪⎝⎭()cos 0,1t x =∈()()()23233222cos cos 22221211x x t t t t t tt t t +-=+-=-+-=-++-()()2221t t t =++-()2222110t t t ++=++>10t -<33cos 0x t =>()233cos cos 20cos x x f x x +-'=<π0,2⎛⎫ ⎪⎝⎭()f x π0,2⎛⎫⎪⎝⎭构建,则,若,且,则,解得,当时,因为,又,所以,,则,所以,满足题意;当时,由于,显然,所以,满足题意;综上所述:若,等价于,所以的取值范围为.法二:因为,因为,所以,,故在上恒成立,所以当时,,满足题意;当时,由于,显然,所以,满足题意;()()2sin πsin sin 0cos 2x g x f x x ax x x x ⎛⎫=+=-+<< ⎪⎝⎭()231sin πcos 0cos 2x g x a x x x +⎛⎫'=-+<< ⎪⎝⎭()()sin 0g x f x x =+<()()00sin 00g f =+=()0110g a a '=-+=≤0a ≤0a =22sin 1sin sin 1cos cos x x x x x ⎛⎫-=- ⎪⎝⎭π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<211cos x>()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<()sin 0f x x +<0a ≤a (],0-∞()2232222sin cos 1sin sin cos sin sin sin cos cos cos cos x x x x x x x x x x x x---===-π0,2x ⎛⎫∈ ⎪⎝⎭0sin 1x <<0cos 1x <<2sin sin 0cos x x x-<π0,2⎛⎫⎪⎝⎭0a =()2sin sin sin 0cos xf x x x x+=-<a<0π02x <<0ax <()22sin sin sin sin sin 0cos cos x xf x x ax x x x x+=-+<-<当时,因为,令,则,注意到,若,,则在上单调递增,注意到,所以,即,不满足题意;若,,则,所以在上最靠近处必存在零点,使得,此时在上有,所以在上单调递增,则在上有,即,不满足题意;综上:.【点睛】关键点睛:本题方法二第2小问讨论这种情况的关键是,注意到,从而分类讨论在上的正负情况,得到总存在靠近处的一个区间,使得,从而推得存在,由此得解.21. 已知直线与抛物线交于两点,.(1)求;(2)设为的焦点,为上两点,且,求面积的最小值.【答案】(1) (2)【解析】【分析】(1)利用直线与抛物线的位置关系,联立直线和抛物线方程求出弦长即可得出;(2)设直线:,利用,找到的关系,以及0a >()322sin sin sin sin cos cos x xf x x ax x ax x x+=-+=-()32sin π0cos 2x g x ax x x ⎛⎫=-<< ⎪⎝⎭()22433sin cos 2sin cos x x xg x a x+'=-()22433sin 0cos 02sin 000cos 0g a a +'=-=>π02x ∀<<()0g x '>()g x π0,2⎛⎫⎪⎝⎭()00g =()()00g x g >=()sin 0f x x +>0π02x ∃<<()00g x '<()()000g g x ''<π0,2⎛⎫⎪⎝⎭0x =1π20,x ⎛⎫∈ ⎪⎝⎭()10g x '=()g x '()10,x ()0g x '>()g x ()10,x ()10,x ()()00g x g >=()sin 0f x x +>0a ≤0a >()00g '>()g x 'π0,2⎛⎫⎪⎝⎭0x =()0g x '>()()00g x g >=210x y -+=2:2(0)C y px p =>,A B AB =p F C ,M N C 0FM FN ⋅=MFN △2p =12-p MN x my n =+()()1122,,,,M x y N x y 0MF NF ⋅=,m n MNF的面积表达式,再结合函数的性质即可求出其最小值.【小问1详解】设,由可得,,所以,所以即,因为,解得:.【小问2详解】因为,显然直线的斜率不可能为零,设直线:,,由可得,,所以,,,因为,所以,即,亦即,将代入得,,,所以,且,解得或.设点到直线的距离为,所以,所以的面积,而或,所以,()(),,,A A B B A x y B x y 22102x y y px-+=⎧⎨=⎩2420y py p -+=4,2A B A B y y p y y p +==B AB y ==-==2260p p --=0p >2p =()1,0F MN MN x my n =+()()1122,,,M x y N x y 24y x x my n⎧=⎨=+⎩2440y my n --=12124,4y y m y y n +==-22161600m n m n ∆=+>⇒+>0MF NF ⋅=()()1212110x x y y --+=()()1212110my n my n y y +-+-+=()()()()2212121110m y y m n y y n ++-++-=12124,4y y m y y n +==-22461m n n =-+()()22410m n n +=->1n ≠2610n n -+≥3n ≥+3n ≤-F MN d d 2MN y ==-=1==-MNF ()2111122S MN d n =⨯⨯=-=-3n ≥+3n ≤-当时,的面积【点睛】本题解题关键是根据向量的数量积为零找到的关系,一是为了减元,二是通过相互的制约关系找到各自的范围,为得到的三角形面积公式提供定义域支持,从而求出面积的最小值.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](10分)22. 已知点,直线(为参数),为的倾斜角,与轴正半轴、轴正半轴分别交于,且.(1)求;(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求的极坐标方程.【答案】(1)(2)【解析】【分析】(1)根据的几何意义即可解出;(2)求出直线的普通方程,再根据直角坐标和极坐标互化公式即可解出.【小问1详解】因为与轴,轴正半轴交于两点,所以,令,,令,,所以,所以,即,解得,因为,所以.【小问2详解】由(1)可知,直线的斜率为,且过点,所以直线的普通方程为:,即,由可得直线的极坐标方程为.3n =-MNF (2min 212S =-=-,m n ()2,1P 2cos ,:1sin x t l y t αα=+⎧⎨=+⎩t αl l x y ,A B 4PA PB ⋅=αx l 3π4cos sin 30ραρα+-=t l l x y ,A B ππ2α<<0x =12cos t α=-0y =21sin t α=-21244sin cos sin 2PA PB t t ααα====sin 21α=±π2π2k α=+π1π,42k k α=+∈Z ππ2α<<3π4α=l tan 1α=-()2,1l ()12y x -=--30x y +-=cos ,sin x y ραρα==l cos sin 30ραρα+-=[选修4-5:不等式选讲](10分)23. 已知.(1)求不等式的解集;(2)若曲线与坐标轴所围成的图形的面积为2,求.【答案】(1) (2【解析】【分析】(1)分和讨论即可;(2)写出分段函数,画出草图,表达面积解方程即可.【小问1详解】若,则,即,解得,即,若,则,解得,即,综上,不等式的解集为.【小问2详解】.画出的草图,则与坐标轴围成与的高为,所以所以解得,()2,0f x x a a a =-->()f x x <()y f x =a ,33a a ⎛⎫⎪⎝⎭x a ≤x a >x a ≤()22f x a x a x =--<3x a >3a x >3ax a <≤x a >()22f x x a a x =--<3x a <3a x a <<,33a a ⎛⎫ ⎪⎝⎭2,()23,x a x af x x a x a -+≤⎧=⎨->⎩()f x ()f x ADO △ABCABC 3,(0,),,0,,022a a a D a A B ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭||=AB a21132224OAD ABC S S OA a AB a a +=⋅+⋅== a =三人行教育资源。

2023年高考全国乙卷文科数学试题(含答案详解)

2023年高考全国乙卷文科数学试题(含答案详解)

2023年普通高等学校招生全国统一考试(全国乙卷)文科数学一、选择题1. 232i 2i ++=( )A. 1B. 2C.D. 52. 设全集{}0,1,2,4,6,8U =,集合{}{}0,4,6,0,1,6M N ==,则M ∪C U N ( ) A. {}0,2,4,6,8B. {}0,1,4,6,8C. {}1,2,4,6,8D. U3. 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A. 24B. 26C. 28D. 304. 在ABC 中,内角,,A B C 的对边分别是,,a b c ,若cos cos a B b A c −=,且5C π=,则B ∠=( )A.10π B.5π C.310π D.25π 5. 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 26. 正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( )A.B. 3C. D. 57. 设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B.16C.14D.128. 函数()32f x x ax =++存在3个零点,则a 的取值范围是( )A. (),2−∞−B. (),3−∞−C. ()4,1−−D. ()3,0−9. 某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.56B.23C.12D.1310. 已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫ ⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭( )A. B. 12−C.12D.11. 已知实数,x y 满足224240x y x y +−−−=,则x y −的最大值是( )A. 1+B. 4C. 1+D. 712. 设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( )A. ()1,1B. ()1,2-C. ()1,3D. ()1,4−−二、填空题13.已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 14. 若π10,,tan 22⎛⎫∈= ⎪⎝⎭θθ,则sin cos θθ−=________. 15. 若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.16. 已知点,,,S A B C 均在半径为2的球面上,ABC 是边长为3的等边三角形,SA ⊥平面ABC ,则SA =________. 三、解答题17. 某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,2s ;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥为有显著提高)18.记n S 为等差数列{}n a 的前n 项和,已知21011,40a S ==. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .19.如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积. 20.已知函数()()1ln 1f x a x x ⎛⎫=++⎪⎝⎭. (1)当1a =−时,求曲线()y f x =在点()()1,f x 处的切线方程. (2)若函数()f x 在()0,∞+单调递增,求a 的取值范围.21.已知椭圆2222:1(0)C bb x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程;(2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.【选修4-4】(10分)22.在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围.【选修4-5】(10分)23.已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.2023年普通高等学校招生全国统一考试(全国乙卷)答案详解文科数学(2023·全国乙卷·文·1·★)232i 2i ++=( )(A )1 (B )2 (C (D 答案:C解析:2322i 2i 212i i 212(1)i 12i ++=−+⨯⨯=−+⨯−⨯=−=.(2023·全国乙卷·文·2·★)设全集{0,1,2,4,6,8}U =,集合{0,4,6}M =,{0,1,6}N =,M ∪C U N 则( ) (A ){0,2,4,6,8} (B ){0,1,4,6,8} (C ){1,2,4,6,8} (D )U 答案:A解析:由题意,C U N ={2,4,8},所以M ∪C U N ={0,2,4,6,8}.(2023·全国乙卷·文·3·★) 如图,网格纸上绘制的一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30答案:D解析:如图所示,在长方体1111ABCD A B C D −中,2AB BC ==,13AA =,点,,,H I J K 为所在棱上靠近点1111,,,B C D A 的三等分点,,,,O L M N 为所在棱的中点,则三视图所对应的几何体为长方体1111ABCD A B C D −去掉长方体11ONIC LMHB −之后所得的几何体,该几何体的表面积和原来的长方体的表面积相比少2个边长为1的正方形, 其表面积为:()()()22242321130⨯⨯+⨯⨯−⨯⨯=.(2023·全国乙卷·文·4·★★)在ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,若cos cos a B b A c −=,且5C π=则,在B =( ) (A )10π(B )5π (C )310π (D )25π 答案:C解法1:所给边角等式每一项都有齐次的边,要求的是角,故用正弦定理边化角分析, 因为cos cos a B b A c −=,所以sin cos sin cos sin A B B A C −=,故sin()sin A B C −= ①, 已知C ,先将C 代入,再利用A B C π++=将①中的A 换成B 消元, 因为5C π=,所以45A B C ππ+=−=,故45A B π=−,代入①得4sin(2)sin 55B ππ−= ②, 因为45A B π+=,所以405B π<<,故4442555B πππ−<−<,结合②可得4255B ππ−=,所以310B π=.解法2:按解法1得到sin cos sin cos sin A B B A C −=后,观察发现若将右侧sin C 拆开,也能出现左边的两项,故拆开来看,sin sin[()]sin()sin cos cos sin C A B A B A B A B π=−+=+=+,代入sin cos sin cos sin A B B A C −=得:sin cos sin cos sin cos sin cos A B B A A B B A −=+,化简得:sin cos 0B A =,因为0B π<<,所以sin 0B >,故cos 0A =,结合0A π<<可得2A π=,所以43510B A ππ=−=.(2023·全国乙卷·文·5·★★) 已知e ()e 1xax x f x =−是偶函数,则=a ( )A. 2−B. 1−C. 1D. 2答案:D解析:因为()e e 1x ax x f x =−为偶函数,则()()()()1e e e e 0e 1e 1e 1a x x x x ax ax ax x x x f x f x −−−⎡⎤−−⎣⎦−−=−==−−−, 又因为x 不恒为0,可得()1e e 0a x x −−=,即()1e e a x x −=,则()1x a x =−,即11a =−,解得2a =.(2023·全国乙卷·文·6·★)正方形ABCD 的边长是2,E 是AB 的中点,则EC ED ⋅=( ) (A(B )3 (C) (D )5 答案:B解析:如图,EC ,ED 共起点,且中线、底边长均已知,可用极化恒等式求数量积, 由极化恒等式,223EC ED EF CF ⋅=−=.A BCDE F(2023·全国乙卷·文·7·★★)设O 为平面坐标系的坐标原点,在区域(){}22,14x y xy ≤+≤内随机取一点A ,则直线OA 的倾斜角不大于π4的概率为( ) A.18B. 16C.14D.12答案:C 解析:因为区域(){}22,|14x y xy ≤+≤表示以()0,0O 圆心,外圆半径2R =,内圆半径1r =的圆环,则直线OA 的倾斜角不大于π4的部分如阴影所示,在第一象限部分对应的圆心角π4MON ∠=, 结合对称性可得所求概率π2142π4P ⨯==.(2023·全国乙卷·文·8·★★★)函数3()2f x x ax =++存在3个零点,则a 的取值范围是( ) (A )(,2)−∞− (B )(,3)−∞− (C )(4,1)−− (D )(3,0)− 答案:B解法1:观察发现由320x ax ++=容易分离出a ,故用全分离,先分析0x =是否为零点, 因为(0)20f =≠,所以0不是()f x 的零点;当0x ≠时,3322()0202f x x ax ax x a x x=⇔++=⇔=−−⇔=−−, 所以直线y a =与函数22(0)y x x x =−−≠的图象有3个交点,要画此函数的图象,需求导分析,令22()(0)g x x x x =−−≠,则3222222(1)2(1)(1)()2x x x x g x x x x x −−++'=−+==, 因为22131()024x x x ++=++>,所以()00g x x '>⇔<或01x <<,()01g x x '<⇔>,故()g x 在(,0)−∞上,在(0,1)上,在(1,)+∞上,又lim ()x g x →−∞=−∞,当x 分别从y 轴左、右两侧趋近于0时,()g x 分别趋于+∞,−∞,(1)3g =−,lim ()x g x →+∞=−∞,所以()g x 的大致图象如图1,由图可知要使y a =与()y g x =有3个交点,应有3a <−.解法2:如图2,三次函数有3个零点等价于两个极值异号,故也可直接求导分析极值,由题意,2()3f x x a '=+,要使()f x 有2个极值点,则()f x '有两个零点,所以120a ∆=−>,故0a <, 令()0f x '=可得x =322f =+=,3(((22f a =++=,故34(2)(2)4027a f f =+=+<,解得:3a <−.a=1图2图(2023·全国乙卷·文·9·★)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( ) A.56B.23C.12D.13答案:A解析:甲有6种选择,乙也有6种选择,故总数共有6636⨯=种, 若甲、乙抽到的主题不同,则共有26A 30=种, 则其概率为305366=,(2023·全国乙卷·文·10·★★★)已知函数()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增,直线π6x =和2π3x =为函数()y f x =的图像的两条对称轴,则5π12f ⎛⎫−= ⎪⎝⎭() A. B. 12−C.12D.2答案:D解析:因为()sin()f x x ωϕ=+在区间π2π,63⎛⎫⎪⎝⎭单调递增, 所以2πππ2362T =−=,且0ω>,则πT =,2π2w T ==, 当π6x =时,()f x 取得最小值,则ππ22π62k ϕ⋅+=−,Z k ∈,则5π2π6k ϕ=−,Z k ∈,不妨取0k =,则()5πsin 26f x x ⎛⎫=− ⎪⎝⎭,则5π5πsin 1232f ⎛⎫⎛⎫−=−= ⎪ ⎪⎝⎭⎝⎭,(2023·全国乙卷·文·11·★★★)已知实数x ,y 满足224240x y x y +−−−=,则x y −的最大值是( )(A )1 (B )4 (C )1+ (D )7 答案:C解法1:所给等式可配方化为平方和结构,故考虑三角换元,22224240(2)(1)9x y x y x y +−−−=⇒−+−=,令23cos 13sin x y θθ=+⎧⎨=+⎩,则23cos 13sin 1)4x y πθθθ−=+−−=−−,θ∈R ,所以当sin()14πθ−=−时,x y −取得最大值1+解法2:所给方程表示圆,故要求x y −的最大值,也可设其为t ,看成直线,用直线与圆的位置关系处理,22224240(2)(1)9x y x y x y +−−−=⇒−+−= ①,设t x y =−,则0x y t −−=,因为x ,y 还满足①,所以直线0x y t −−=与该圆有交点,从而圆心(2,1)到直线的距离3d =≤,解得:11t −≤≤+max ()1x y −=+(2023·全国乙卷·文·12·★★★★)设A ,B 为双曲线2219y x −=上两点,下列四个点中,可为线段AB 中点的是( ) A. ()1,1 B. ()1,2-C. ()1,3D. ()1,4−−答案:D解析:设()()1122,,,A x y B x y ,则AB 的中点1212,22x x y y M ++⎛⎫⎪⎝⎭,可得1212121212122,2ABy y y y y y k k x x x x x x +−+===+−+,因为,A B 在双曲线上,则221122221919y x y x ⎧−=⎪⎪⎨⎪−=⎪⎩,两式相减得()2222121209y y x x −−−=, 所以221222129AB y y k k x x −⋅==−. 对于选项A : 可得1,9AB k k ==,则:98AB y x =−,联立方程229819y x y x =−⎧⎪⎨−=⎪⎩,消去y 得272272730x x −⨯+=,此时()2272472732880∆=−⨯−⨯⨯=−<, 所以直线AB 与双曲线没有交点,故A 错误; 对于选项B :可得92,2AB k k =−=−,则95:22AB y x =−−, 联立方程22952219y x y x ⎧=−−⎪⎪⎨⎪−=⎪⎩,消去y 得245245610x x +⨯+=, 此时()224544561445160∆=⨯−⨯⨯=−⨯⨯<, 所以直线AB 与双曲线没有交点,故B 错误; 对于选项C :可得3,3AB k k ==,则:3AB y x =由双曲线方程可得1,3a b ==,则:3AB y x =为双曲线的渐近线, 所以直线AB 与双曲线没有交点,故C 错误; 对于选项D :94,4AB k k ==,则97:44AB y x =−,联立方程22974419y x y x ⎧=−⎪⎪⎨⎪−=⎪⎩,消去y 得2631261930x x +−=, 此时21264631930∆=+⨯⨯>,故直线AB 与双曲线有交两个交点,故D 正确;(2023·全国乙卷·文·13·★)已知点(A 在抛物线C :22y px =上,则A 到C 的准线的距离为______. 答案:94解析:由题意可得:221p =⨯,则25p =,抛物线的方程为25y x =,准线方程为54x =−,点A 到C 的准线的距离为59144⎛⎫−−= ⎪⎝⎭.(2023·全国乙卷·文·14·★)若(0,)2πθ∈,1tan 3θ=,则sin cos θθ−=_____.答案: 解析:已知tan θ,可先求出sin θ和cos θ, 由题意,sin 1tan cos 3θθθ==,所以cos 3sin θθ=,代入22cos sin 1θθ+=可得210sin 1θ=, 又(0,)2πθ∈,所以sin θ=,cos θ=,故sin cos θθ−=(2023·全国乙卷·文·15·★★)若x ,y 满足约束条件312937x y x y x y −≤−⎧⎪+≤⎨⎪+≥⎩,则2z x y =−的最大值为______.答案:8解析:作出可行域如下图所示:z =2x −y ,移项得y =2x −z , 联立有3129x y x y −=−⎧⎨+=⎩,解得52x y =⎧⎨=⎩,设()5,2A ,显然平移直线2y x =使其经过点A ,此时截距−z 最小,则z 最大,代入得z =8,(2023·全国乙卷·文·16·★★★)已知点S ,A ,B ,C 均在半径为2的球面上,ABC ∆是边长为3的等边三角形,SA ⊥平面ABC ,则SA =_____. 答案:2解析:有线面垂直,且ABC ∆是等边三角形,属外接球的圆柱模型,核心方程是222()2hr R +=,如图,圆柱的高h SA =,底面半径r 即为ABC ∆的外接圆半径,所以233r ==, 由题意,球的半径2R =,因为222()2hr R +=,所以23()42h +=,解得:2h =,故2SA =.(2023·全国乙卷·文·17·★★★)某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行10次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率.甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为i x ,()1,2,,10i y i =⋅⋅⋅.试验结果如下:记()1,2,,10i i i z x y i =−=⋅⋅⋅,记1210,,,z z z ⋅⋅⋅的样本平均数为z ,样本方差为2s . (1)求z ,s 2;(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高(如果z ≥则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高) 答案:(1)11z =,261s =;(2)认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高. 解析:(1)545533551522575544541568596548552.310x +++++++++==,536527543530560533522550576536541.310y +++++++++==,552.3541.311z x y =−=−=,i i i z x y =− 的值分别为: 9,6,8,8,15,11,19,18,20,12−,故2222222222(911)(611)(811)(811)(1511)0(1911)(1811)(2011)(1211)6110s −+−+−+−−+−++−+−+−+−==(2)由(1)知:11z =,==z ≥ 所以认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高.(2023·全国乙卷·文·18·★★★)记n S 为等差数列{}n a 的前n 项和,已知211a =,1040S =. (1)求{}n a 的通项公式; (2)求数列{}n a 的前n 项和n T .解:(1)(已知条件都容易代公式,故直接用公式翻译,求出1a 和d ) 设{}n a 的公差为d ,则2111a a d =+= ①, 101104540S a d =+= ②,联立①②解得:113a =,2d =−,所以1(1)13(1)(2)152n a a n d n n =+−=+−⨯−=−.(2)(通项含绝对值,要求和,先去绝对值,观察发现{}n a 前7项为正,从第8项起为负,故据此讨论) 当7n ≤时,0n a >,所以12n n T a a a =++⋅⋅⋅+ 2112()(13152)1422n n n a a n n a a a n n ++−=++⋅⋅⋅+===−; 当8n ≥时,12n n T a a a =++⋅⋅⋅+ 12789n a a a a a a =++⋅⋅⋅+−−−⋅⋅⋅− 127122()()n a a a a a a =++⋅⋅⋅+−++⋅⋅⋅+ 27(131)(13152)2149822n n n n ⨯++−=⨯−=−+; 综上所述,2214,71498,8n n n n T n n n ⎧−≤⎪=⎨−+≥⎪⎩.(2023·全国乙卷·文·19·★★★)如图,在三棱锥−P ABC 中,AB BC ⊥,2AB =,BC =PB PC ==,,BP AP BC 的中点分别为,,D E O ,点F 在AC 上,BF AO ⊥.(1)求证:EF //平面ADO ;(2)若120POF ∠=︒,求三棱锥−P ABC 的体积.答案:(1)证明见解析 (2解析:(1)连接,DE OF ,设AF tAC =,则(1)BF BA AF t BA tBC =+=−+,12AO BA BC =−+,BF AO ⊥, 则2211[(1)]()(1)4(1)4022BF AO t BA tBC BA BC t BA tBC t t ⋅=−+⋅−+=−+=−+=, 解得12t =,则F 为AC 的中点,由,,,D E O F 分别为,,,PB PA BC AC 的中点,于是11//,,//,22DE AB DE AB OF AB OF AB ==,即,//DE OF DE OF =,则四边形ODEF 为平行四边形,//,EF DO EF DO =,又EF ⊄平面,ADO DO ⊂平面ADO ,所以//EF 平面ADO .(2)过P 作PM 垂直FO 的延长线交于点M , 因为,PB PC O =是BC 中点,所以PO BC ⊥,在Rt PBO △中,12PB BO BC ===2PO ===, 因为,//AB BC OF AB ⊥,所以OF BC ⊥,又PO OF O ⋂=,,PO OF ⊂平面POF , 所以BC⊥平面POF ,又PM ⊂平面POF ,所以BC PM ⊥,又BC FM O =,,BC FM ⊂平面ABC ,所以PM ⊥平面ABC ,即三棱锥−P ABC 的高为PM ,因为120POF ∠=︒,所以60POM ∠=︒,所以sin 6022PM PO =︒=⨯=,又11222ABC S AB BC =⋅=⨯⨯=△所以11333P ABC ABC V S PM −=⋅=⨯=△.(2023·全国乙卷·文·20·★)已知函数1()()ln(1)f x a x x=++.(1)当1a =−时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围. 答案:(1)()ln 2ln 20x y +−=; (2)1|2a a ⎧⎫≥⎨⎬⎩⎭. 解析:(1)当1a =−时,()()()11ln 11f x x x x ⎛⎫=−+>−⎪⎝⎭, 则()()2111ln 111x f x x x x ⎛⎫'=−⨯++−⨯ ⎪+⎝⎭, 据此可得()()10,1ln 2f f '==−,所以函数在()()1,1f 处的切线方程为()0ln 21y x −=−−,即()ln 2ln 20x y +−=. (2)由函数的解析式可得()()()2111=ln 111f x x a x x x x ⎛⎫⎛⎫'−+++⨯>− ⎪ ⎪+⎝⎭⎝⎭, 满足题意时()0f x '≥在区间()0,∞+上恒成立. 令()2111ln 101x a x x x ⎛⎫⎛⎫−+++≥ ⎪ ⎪+⎝⎭⎝⎭,则()()()21ln 10x x x ax −++++≥, 令()()()2=1ln 1g x ax x x x +−++,原问题等价于()0g x ≥在区间()0,∞+上恒成立, 则()()2ln 1g x ax x '=−+,当0a ≤时,由于()20,ln 10ax x ≤+>,故()0g x '<,()g x 在区间()0,∞+上单调递减,此时()()00g x g <=,不合题意;令()()()2ln 1h x g x ax x '==−+,则()121h x a x −'=+, 当12a ≥,21a ≥时,由于111x <+,所以()()0,h x h x '>在区间()0,∞+上单调递增, 即()g x '在区间()0,∞+上单调递增,所以()()>00g x g ''=,()g x 在区间()0,∞+上单调递增,()()00g x g >=,满足题意. 当102a <<时,由()1201h x a x =−=+'可得1=12x a−, 当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()0,h x h x '<在区间10,12a ⎛⎫− ⎪⎝⎭上单调递减,即()g x '单调递减,注意到()00g '=,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g ''<=,()g x 单调递减, 由于()00g =,故当10,12x a ⎛⎫∈− ⎪⎝⎭时,()()00g x g <=,不合题意. 综上可知:实数a 得取值范围是1|2a a ⎧⎫≥⎨⎬⎩⎭.(2023·全国乙卷·文·21·★★★)已知椭圆2222:1(0)C b b x a a y +>>=,点()2,0A −在C 上.(1)求C 的方程; (2)过点()2,3−的直线交C 于,P Q 两点,直线,AP AQ 与y 轴的交点分别为,M N ,证明:线段MN 的中点为定点.答案:(1)22194y x += (2)证明见详解解析:(1)由题意可得22223b a b c c e a ⎧⎪=⎪⎪=+⎨⎪⎪==⎪⎩,解得32a b c ⎧=⎪=⎨⎪=⎩,所以椭圆方程为22194y x +=.(2)由题意可知:直线PQ 的斜率存在,设()()()1122:23,,,,PQ y k x P x y Q x y =++,联立方程()2223194y k x y x ⎧=++⎪⎨+=⎪⎩,消去y 得:()()()222498231630k x k k x k k +++++=,则()()()2222Δ64236449317280kk k k k k =+−++=−>,解得0k <,可得()()2121222163823,4949k k k k x x x x k k +++=−=++, 因为()2,0A −,则直线()11:22y AP y x x =++, 令0x =,解得1122y y x =+,即1120,2y M x ⎛⎫⎪+⎝⎭,同理可得2220,2y N x ⎛⎫ ⎪+⎝⎭,则()()1212121222232322222y y k x k x x x x x +++++⎡⎤⎡⎤++⎣⎦⎣⎦=+++()()()()()()12211223223222kx k x kx k x x x +++++++⎡⎤⎡⎤⎣⎦⎣⎦=++()()()()1212121224342324kx x k x x k x x x x +++++=+++()()()()()()222222323843234231084949336163162344949k k k k k k k k k k k k k k k +++−++++===++−+++,所以线段PQ 的中点是定点()0,3.【选修4-4】(10分)(2023·全国乙卷·文·22·★★★)在直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为2sin 42ππρθθ⎛⎫=≤≤ ⎪⎝⎭,曲线2C :2cos 2sin x y αα=⎧⎨=⎩(α为参数,2απ<<π).(1)写出1C 的直角坐标方程;(2)若直线y x m =+既与1C 没有公共点,也与2C 没有公共点,求m 的取值范围. 答案:(1)()[][]2211,0,1,1,2x y x y +−=∈∈ (2)()(),022,−∞+∞解析:(1)因为2sin ρθ=,即22sin ρρθ=,可得222x y y +=, 整理得()2211x y +−=,表示以()0,1为圆心,半径为1的圆,又因为2cos 2sin cos sin 2,sin 2sin 1cos 2x y ======−ρθθθθρθθθ, 且ππ42θ≤≤,则π2π2≤≤θ,则[][]sin 20,1,1cos 21,2x y =∈=−∈θθ, 故()[][]221:11,0,1,1,2C x y x y +−=∈∈.(2)因为22cos :2sin x C y αα=⎧⎨=⎩(α为参数,ππ2α<<),整理得224x y +=,表示圆心为()0,0O ,半径为2,且位于第二象限的圆弧, 如图所示,若直线y x m =+过()1,1,则11m =+,解得0m =;若直线y x m =+,即0x y m −+=与2C相切,则20m =>⎩,解得m =,若直线y x m =+与12,C C均没有公共点,则m >或0m <, 即实数m 的取值范围()(),022,−∞+∞.【选修4-5】(10分)(2023·全国乙卷·文·23·★★)已知()22f x x x =+− (1)求不等式()6x f x ≤−的解集;(2)在直角坐标系xOy 中,求不等式组()60f x yx y ⎧≤⎨+−≤⎩所确定的平面区域的面积.答案:(1)[2,2]−; (2)8.解析:(1)依题意,32,2()2,0232,0x x f x x x x x −>⎧⎪=+≤≤⎨⎪−+<⎩,不等式()6f x x ≤−化为:2326x x x >⎧⎨−≤−⎩或0226x x x ≤≤⎧⎨+≤−⎩或0326x x x <⎧⎨−+≤−⎩,解2326x x x >⎧⎨−≤−⎩,得无解;解0226x x x ≤≤⎧⎨+≤−⎩,得02x ≤≤,解0326x x x <⎧⎨−+≤−⎩,得20x −≤<,因此22x −≤≤,所以原不等式的解集为:[2,2]−(2)作出不等式组()60f x yx y ≤⎧⎨+−≤⎩表示的平面区域,如图中阴影ABC ,由326y xx y=−+⎧⎨+=⎩,解得(2,8)A−,由26y xx y=+⎧⎨+=⎩, 解得(2,4)C,又(0,2),(0,6)B D,所以ABC的面积11|||62||2(2)|822ABC C AS BD x x=⨯−=−⨯−−=.。

2023年高考数学(全国甲卷文科)真题详细解读及评析

2023年高考数学(全国甲卷文科)真题详细解读及评析

2023年高考数学真题完全解读(全国甲卷文科)适用省份四川、广西、贵州、西藏整I试卷总评2023年高考数学全国卷全面考查了数学抽象、逻辑推理、数学建模、直观想象、数学运算和数据分析等学科核心素养,体现基础性、综合性、应用性和创新性的考查要求,突出理性思维,发挥出数学学科在人才选拔中的重要作用。

一、 题型与分值分布题型:(1)单选题12道,每题5分共60分;(2)填空题4道,每题5分共20分;(3)解答题三道,每题12分共60分;(4)选做题2道,每题10分。

二、 题目难度和复杂度三、知识点覆盖详细情况说明难度级别具体试题总分值整体评价★ ☆☆☆☆第1题、第2题、第4题、第13题、第15题25分整体试卷难度偏 易,整体复杂度不高,综合知识点大多都是2个左右★ ★☆☆☆第3题、第5题、第6题、第14题、第17题、第22题、第23题42分★ ★★☆☆第7题、第8题、第9题、第10题、第18题、第19题44分★ ★★★☆第11题、第20题、第21题29分★ ★★★★第12题、第16题10分知识点题型题目数量总分值整体评价集合单选题1个15分复数单选题1个15分平面向量单选题1个15分程序框图单选题1个15分主干知识考查全而,题目数量设置均衡;与课程标准保持了一致性。

数列单选题1个填空题1个210分三角函数单选题1个解答题1个217分概率与统计单选题1个解答题1个217分立体几何单选题1个填空题1个解答题1个322分圆锥曲线单选题2个解答题1个322分函数与导数单选题2个填空题1个解答题1个427分极坐标与参数方程选做题1个110分不等式填空题1个(线性规划问题)选做题1个215分四、高考试卷命题探究2023年高考数学全国卷在命制情境化试题过程中,通过对阅读题的分析,可以发现今年的高考命题在素材使用方而,对文字数量加以控制,阅读理解雄度也有所降低:在抽象数学问题方而,力图设置合理的思维强度和抽象程度;在解决问题方面,通过设置合适的运算过程和运算量,力求使情境化试题达到试题 要求层次与考生认知水平的契合与贴切。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2023青海高考数学文科试题及解析详解
高中数学必考知识点梳理
1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m—Sm、S3m—S2m、S4m—S3m、……仍为等差数列。

2、等差数列{an}中,若m+n=p+q,则
3、等比数列{an}中,若m+n=p+q,则
4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m—Sm、S3m—S2m、S4m—S3m、……仍为等比数列。

5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an—bn}仍为等差数列。

6、两个等比数列{an}与{bn}的积、商、倒数组成的数列仍为等比数列。

7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。

8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。

9、三个数成等差数列的设法:a—d,a,a+d;四个数成等差的设法:a—3d,a—d,,a+d,a+3d
10、三个数成等比数列的设法:a/q,a,aq;
四个数成等比的错误设法:a/q3,a/q,aq,aq3(为什么?)
高考必考数学知识点
1、圆柱体:
表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高)
2、圆锥体:
表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高,
3、正方体
a—边长,S=6a2,V=a3
4、长方体
a—长,b—宽,c—高S=2(ab+ac+bc)V=abc
5、棱柱
S—底面积h—高V=Sh
6、棱锥
S—底面积h—高V=Sh/3
7、棱台
S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3
8、拟柱体
S1—上底面积,S2—下底面积,S0—中截面积
h—高,V=h(S1+S2+4S0)/6
9、圆柱
r—底半径,h—高,C—底面周长
S底—底面积,S侧—侧面积,S表—表面积C=2πr
S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h
10、空心圆柱
R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2)
11、直圆锥
r—底半径h—高V=πr^2h/3
12、圆台
r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3
13、球
r—半径d—直径V=4/3πr^3=πd^3/6
14、球缺
h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3 15、球台
r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6
16、圆环体
R—环体半径D—环体直径r—环体截面半径d—环体截面直径
V=2π2Rr2=π2Dd2/4
17、桶状体
D—桶腹直径d—桶底直径h—桶高
V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)。

相关文档
最新文档