高二数学月考
2023-2024学年全国高中高二上数学苏教版月考试卷(含解析)

2023-2024学年全国高二上数学月考试卷考试总分:146 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 直线=的倾斜角为( )A.B.C.D. 2. 已知直线=与直线=,且,则的值为( )A.或B.C.或D.3. 在平面直角坐标系中,圆的方程为,若直线上存在一点,使过点所作的圆的两条切线相互垂直,则点的横坐标为( )A.B.C.D.4. 在平面直角坐标系中,以点为圆心且与直线=相切的所有圆中,半径最大的圆的面积为( )3x +y +13–√0150∘120∘60∘30∘:x −my +3l 10:mx +(m −2)y −8l 20⊥l 1l 2m 303−211xOy C +−4x =0x 2y 2y =2x +1P P P ±3–√5±15−−√3±15−−√5±5–√3xOy O mx −y −m −10(m ∈R)A. B.C.D.5. 过点作圆的弦,其中弦长为整数的共有( )A.条B.条C.条D.条6. 已知圆的方程为,过点的直线与圆相交的所有弦中,弦长最短的弦为,弦长最长的弦为,则四边形的面积为( )A.B.C.D.7. 直线与曲线有两个不同的交点,则实数的取值范围是( )A.B.C.D.8. 圆与圆的位置关系为( )A.内切B.相交C.外切D.外离ππ2π3πA (16,6)++16x −12y −525=0x 2y 236377274M +−6x −8y =0x 2y 2P (0,4)l M AC BD ABCD 30406080y =k (x −2)+4x +=03+2y −y 2−−−−−−−−−√k (,]51234(,]51212(,]1234[,+∞)12:+=4C 1x 2(y −3)2:++8x =0C 2x 2y 29. 直线与圆相交于,两点,若,则的取值可以是( )A.B.C.D.10. 已知圆=,点为轴上一个动点,过点作圆的两条切线,切点分别为,,直线与交于点,则下列结论错误的是( )A.四边形周长的最小值为B.的最大值为C.若,则三角形的面积为D.若(,,则的最大值为 11. 若,则方程表示的曲线形状可以是()A.两条直线B.椭圆C.圆D.抛物线12. 若直线=与曲线=有公共点,则的取值范围是( )A.B.C.D.卷II (非选择题)y =kx +3(x −3+(y −2=4)2)2M N MN ≥23–√k −1−121M :+(y −2x 2)21P x P M A B AB MP C PAMB 2+|AB |2P(1,0)PAB Q 0)|CQ |α∈[0,π]+cos α=1x 2y 2y x +b y 3−b13. 已知,方程=表示圆,则圆心坐标是________.14. 已知圆:关于直线对称,则________.15. 若圆上有且只有两个点到直线的距离等于,则半径的取值范围是________.16. 已知函数,则曲线在点处的切线方程为________.四、 解答题 (本题共计 6 小题 ,每题 11 分 ,共计66分 )17. 写出下列图中各条直线的方程,并化为一般式:18. 已知点,动点满足.若点为曲线,求此曲线的方程;已知直线在两坐标轴上的截距相等,且与中的曲线只有一个公共点,求直线的方程. 19. 已知圆,直线.(1)求证:直线恒过定点;(2)判断直线与圆的位置关系;(3)当时,求直线被圆截得的弦长.20. 已知:,,是同一平面内的三个向量,其中.若,且,求的坐标;若,且与垂直,求与的夹角.a ∈R +(2−a)+8x −4y −5aa 2x 2y 20C (x −1+(y +2=2)2)22ax +by −2=0b −a =(x −3+(y +5=)2)2r 24x −3y −2=01r f (x)=x sin x +cos x +xy =f (x)(0,f (0))A(−4,0),B(2,0)P |PA|=2|PB|(1)P C (2)l (1)C l C :(x −1+(y −2=25)2)2l :(2m +1)x +(m +1)y −7m −4=0(m ∈R)l l C m =0l C a →b →c →=(1,2)a →(1)||=2c →5–√//c →a →c →(2)||=b →5–√2+2a →b →2−a →b →a →b →θF(−,0)–√21. 已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,上顶点为,设点.(1)若是椭圆上的动点,求线段中点的轨迹方程;(2)过原点的直线交椭圆于点,,若的面积为,求直线的斜率. 22. 已知椭圆:的离心率为,短轴一个端点到右焦点的距离为.(1)求椭圆的方程;(2)若直线与椭圆交于不同的两点,,是否存在实数,使线段的中点恒在圆上,若存在,求出的值;若不存在,说明理由.xOy F(−,0)3–√D(0,1)A (1,)12P PA M O B C △ABC 2–√BC k C +=1(a >b >0)x 2a 2y 2b22–√222–√C y =x +m C A B m AB +=5x 2y 2m。
高二数学月考卷-答案

高二数学月考卷答案一、选择题(每题1分,共5分)1. 若函数f(x) = 2x + 1是单调递增的,则f(3)与f(5)的大小关系是()A. f(3) > f(5)B. f(3) = f(5)C. f(3) < f(5)答案:C2. 下列函数中,奇函数是()A. y = x^2B. y = x^3C. y = |x|答案:B3. 已知等差数列{an}的公差为2,且a1 = 3,则第10项a10等于()A. 19B. 21C. 23答案:B4. 若向量a = (2, 3),向量b = (4, 1),则2a 3b等于()A. (10, 11)B. (10, 9)C. (8, 11)答案:A5. 在三角形ABC中,若a = 4, b = 6, sinA = 3/5,则sinB等于()A. 3/5B. 4/5C. 3/4答案:B二、判断题(每题1分,共5分)1. 任何两个实数的和都是实数。
()答案:√2. 若a > b,则ac > bc。
()答案:×3. 互为相反数的两个数的平方相等。
()答案:√4. 两条平行线上的任意两个角都相等。
()答案:×5. 对角线互相垂直的四边形一定是矩形。
()答案:×三、填空题(每题1分,共5分)1. 若log2(3x 1) = 4,则x = _______。
答案:52. 已知等比数列{bn}的首项为3,公比为2,则b3 = _______。
答案:123. 在直角坐标系中,点P(2, 3)关于x轴的对称点坐标为_______。
答案:(2, 3)4. 若|a| = 5,|b| = 7,则|a + b|的最小值为_______。
答案:25. 设函数f(x) = x^2 2x + 1,则f(x)的最小值为_______。
答案:0四、简答题(每题2分,共10分)1. 请简要说明什么是函数的单调性。
答案:函数的单调性是指在其定义域内,随着自变量的增大(或减小),函数值也随之增大(或减小)的性质。
湖南省名校联考联合体2024-2025学年高二上学期10月月考数学试题含答案

高二数学试卷(答案在最后)注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:人教A 版必修第一,二册占60%,选择性必修第一册第一章至第二章第4节占40%.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集{}1,2,3,4,5U =,{}2,4A =,{}1,4,5B =,则()UB A ⋂=ð()A.{}3B.{}4C.{}1,4 D.{}1,5【答案】D 【解析】【分析】利用补集与交集的定义可求解.【详解】因为全集{}1,2,3,4,5U =,{}2,4A =,所以{}U 1,3,5A =ð,又因为{}1,4,5B =,(){}{}{}U 51,3,51,4,51,A B == ð.故选:D.2.已知复数1i z a =+(0a >),且3z =,则a =()A.1B.2C.D.【答案】D 【解析】【分析】利用复数的模的定义即可求解.【详解】因为1i z a =+,3z =3=,解得a =±,因为0a >,所以a =故选:D,3.已知1sin 3α=,π0,2α⎛⎫∈ ⎪⎝⎭,则πcos 22α⎛⎫-= ⎪⎝⎭()A.9B.19-C.79-D.9-【答案】A 【解析】【分析】根据同角三角函数关系得出余弦值,再结合诱导公式化简后应用二倍角正弦公式计算即可.【详解】因为221sin ,sin cos 13ααα=+=,又因为π0,2α⎛⎫∈ ⎪⎝⎭,所以cos 3α===,所以π12242cos 2sin22sin cos 22339αααα⎛⎫-===⨯⨯ ⎪⎝⎭.故选:A.4.已知定义在R 上的函数()f x 满足()()0f x f x -+=,且当0x ≤时,()22x af x =+,则()1f =()A.2B.4C.2- D.4-【答案】A 【解析】【分析】利用题意结合奇函数的定义判断()f x 是奇函数,再利用奇函数的性质求解即可.【详解】因为定义在R 上的函数()f x 满足()()0f x f x -+=,所以()f x 是奇函数,且()00f =,故0202a+=,解得2a =-,故当0x ≤时,()222x f x =-+,由奇函数性质得()()11f f =--,而()121222f --=-+=-,故()()112f f =--=,故A 正确.故选:A5.在正方体1111ABCD A B C D -中,二面角1B AC B --的正切值为()A.2B.3C.3D.【答案】D 【解析】【分析】取AC 的中点M ,连接1,MB MB ,可得1B MB ∠是二面角1B AC B --的平面角,求解即可.【详解】取AC 的中点M ,连接1,MB MB ,由正方体1111ABCD A B C D -,可得11,AB B C AB BC ==,所以1,B M AC BM AC ⊥⊥,所以1B MB ∠是二面角1B AC B --的平面角,设正方体1111ABCD A B C D -的棱长为2,可得AC =,所以BM =在1Rt B B M 中,11tan B B B MB BM =∠==,所以二面角1B AC B --.故答案为:D.6.已知线段AB 的端点B 的坐标是()3,4,端点A 在圆()()22124x y -+-=上运动,则线段AB 的中点P的轨迹方程为()A.()()22232x y -+-= B.()()22231x y -+-=C.()()22341x y -+-= D.()()22552x y -+-=【答案】B 【解析】【分析】设出动点P 和动点A 的坐标,找到动点P 和动点A 坐标的关系,再利用相关点法求解轨迹方程即可.【详解】设(,)P x y ,11(,)A x y ,由中点坐标公式得1134,22x y x y ++==,所以1123,24x x y y =-=-,故(23,2)A x y --4,因为A 在圆()()22124x y -+-=上运动,所以()()222312424x y --+--=,化简得()()22231x y -+-=,故B 正确.故选:B7.我国古代数学名著《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的棱柱称为堑堵.已知在堑堵111ABC A B C -中,π2ABC ∠=,1AB BC AA ==,,,D E F 分别是所在棱的中点,则下列3个直观图中满足BF DE ⊥的有()A.0个B.1个C.2个D.3个【答案】B 【解析】【分析】建立空间直角坐标系,利用空间位置关系的向量证明逐个判断即可.【详解】在从左往右第一个图中,因为π2ABC ∠=,所以AB BC ⊥,因为侧棱垂直于底面,所以1AA ⊥面ABC ,如图,以B 为原点建立空间直角坐标系,设12AB BC AA ===,因为,,D E F 分别是所在棱的中点,所以(0,0,0),(0,1,0),(1,0,2),(1,1,0)B E D F所以(1,1,0)BF = ,(1,1,2)DE =-- ,故110BF DE ⋅=-+=,即BF DE ⊥得证,在从左往右第二个图中,我们建立同样的空间直角坐标系,此时(0,0,0),(1,1,0),(1,0,2),(0,1,1)B E D F ,所以(0,1,1)BF = ,(0,1,2)DE =-,故121BF DE ⋅=-=-,所以,BF DE 不垂直,在从左往右第三个图中,我们建立同样的空间直角坐标系,此时(0,0,0),(1,1,0),(1,0,0),(1,1,2)B E D F ,故(1,1,2)BF = ,(0,1,0)DE = ,即1BF DE ⋅=,所以,BF DE 不垂直,则下列3个直观图中满足BF DE ⊥的有1个,故B 正确.故选:B8.已知过点()1,1P 的直线l 与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点,则22OA OB+的最小值为()A.12B.8C.6D.4【答案】B 【解析】【分析】根据题意可知直线l 的斜率存在设为(0)k k <,分别解出,A B 两点的坐标,表示出22OA OB +的表达式由基本不等式即可求得最小值.【详解】由题意知直线l 的斜率存在.设直线的斜率为(0)k k <,直线l 的方程为1(x 1)y k -=-,则1(1,0),(0,1)A B k k--,所以222222121(1)(1)112OA OB k k kk k k+=-+-=-++-+22212(2)28k k k k =+--++≥++=,当且仅当22212,k k k k-=-=,即1k =-时,取等号.所以22OA OB +的最小值为8.故选:B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得分分,有选错的得0分.9.已知函数()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,则()A.()f x 的最小正周期为πB.()f x 的图象关于直线π85x =对称C.()f x 的图象关于点π,18⎛⎫- ⎪⎝⎭中心对称D.()f x 的值域为[]1,1-【答案】ABD 【解析】【分析】求得最小正周期判断A ;求得对称轴判断B ;求得对称中心判断C ;求得值域判断D.【详解】因为()πsin 24f x x ⎛⎫=+ ⎪⎝⎭,所以的最小正周期为2ππ2T ==,故A 正确;由ππ2π,Z 42x k k +=+∈,可得ππ,Z 28k x k =+∈,所以()f x 图象的对称轴为ππ,Z 28k x k =+∈,当1k =时,图象的关于π85x =对称,故B 正确;由Z 2ππ,4k x k =∈+,可得ππ,Z 28k x k =-∈,所以()f x 图象的对称中心为ππ(,0),Z 28k k -∈,当0k =时,图象的关于点()π8,0-对称,故C 不正确;由()πsin 2[1,1]4f x x ⎛⎫=+∈- ⎪⎝⎭,故()f x 的值域为[]1,1-,故D 正确.故选:ABD.10.若数据1x ,2x ,3x 和数据4x ,5x ,6x 的平均数、方差、极差均相等,则()A.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的平均数相等B.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的方差相等C.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的极差相等D.数据1x ,2x ,3x ,4x ,5x ,6x 与数据1x ,2x ,3x 的中位数相等【答案】ABC 【解析】【分析】运用平均数,方差,极差,中位数的计算方法和公式计算,通过已知两组数据的平均数、方差、极差均相等这个条件,来分析这两组数据组合后的相关统计量与原数据的关系.【详解】设数据123,,x x x 的平均数为x ,数据456,,x x x 的平均数也为x .那么数据123456,,,,,x x x x x x 的平均数为123456()()3366x x x x x x x xx ++++++==,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的平均数相等,A 选项正确.设数据123,,x x x 的方差为2s ,数据456,,x x x 的方差也为2s .对于数据123456,,,,,x x x x x x ,其方差计算为2222221234561[()((()()()]6x x x x x x x x x x x x -+-+-+-+-+-2222221234561[3(()(())3(((())]6x x x x x x x x x x x x =⨯-+-+-+⨯-+-+-2221(33)6s s s =+=,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的方差相等,B 选项正确.设数据123,,x x x 的极差为R ,数据456,,x x x 的极差也为R .对于数据123456,,,,,x x x x x x ,其极差是这六个数中的最大值减去最小值,由于前面两组数据的极差相等,所以组合后数据的极差依然是R ,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的极差相等,C 选项正确.设数据123,,x x x 按从小到大排列为123x x x ≤≤,中位数为2x .设数据456,,x x x 按从小到大排列为456x x x ≤≤,中位数为5x .对于数据123456,,,,,x x x x x x 按从小到大排列后,中位数不一定是2x ,所以数据123456,,,,,x x x x x x 与数据123,,x x x 的中位数不一定相等,D 选项错误.故选:ABC11.已知四棱柱1111ABCD A B C D -的底面是边长为6的菱形,1AA ⊥平面ABCD ,13AA =,π3DAB ∠=,点P 满足1AP AB AD t AA λμ=++,其中λ,μ,[]0,1t ∈,则()A.当P 为底面1111D C B A 的中心时,53t λμ++=B.当1t λμ++=时,AP 长度的最小值为2C.当1t λμ++=时,AP 长度的最大值为6D.当221t λμλμ++==时,1A P为定值【答案】BCD 【解析】【分析】根据题意,利用空间向量进行逐项进行分析求解判断.【详解】对于A ,当P 为底面1111D C B A 的中心时,由1AP AB AD t AA λμ=++ ,则11,,122t λμ===故2t λμ++=,故A 错误;对于B ,当1t λμ++=时,()22222222112·AP AB AD t AA AB AD t AA AB ADλμλμλμ=++=+++()()222223693636936t t λμλμλμλμ=+++=++-22245723636457236362t t t t λμλμ+⎛⎫=-+-≥-+- ⎪⎝⎭223273654273644t t t ⎛⎫=-+=-+⎪⎝⎭当且仅当13,84t λμ===,取最小值为2,故B 正确;对于C ,当1t λμ++=时,1AP AB AD t AA λμ=++,则点P 在1A BD 及内部,而AP是以A 为球心,以AP 为半径的球面被平面1A BD 所截图形在四棱柱1111ABCD A B C D -及内的部分,当=1=0t λμ=,时,=6AP ,当=0=10t λμ=,,时,=6AP ,可得1A P最大值为6,故C 正确;对于D ,221t λμλμ++==,()22223693636945AP t λμλμ=+++=+= ,而11=A P A A AP +,所以()22222111111=+2·=+2A P A A AP A A AP A A AP A A AB AD t AA λμ++⋅++ 22211=29452936A A AP t A A +-=+-⨯= ,则16A P = 为定值,故D 正确.故答案选:BCD.三、填空题:本题共3小题,每小题5分,共15分.12.已知向量()1,2a =- ,(),4b m =-.若()a ab ⊥+ ,则m =________.【答案】3-【解析】【分析】利用非零向量垂直时数量积为0,计算即可.【详解】()1,2a b m +=--.因为()a ab ⊥+ ,所以()1220m ---⨯=,解得3m =-.故答案为:3-.13.已知在正四棱台1111ABCD A B C D -中,()0,4,0AB = ,()13,1,1CB =- ,()112,0,0A D =-,则异面直线1DB 与11A D 所成角的余弦值为__________.【答案】19【解析】【分析】利用向量的线性运算求得1DB,根据向量的夹角公式可求异面直线1DB 与11A D 所成角的余弦值.【详解】111(0,4,0)(3,1,1)(3,3,1)DB DC CB AB CB =+=+=+-=,所以111111111·cos,19·DB A DDB A DDB A D==-,所以异面直线1DB与11A D所成角的余弦值为19.故答案为:1914.已知函数()21xg x=-,若函数()()()()()2121f xg x a g x a=+--+⎡⎤⎣⎦有三个零点,则a的取值范围为__________.【答案】()2,1--【解析】【分析】令()0f x=,可得()2g x=或()1g x a=--,函数有三个零点,则需方程()1g x a=--有两个解,则=与1y a=--的图象有两个交点,数形结合可求解.【详解】令()0f x=,可得()()()()21210g x a g x a⎡⎤+--+=⎣⎦,所以()()()[2][1]0g x g x a-++=,所以()2g x=或()1g x a=--,由()2g x=,又()21xg x=-,可得212x-=,解得21x=-或23x=,方程21x=-无解,方程23x=有一解,故()2g x=有一解,要使函数()()()()()2121f xg x a g x a⎡⎤=+--+⎣⎦有三个零点,则()1g x a=--有两解,即=与1y a=--的图象有两个交点,作出函数=的图象的示图如下:由图象可得011a<--<,解得21a-<<-.所以a的取值范围为(2,1)--.故答案为:(2,1)--.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,已知2cos c b a B +=.(1)若π2A =,求B ;(2)若a =1b =,求ABC V 的面积.【答案】(1)π4(2)12【解析】【分析】(1)利用正弦定理化边为角,再结合内角和定理与两角和与差的正弦公式化简等式得sin sin()B A B =-,代入π2A =求解可得;(2)由sin sin()B A B =-根据角的范围得2A B =,由正弦定理结合二倍角公式可得cos 2B =,从而得π4B =,再利用余弦定理求边c ,由面积公式可求结果.【小问1详解】因为2cos c b a B +=,所以由正弦定理得,sin sin 2sin cos C B A B +=,又sin sin()sin cos cos sin C A B A B A B =+=+代入上式得,所以()sin sin cos cos sin sin =-=-B A B A B A B ,由π2A =,则B 为锐角,且c sin s os n π2i B B B ⎛⎫-= ⎭=⎪⎝,所以π4B =.【小问2详解】由(1)知,()sin sin B A B =-,因为a =1b =,所以A B >,则0πA B <-<,π02B <<,故B A B =-,或πB A B A +-==(舍去).所以2A B =,又a =1b =,由正弦定理得sin sin 22cos sin sin A B aB B B b====,则cos 2B =,则π4B =,由余弦定理得2222cos b a c ac B =+-,则2122c =+-,化简得2210c c -+=,解得1c =,所以111sin 2222ABC S ac B === .故ABC V 的面积为12.16.甲、乙、丙三人打台球,约定:第一局由甲、乙对打,丙轮空;每局比赛的胜者与轮空者进行下一局对打,负者下一局轮空,如此循环.设甲、乙、丙三人水平相当,每场比赛双方获胜的概率都为12.(1)求甲连续打四局比赛的概率;(2)求在前四局中甲轮空两局的概率;(3)求第四局甲轮空的概率.【答案】(1)18(2)14(3)38【解析】【分析】(1)由题意知甲前三局都要打胜,计算可得甲连续打四局比赛的概率;(2)甲轮空两局的情况为,第一局甲败,第二局轮空,第三局甲败,第四局轮空,计算即可;(3)分析可得甲第四轮空有两种情况:第1种情况,第一局甲败,第二局轮空,第三局甲败,第四局轮空,第2种情况,第一局甲胜,第二局甲胜,第三局甲败,第四局轮空,计算即可.【小问1详解】若甲连续打四局,根据比赛规则可知甲前三局都要打胜,所以甲连续打四局比赛的概率311(28=;【小问2详解】在前四局中甲轮空两局的情况为,第一局甲败,第二局轮空,第三局甲败,第四局轮空,故在前四局中甲轮空两局的概率111(1(1)224-⨯-=;【小问3详解】甲第四轮空有两种情况:第1种情况,第一局甲败,第二局轮空,第三局甲败,第四局轮空,第2种情况,第一局甲胜,第二局甲胜,第三局甲败,第四局轮空,第1种情况的概率111(1)(1224-⨯-=;第2种情况的概率1111(12228⨯⨯-=;由互斥事件的概率加法公式可得第四局甲轮空的概率为113488+=.17.如图,在几何体PABCD 中,PA ⊥平面ABC ,//PA DC ,AB AC ⊥,2PA AC AB DC ===,E ,F 分别为棱PB ,BC 的中点.(1)证明://EF 平面PAC .(2)证明:AB EF ⊥.(3)求直线EF 与平面PBD 所成角的正弦值.【答案】(1)证明见解析(2)证明见解析(3)6【解析】【分析】(1)构造线线平行,证明线面平行.(2)先证AB ⊥平面PACD ,得到AB PC ⊥,结合(1)中的结论,可得AB EF ⊥.(3)问题转化为直线PC 与平面PBD 所成角的正弦值.设1CD =,表示CP 的长,利用体积法求C 到平面PBD 的距离,则问题可解.【小问1详解】如图,连接CP .在BCP 中,E ,F 分别为棱PB ,BC 的中点,所以//EF CP ,,又EF ⊄平面PAC ,CP ⊂平面PAC .所以//EF 平面PAC .【小问2详解】因为PA ⊥平面ABC ,AB ⊂平面ABC ,所以PA AB ⊥,又AB AC ⊥,,PA AC ⊂平面PAC ,且PA AC A = ,所以AB ⊥平面PAC .因为CP ⊂平面PAC ,所以AB CP ⊥.又因为//EF CP ,所以AB EF ⊥.【小问3详解】因为//EF CP ,所以直线EF 与平面PBD 所成角与直线PC 与平面PBD 所成角相等,设为θ.不妨设1CD =,则=PC 设C 到平面PBD 的距离为h .则13C PBD PBD V S h -=⋅ .又11212333C PBDB PCD PCD V V S AB --==⋅=⨯⨯= .在PBD △中,PB =BD PD ==,所以12PBD S =⨯= .所以33C PBD PBD V h S -=== .所以63sin θ6h PC ===.故直线EF 与平面PBD.18.设A 是由若干个正整数组成的集合,且存在3个不同的元素a ,b ,c A Î,使得a b b c -=-,则称A 为“等差集”.(1)若集合{}1,3,5,9A =,B A ⊆,且B 是“等差集”,用列举法表示所有满足条件的B ;(2)若集合{}21,,1A m m =-是“等差集”,求m 的值;(3)已知正整数3n ≥,证明:{}23,,,,nx x x x ⋅⋅⋅不是“等差集”.【答案】(1)答案见解析(2)2m =(3)证明见解析【解析】【分析】(1)根据等差集的定义结合子集的定义求解即可;(2)根据等差集定义应用a b b c -=-,即2a c b +=逐个计算判断即可;(3)应用反证法证明集合不是等差集.【小问1详解】因为集合{}1,3,5,9A =,B A ⊆,存在3个不同的元素a ,b ,c B ∈,使得a b b c -=-,则{}1,3,5,9B =或{}1,3,5B =或{}1,5,9B =.【小问2详解】因为集合{}21,,1A m m =-是“等差集”,所以221m m =+-或2211m m =+-或()2221m m +=-,计算可得1132m -±=或0m =或2m =或1334m =,又因为m 正整数,所以2m =.【小问3详解】假设{}22,,,,nx x x x⋅⋅⋅是“等差集”,则存在{},,1,2,3,,,m n q n m n q ∈<< ,2n m q x x x =+成立,化简可得2m n q n x x --=+,0m n x ->因为*N ,1x q n ∈-≥,所以21q n x x ->≥≥,所以=1与{}22,,,,nx x x x ⋅⋅⋅集合的互异性矛盾,所以{}22,,,,nx x x x⋅⋅⋅不是“等差集”.【点睛】方法点睛:解题方法是定义的理解,应用反证法设集合是等差集,再化简计算得出矛盾即可证明.19.过点()00,A x y 作斜率分别为1k ,2k 的直线1l ,2l ,若()120k k μμ=≠,则称直线1l ,2l 是()A K μ定积直线或()()00,x y K μ定积直线.(1)已知直线a :()0y kx k =≠,直线b :13y x k=-,试问是否存在点A ,使得直线a ,b 是()A K μ定积直线?请说明理由.(2)在OPM 中,O 为坐标原点,点P 与点M 均在第一象限,且点()00,M x y 在二次函数23y x =-的图象上.若直线OP 与直线OM 是()()0,01K 定积直线,直线OP 与直线PM 是()2P K -定积直线,直线OM与直线PM 是()00,202x y K x ⎛⎫- ⎪⎝⎭定积直线,求点P 的坐标.(3)已知直线m 与n 是()()2,44K --定积直线,设点()0,0O 到直线m ,n 的距离分别为1d ,2d ,求12d d 的取值范围.【答案】(1)存在,理由见解析(2)()1,2(3)[)0,8【解析】【分析】(1)由定积直线的定义运算可求结论;(2)设直线OM 的斜率为()0λλ≠,则直线OP 的斜率为1λ,利用定积直线的定义可得01x λ=或1-,进而2003x x λ-=,计算即可;(3)设直线():42m y t x -=+,直线()4:42n y x t-=-+,其中0t ≠,计算得12d d =,利用基本不等式可求12d d 的取值范围.【小问1详解】存在点()0,0A ,使得a ,b 是()A K μ定积直线,理由如下:由题意可得1133k k ⎛⎫⋅-=- ⎪⎝⎭,由()013y kx k y x k ⎧=≠⎪⎨=-⎪⎩,解得00x y =⎧⎨=⎩,故存在点()0,0A ,使得a ,b 是()A K μ定积直线,且13μ=-.【小问2详解】设直线OM 的斜率为()0λλ≠,则直线OP 的斜率为1λ,直线PM 的斜率为2λ-.依题意得()2022x λλ⋅-=-,得2201x λ=,即01x λ=或1-.直线OM 的方程为y x λ=,因为点()200,3M x x -在直线OM 上,所以2003x x λ-=.因为点M 在第一象限,所以20031x x λ-==,解得02x =或2-(舍去),12λ=,()2,1M ,所以直线OP 的方程为12y x x λ==,直线PM 的方程为()2213y x x λ=--+=-+,由23y x y x =⎧⎨=-+⎩,得12x y =⎧⎨=⎩,即点P 的坐标为()1,2.【小问3详解】设直线():42m y t x -=+,直线()4:42n y xt-=-+,其中0t ≠,则12d d ===2216171725t t ++≥=,当且仅当2216t t =,即24t =时,等号成立,所以08≤<,即1208d d ≤<,故12d d 的取值范围为[)0,8.【点睛】思路点睛:理解新定义题型的含义,利用定积直线的定义进行计算求解,考查了运算求解能力,以及基本不等式的应用.。
四川省成都市2024-2025学年高二上学期月考(一)数学试题含答案

高二上数学月考(一)(答案在最后)一、单项选择题:本题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某高校对中文系新生进行体测,利用随机数表对650名学生进行抽样,先将650名学生进行编号,001,002,…,649,650.从中抽取50个样本,下图提供随机数表的第4行到第6行,若从表中第5行第6列开始向右读取数据,则得到的第6个样本编号是()32211834297864540732524206443812234356773578905642 84421253313457860736253007328623457889072368960804 32567808436789535577348994837522535578324577892345A.623B.328C.072D.457【答案】A【解析】【分析】按照随机数表提供的数据,三位一组的读数,并取001到650内的数,重复的只取一次即可【详解】从第5行第6列开始向右读取数据,第一个数为253,第二个数是313,第三个数是457,下一个数是860,不符合要求,下一个数是736,不符合要求,下一个是253,重复,第四个是007,第五个是328,第六个数是623,,故A正确.故选:A.2.某校高一共有10个班,编号1至10,某项调查要从中抽取三个班作为样本,现用抽签法抽取样本,每次抽取一个号码,共抽3次,设五班第二次被抽到的可能性为b,则()A.19b= B.29b= C.310b= D.110b=【答案】D【解析】【分析】根据题意,在抽样过程中每个个体被抽到的概率相等即可求解.【详解】因为总体中共有10个个体,所以五班第一次没被抽到,第二次被抽到的可能性为91110910b=⨯=.故选:D.3.已知向量1,22AB ⎛⎫=- ⎪ ⎪⎝⎭,122BC ⎛⎫=- ⎪ ⎪⎝⎭,则ABC ∠=()A.30°B.150°C.60°D.120°【答案】B 【解析】【分析】根据向量夹角的坐标表示求出向量夹角,进而求解几何角.【详解】因为向量13,22AB ⎛⎫=- ⎪ ⎪⎝⎭ ,31,22BC ⎛⎫=- ⎪ ⎪⎝⎭,所以13312222cos ,2AB BC AB BC AB BC⎛⎫⎛⎫⨯+-⨯- ⎪ ⎪⋅==⋅,又0,180AB BC ≤≤,所以,30AB BC =,所以,18030150BA BC =-= ,所以150ABC ∠=o .故选:B.4.已知,a b 为两条不同的直线,,αβ为两个不同的平面,则下列说法错误的是()A.若//a b ,,b a αα⊂⊄,则//a αB.若,a b αα⊥⊥,则//a bC.若,,b a b αβαβ⊥⋂=⊥,则a β⊥D.若,a b 为异面直线,,a b αβ⊂⊂,//a β,//b α,则//αβ【答案】C 【解析】【分析】根据线面平行的判定定理判断A ,根据线面垂直的性质判断B ,当a α⊄时即可判断C ,根据异面直线的定义及线面平行的性质定理判断D.【详解】对于A :若//a b ,,b a αα⊂⊄,根据线面平行的判定定理可知//a α,故A 正确;对于B :若,a b αα⊥⊥,则//a b ,故B 正确;对于C :当a α⊂时,,,b a b αβαβ⊥⋂=⊥,由面面垂直的性质定理可得a β⊥,当a α⊄时,,,b a b αβαβ⊥⋂=⊥,则//a β或a β⊂或a 与β相交,故C 错误;对于D :因为a α⊂,//b α,所以存在b α'⊂使得//b b ',又b β⊂,b β'⊄,所以//b β',又//a β且,a b 为异面直线,所以平面α内的两直线b '、a 必相交,所以//αβ,故D 正确.故选:C5.下列说法正确的是()A.互斥的事件一定是对立事件,对立事件不一定是互斥事件B.若()()1P A P B +=,则事件A 与事件B 是对立事件C.从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为25D.事件A 与事件B 中至少有一个发生的概率不一定比A 与B 中恰有一个发生的概率大【答案】D 【解析】【分析】根据互斥事件、对立事件和古典概型及其计算逐一判定即可.【详解】对于A ,由互斥事件和对立事件的关系可判断,对立事件一定是互斥事件,互斥事件不一定是对立事件,故A 错误;对于B ,由()()1P A P B +=,并不能得出A 与B 是对立事件,举例说明:现从a ,b ,c ,d 四个小球中选取一个小球,已知选中每个小球的概率是相同的,设事件A 表示选中a 球或b 球,则1()2P A =,事件B 表示选中b 球或c 球,则1()2P B =,所以()()1P A P B +=,但A ,B 不是对立事件,故B 错误;对于C ,该试验的样本空间可表示为:{(1,3,5),(1,3,7),(1,3,9),(1,5,7),(1,5,9),(1,7,9),(3,5,7),(3,5,9),(3,7,9)(5,7,9)}Ω=,共有10个样本点,其中能构成三角形的样本点有(3,5,7),(3,7,9),(5,7,9),共3个,故所求概率310P =,故C 错误;对于D ,若A ,B 是互斥事件,事件A ,B 中至少有一个发生的概率等于A ,B 中恰有一个发生的概率,故D 正确.故选:D.6.一组数据:53,57,45,61,79,49,x ,若这组数据的第80百分位数与第60百分位数的差为3,则x =().A.58或64B.58C.59或64D.59【答案】A 【解析】【分析】先对数据从小到大排序,分57x ≤,79x ≥,5779x <<三种情况,舍去不合要求的情况,列出方程,求出答案,【详解】将已知的6个数从小到大排序为45,49,53,57,61,79.若57x ≤,则这组数据的第80百分位数与第60百分位数分别为61和57,他们的差为4,不符合条件;若79x ≥,则这组数据的第80百分位数与第60百分位数分别为79和61,它们的差为18,不符合条件;若5779x <<,则这组数据的第80百分位数与第60百分位数分别为x 和61(或61和x ),则613x -=,解得58x =或64x =故选:A7.如图,四边形ABCD 为正方形,ED ⊥平面,,2ABCD FB ED AB ED FB ==∥,记三棱锥,,E ACD F ABC F ACE ---的体积分别为123,,V V V ,则()A.322V V =B.31V V =C.3123V V V =-D.3123V V =【答案】D 【解析】【分析】结合线面垂直的性质,确定相应三棱锥的高,求出123,,V V V 的值,结合选项,即可判断出答案.【详解】连接BD 交AC 于O ,连接,OE OF ,设22AB ED FB ===,由于ED ⊥平面,ABCD FB ED ∥,则FB ⊥平面ABCD ,则1211141112222,22133233323ACD ABC V S ED V S FB =⨯⨯=⨯⨯⨯⨯==⨯⨯=⨯⨯⨯⨯= ;ED ⊥平面,ABCD AC Ì平面ABCD ,故ED AC ⊥,又四边形ABCD 为正方形,则AC BD ⊥,而,,ED BD D ED BD =⊂ 平面BDEF ,故AC ⊥平面BDEF ,OF ⊂平面BDEF ,故AC OF ⊥,又ED ⊥平面ABCD ,FB ⊥平面ABCD ,BD ⊂平面ABCD ,故,ED BD FB BD ⊥⊥,222222,26,3,BD OD OB OE OD ED OF OB BF =∴===+==+=而()223EF BD ED FB =+-=,所以222EF OF OE +=,即得OE OF ⊥,而,,OE AC O OE AC =⊂ 平面ACE ,故OF ⊥平面ACE ,又22222AC AE CE ===+=,故(2231131323233434F ACE V V ACE S OF AC OF =-=⋅=⨯⋅=⨯= ,故323131231,2,,233V V V V V V V V V ≠≠≠-=,故ABC 错误,D 正确,故选:D8.已知平面向量a ,b ,e ,且1e = ,2a = .已知向量b 与e所成的角为60°,且b te b e -≥- 对任意实数t 恒成立,则12a e ab ++-的最小值为()A.31+ B.23C.35 D.25【答案】B【解析】【分析】b te b e -≥-对任意实数t 恒成立,两边平方,转化为二次函数的恒成立问题,用判别式来解,算出||2b =r ,借助2a =,得到122a e a e +=+ ,12a e a b ++- 的最小值转化为11222a e a b++- 的最小值,最后用绝对值的三角不等式来解即可【详解】根据题意,1cos 602b e b e b ⋅=⋅︒=,b te b e -≥- ,两边平方22222||2||2b t e tb e b e b e +-⋅≥+-⋅ ,整理得到210t b t b --+≥ ,对任意实数t 恒成立,则()2Δ||410b b =--+≤ ,解得2(2)0b -≤ ,则||2b =r .由于2a =,如上图,122a e a e +=+ ,则111112(2)()22222a e a b a e a b a e a b ++-=++-≥+--222843e b e b b e =+=++⋅12a e ab ++- 的最小值为23当且仅当12,,2e b a -终点在同一直线上时取等号.故选:B .二、多项选择题.本题共3个小题,每小题6分,共18分.在每个小题给出的选项中,有多项符合题目要求,部分选对的得部分,有选错的得0分.9.某保险公司为客户定制了5个险种:甲,一年期短期;乙,两全保险;丙,理财类保险;丁,定期寿险;戊,重大疾病保险.各种保险按相关约定进行参保与理赔.该保险公司对5个险种参保客户进行抽样调查,得到如图所示的统计图表.则()A.丁险种参保人数超过五成B.41岁以上参保人数超过总参保人数的五成C.18-29周岁人群参保的总费用最少D.人均参保费用不超过5000元【答案】ACD 【解析】【分析】根据统计图表逐个选项进行验证即可.【详解】由参保险种比例图可知,丁险种参保人数比例10.020.040.10.30.54----=,故A 正确;由参保人数比例图可知,41岁以上参保人数超过总参保人数的45%不到五成,B 错误;由不同年龄段人均参保费用图可知,1829~周岁人群人均参保费用最少()3000,4000,但是这类人所占比例为15%,54周岁以上参保人数最少比例为10%,54周岁以上人群人均参保费用6000,所以18-29周岁人群参保的总费用最少,故C 正确.由不同年龄段人均参保费用图可知,人均参保费用不超过5000元,故D 正确;故选:ACD .10.在发生公共卫生事件期间,有专业机构认为该事件在一段时间内没有发生大规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”过去10日,甲、乙、丙、丁四地新增疑似病例数据信息如下:甲地:中位数为2,极差为5;乙地:总体平均数为2,众数为2;丙地:总体平均数为1,总体方差大于0;丁地:总体平均数为2,总体方差为3.则甲、乙、丙、丁四地中,一定没有发生大规模群体感染的有()A.甲地B.乙地C.丙地D.丁地【答案】AD 【解析】【分析】假设最多一天疑似病例超过7人,根据极差可判断AD ;根据平均数可算出10天疑似病例总人数,可判断BC .【详解】解:假设甲地最多一天疑似病例超过7人,甲地中位数为2,说明有一天疑似病例小于2,极差会超过5,∴甲地每天疑似病例不会超过7,∴选A .根据乙、丙两地疑似病例平均数可算出10天疑似病例总人数,可推断最多一天疑似病例可能超过7人,由此不能断定一定没有发生大规模群体感染,∴不选BC ;假设丁地最多一天疑似病例超过7人,丁地总体平均数为2,说明极差会超过3,∴丁地每天疑似病例不会超过7,∴选D .故选:AD .11.勒洛四面体是一个非常神奇的“四面体”,它能像球一样来回滚动.勒洛四面体是以正四面体的四个顶点为球心,以正四面体的棱长为半径的四个球的相交部分围成的几何体.如图所示,设正四面体ABCD 的棱长为2,则下列说法正确的是()A.勒洛四面体能够容纳的最大球的半径为22-B.勒洛四面体被平面ABC 截得的截面面积是(2π-C.勒洛四面体表面上交线AC 的长度为2π3D.勒洛四面体表面上任意两点间的距离可能大于2【答案】ABD 【解析】【分析】A 选项:求出正四面体ABCD 的外接球半径,进而得到勒洛四面体的内切球半径,得到答案;B 选项,作出截面图形,求出截面面积;C 选项,根据对称性得到交线AC 所在圆的圆心和半径,求出长度;D 选项,作出正四面体对棱中点连线,在C 选项的基础上求出长度.【详解】A 选项,先求解出正四面体ABCD 的外接球,如图所示:取CD 的中点G ,连接,BG AG ,过点A 作AF BG ⊥于点F ,则F 为等边ABC V 的中心,外接球球心为O ,连接OB ,则,OA OB 为外接球半径,设OA OB R ==,由正四面体的棱长为2,则1CG DG ==,BG AG ==133FG BG ==,233BF BG ==3AF ===,3OF AF R R =-=-,由勾股定理得:222OF BF OB +=,即22233R R ⎛⎫⎛-+= ⎪ ⎪ ⎪⎝⎭⎝⎭,解得:2R =,此时我们再次完整的抽取部分勒洛四面体,如图所示:图中取正四面体ABCD 中心为O ,连接BO 交平面ACD 于点E ,交 AD 于点F ,其中 AD 与ABD △共面,其中BO 即为正四面体外接球半径2R =,设勒洛四面体内切球半径为r ,则22r OF BF BO ==-=-,故A 正确;B 选项,勒洛四面体截面面积的最大值为经过正四面体某三个顶点的截面,如图所示:面积为(2221π333322222344⎛⎫⨯⨯⨯-⨯+⨯= ⎪ ⎪⎭⎝,B 正确;C 选项,由对称性可知:勒洛四面体表面上交线AC 所在圆的圆心为BD 的中点M ,故3MA MC ==2AC =,由余弦定理得:2221cos 23233AM MC AC AMC AM MC +-∠===⋅⨯⨯,故1arccos3AMC ∠=3AC 133,C 错误;D 选项,将正四面体对棱所在的弧中点连接,此时连线长度最大,如图所示:连接GH ,交AB 于中点S ,交CD 于中点T ,连接AT ,则22312ST AT AS =-=-=则由C 选项的分析知:3TG SH ==,所以323322GH =+=,故勒洛四面体表面上两点间的距离可能大于2,D 正确.故选:ABD.【点睛】结论点睛:勒洛四面体考试中经常考查,下面是一些它的性质:①勒洛四面体上两点间的最大距离比四面体的棱长大,是对棱弧中点连线,最大长度为232a a ⎫->⎪⎪⎭,②表面6个弧长之和不是6个圆心角为60︒的扇形弧长之和,其圆心角为1arccos 3,半径为32a .三、填空题:本题共3个小题,每小题5分,共15分.12.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为3:4:7,现在用分层抽样的方法抽出容量为n 的样本,样本中的A 型号产品有15件,那么样本容量n 为________.【答案】70【解析】【分析】利用分层抽样的定义得到方程,求出70n =.【详解】由题意得315347n=++,解得70n =.故答案为:7013.平面四边形ABCD 中,AB =AD =CD =1,BD =BD ⊥CD ,将其沿对角线BD 折成四面体A ′﹣BCD ,使平面A ′BD ⊥平面BCD ,若四面体A ′﹣BCD 顶点在同一个球面上,则该球的表面积_____.【答案】3π【解析】【分析】根据BD ⊥CD ,BA ⊥AC ,BC 的中点就是球心,求出球的半径,即可得到球的表面积.【详解】因为平面A′BD ⊥平面BCD ,BD ⊥CD ,所以CD ⊥平面ABD ,∴CD ⊥BA ,又BA ⊥AD ,∴BA ⊥面ADC ,所以BA ⊥AC ,所以△BCD 和△ABC 都是直角三角形,由题意,四面体A ﹣BCD 顶点在同一个球面上,所以BC 的中点就是球心,所以BC =2所以球的表面积为:242π⋅=3π.故答案为:3π.【点睛】本题主要考查面面垂直的性质定理和球的外接问题,还考查空间想象和运算求解的能力,属于中档题.14.若一组样本数据12,,n x x x 的平均数为10,另一组样本数据1224,24,,24n x x x +++ 的方差为8,则两组样本数据合并为一组样本数据后的方差是__________.【答案】54【解析】【分析】计算出1n ii x =∑、21nii x=∑的值,再利用平均数和方差公式可求得合并后的新数据的方差.【详解】由题意可知,数据12,n x x x 的平均数为10,所以12)101(n x x x x n =+++= ,则110ni i x n ==∑,所以数据1224,24,,24n x x x +++ 的平均数为121(242424)210424n x x x x n'=++++++=⨯+= ,方差为()(()222221111444[24241010n n n i i i i i i s x x x x n n n n n ===⎤⎡⎤=+-+=-=-⨯⨯⎦⎣⎦∑∑∑2144008n i i x n ==-=∑,所以21102nii xn ==∑,将两组数据合并后,得到新数据1212,24,24,,24,n n x x x x x x +++ ,,则其平均数为11114)4)11113]4)[(2(3(222n i nn n i i i i i i i x x x x x n n n ====''=+=⨯+=⨯++∑∑∑∑()13104172=⨯⨯+=,方差为()()2222111111172417(586458)22n n n ni i i i i i i i s x x x x n n n ====⎡⎤=-++-=-+⎢⎥⎣⎦'∑∑∑∑1(51028610458)542n n n n=⨯-⨯+=.故答案为:54.四、解答题:本题共5个小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.袋中有形状、大小都相同的4个小球,标号分别为1,2,3,4.(1)从袋中一次随机摸出2个球,求标号和为奇数的概率;(2)从袋中每次摸出一球,有放回地摸两次.甲、乙约定:若摸出的两个球标号和为奇数,则甲胜,反之,则乙胜.你认为此游戏是否公平?说明你的理由.【答案】(1)23(2)是公平的,理由见解析【解析】【分析】(1)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式即可求解;(2)利用列举法写出样本空间及事件的样本点,结合古典概型的计算公式及概率进行比较即可求解.【小问1详解】试验的样本空间{(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}Ω=,共6个样本点,设标号和为奇数为事件B ,则B 包含的样本点为(1,2),(1,4),(2,3),(3,4),共4个,所以42().63P B ==【小问2详解】试验的样本空间Ω{(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)}=,共有16个,设标号和为奇数为事件C ,事件C 包含的样本点为(1,2),(1,4),(2,1),(2,3),(3,2),(3,4),(4,1),(4,3),共8个,故所求概率为81()162P C ==,即甲胜的概率为12,则乙胜的概率为12,所以甲、乙获胜的概率是公平的.16.(1)请利用已经学过的方差公式:()2211ni i s x xn ==-∑来证明方差第二公式22211n i i s x x n ==-∑;(2)如果事件A 与B 相互独立,那么A 与B 相互独立吗?请给予证明.【答案】(1)证明见解析;(2)独立,证明见解析【解析】【分析】(1)根据题意,对方差公式恒等变形,分析可得结论;(2)根据相互独立事件的定义,只需证明()()()P AB P A P B =即可.【详解】(1)()()()()2222212111n i n i s x xx x x x x x n n =⎡⎤=-=-+-++-⎢⎥⎣⎦∑ ()()2222121212n n x x x x x x x nx n ⎡⎤=+++-+++⎢⎥⎣⎦ ()22221212n x x x x nx nx n ⎡⎤=+++-⨯+⎢⎥⎣⎦ ()222121n x x x nx n ⎡⎤=+++-⎢⎥⎣⎦ 2211n i i x x n ==-∑;(2)因为事件A 与B 相互独立,所以()()()P AB P A P B =,因为()()()P AB P AB P A +=,所以()()()()()()P AB P A P AB P A P A P B =-=-()()()()()1P A P B P A P B =-=,所以事件A 与B 相互独立.17.如图,四棱锥P ABCD -的侧面PAD 是边长为2的正三角形,底面ABCD 为矩形,且平面PAD ⊥平面ABCD ,M ,N 分别为AB ,AD 的中点,二面角D PN C --的正切值为2.(1)求四棱锥P ABCD -的体积;(2)证明:DM PC⊥(3)求直线PM 与平面PNC 所成角的正弦值.【答案】(1)3(2)证明见解析(3)35【解析】【分析】(1)先证明DNC ∠为二面角D PN C --的平面角,可得底面ABCD 为正方形,利用锥体的体积公式计算即可;(2)利用线面垂直的判定定理证明DM ⊥平面PNC ,即可证明DM PC ⊥;(3)由DM⊥平面PNC 可得MPO ∠为直线PM 与平面PNC 所成的角,计算其正弦值即可.【小问1详解】解:∵PAD △是边长为2的正三角形,N 为AD 中点,∴PN AD ^,PN =又∵平面PAD ⊥平面ABCD ,平面PAD ⋂平面ABCD AD =∴PN ^平面ABCD又NC ⊂平面ABCD ,∴PN NC ⊥∴DNC ∠为二面角D PN C --的平面角,∴tan 2DC DNC DN∠==又1DN =,∴2DC =∴底面ABCD 为正方形.∴四棱P ABCD -的体积12233V =⨯⨯=.【小问2详解】证明:由(1)知,PN ^平面ABCD ,DM ⊂平面ABCD ,∴PN DM⊥在正方形ABCD 中,易知DAM CDN ≌△△∴ADM DCN ∠=∠而90ADM MDC ∠+∠=︒,∴90DCN MDC ∠+∠=︒∴DM CN ⊥∵PN CN N = ,∴DM ⊥平面PNC∵PC ⊂平面PNC ,∴DM PC ⊥.【小问3详解】设DM CN O ⋂=,连接PO ,MN .∵DM⊥平面PNC .∴MPO ∠为直线PM 与平面PNC 所成的角∵2,1AD AM ==,∴DM =5DO ==∴55MO ==又MN =PM ==∴35sin 5MO MPO PM ∠===∴直线PM 与平面PNC 所成角的正弦值为35.18.某市根据居民的月用电量实行三档阶梯电价,为了深入了解该市第二档居民用户的用电情况,该市统计局用比例分配的分层随机抽样方法,从该市所辖A ,B ,C 三个区域的第二档居民用户中按2:2:1的比例分配抽取了100户后,统计其去年一年的月均用电量(单位:kW h ⋅),进行适当分组后(每组为左闭右开的区间),频率分布直方图如下图所示.(1)求m 的值;(2)若去年小明家的月均用电量为234kW h ⋅,小明估计自己家的月均用电量超出了该市第二档用户中85%的用户,请判断小明的估计是否正确?(3)通过进一步计算抽样的样本数据,得到A 区样本数据的均值为213,方差为24.2;B 区样本数据的均值为223,方差为12.3;C 区样本数据的均值为233,方差为38.5,试估计该市去年第二档居民用户月均用电量的方差.(需先推导总样本方差计算公式,再利用数据计算)【答案】(1)0.016m =(2)不正确(3)78.26【解析】【分析】(1)利用频率和为1列式即可得解;(2)求出85%分位数后判断即可;(3)利用方差公式推导总样本方差计算公式,从而得解.【小问1详解】根据频率和为1,可知()0.0090.0220.0250.028101m ++++⨯=,可得0.016m =.【小问2详解】由题意,需要确定月均用电量的85%分位数,因为()0.0280.0220.025100.75++⨯=,()0.0280.0220.0250.016100.91+++⨯=,所以85%分位数位于[)230,240内,从而85%分位数为0.850.7523010236.252340.910.75-+⨯=>-.所以小明的估计不正确.【小问3详解】由题意,A 区的样本数为1000.440⨯=,样本记为1x ,2x ,L ,40x ,平均数记为x ;B 区的样本数1000.440⨯=,样本记为1y ,2y ,L ,40y ,平均数记为y ;C 区样本数为1000.220⨯=,样本记为1z ,2z ,L ,20z ,平均数记为z .记抽取的样本均值为ω,0.42130.42230.2233221ω=⨯+⨯+⨯=.设该市第二档用户的月均用电量方差为2s ,则根据方差定义,总体样本方差为()()()40402022221111100i j k i i i s x y z ωωω===⎡⎤=-+-+-⎢⎥⎣⎦∑∑∑()()()4040202221111100i j k i i i x x x y y y z z z ωωω===⎡⎤=-+-+-+-+-+-⎢⎥⎣⎦∑∑∑因为()4010ii x x =-=∑,所以()()()()404011220iii i x x x x x x ωω==--=--=∑∑,同理()()()()404011220jji i yyy y yy ωω==--=--=∑∑,()()()()202011220kki i zz z z zz ωω==--=--=∑∑,因此()()()()4040404022222111111100100i j i i i i s x x x y y y ωω====⎡⎤⎡⎤=-+-+-+-⎢⎥⎢⎥⎣⎦⎣⎦∑∑∑∑()()202022111100k i i z z z ω==⎡⎤+-+-⎢⎥⎣⎦∑∑,代入数据得()()222114024.2402132214012.340223221100100s ⎡⎤⎡⎤⎣⎦⎦=⨯+⨯-+⨯-⎣+⨯()212038.32023322178.26100⎡⎤+⨯+⨯-=⎣⎦.19.在世界杯小组赛阶段,每个小组内的四支球队进行循环比赛,共打6场,每场比赛中,胜、平、负分别积3,1,0分.每个小组积分的前两名球队出线,进入淘汰赛.若出现积分相同的情况,则需要通过净胜球数等规则决出前两名,每个小组前两名球队出线,进入淘汰赛.假定积分相同的球队,通过净胜球数等规则出线的概率相同(例如:若B ,C ,D 三支积分相同的球队同时争夺第二名,则每个球队夺得第二名的概率相同).已知某小组内的A ,B ,C ,D 四支球队实力相当,且每支球队在每场比赛中胜、平、负的概率都是13,每场比赛的结果相互独立.(1)求A 球队在小组赛的3场比赛中只积3分的概率;(2)已知在已结束的小组赛的3场比赛中,A 球队胜2场,负1场,求A 球队最终小组出线的概率.【答案】(1)427(2)7981【解析】【分析】(1)分类讨论只积3分的可能情况,结合独立事件概率乘法公式运算求解;(2)由题意,若A 球队参与的3场比赛中胜2场,负1场,根据获胜的三队通过净胜球数等规则决出前两名,分情况讨论结合独立事件概率乘法公式运算求解.【小问1详解】A 球队在小组赛的3场比赛中只积3分,有两种情况.第一种情况:A 球队在3场比赛中都是平局,其概率为111133327⨯⨯=.第二种情况:A球队在3场比赛中胜1场,负2场,其概率为11113 3339⨯⨯⨯=.故所求概率为114 27927+=.【小问2详解】不妨假设A球队参与的3场比赛的结果为A与B比赛,B胜;A与C比赛,A胜;A与D比赛,A胜.此情况下,A积6分,B积3分,C,D各积0分.在剩下的3场比赛中:若C与D比赛平局,则C,D每队最多只能加4分,此时C,D的积分都低于A的积分,A可以出线;若B与C比赛平局,后面2场比赛的结果无论如何,都有两队的积分低于A,A可以出线;若B与D比赛平局,同理可得A可以出线.故当剩下的3场比赛中有平局时,A一定可以出线.若剩下的3场比赛中没有平局,则当B,C,D各赢1场比赛时,A可以出线.当B,C,D中有一支队伍胜2场时,若C胜2场,B胜1场,A,B,C争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=;若D胜2场,B胜1场,A,B,D争夺第一、二名,则A淘汰的概率为11111 333381⨯⨯⨯=.其他情况A均可以出线.综上,A球队最终小组出线的概率为1179 1818181⎛⎫-+=⎪⎝⎭.【点睛】关键点点睛:解题的关键在于分类讨论获胜的三队通过净胜球数等规则决出前两名,讨论要恰当划分,做到不重不漏,从而即可顺利得解.。
黑龙江省哈尔滨师大附中2024-2025学年高二(上)月考数学试卷(10月份)(含答案)

2024-2025学年黑龙江省哈尔滨师大附中高二(上)月考数学试卷(10月份)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知椭圆的方程为x23+y24=1,则该椭圆的焦点坐标为( )A. (0,±1)B. (0,±7)C. (±1,0)D. (±7,0)2.已知直线l:x+3my−2=0的倾斜角为π3,则实数m=( )A. −1B. −13C. 13D. 13.已知直线l的方程是(3a−1)x−(a−2)y−1=0,则对任意的实数a,直线l一定经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.已知P是以F1,F2为焦点的椭圆x2a2+y2b2=1(a>b>0)上的一点,若PF1⊥PF2,且|PF1|=2|PF2|,则此椭圆的离心率为( )A. 12B. 23C. 13D. 535.若直线y=x+b与曲线y=1−x2有公共点,则b的取值范围是( )A. [−2,2]B. [−1,2]C. [−1,1]D. (−1,2)6.阿基米德在他的著作《关于圆锥体和球体》中计算了一个椭圆的面积,当我们垂直地缩小一个圆时,得到一个椭圆,椭圆的面积等于圆周率与椭圆的长半轴长与短半轴长的乘积.已知椭圆C:x2a2+y2b2=1(a>b>0)的面积为6π,两个焦点分别为F1,F2,点A是椭圆C上的动点,点B是点A关于原点的对称点,若四边形AF1BF2的周长为12,则四边形AF1BF2面积的最大值为( )A. 45B. 25C. 235D. 357.已知圆C:(x+5)2+(y−12)2=9和两点A(0,m),B(0,−m)(m>0),若圆C上存在点P,使得∠APB=90°,则实数m的取值范围为( )A. [11,15]B. [10,16]C. [9,13]D. [8,12]8.已知A,B是圆x2+y2=4上的两个动点,且|AB|=22,点M(x0,y0)是线段AB的中点,则|x0+y0−4|的最大值为( )A. 12B. 62C. 6D. 32二、多选题:本题共3小题,共18分。
2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题(含解析)

2024-2025学年吉林省长春市高二上学期第一次月考数学检测试题一、单选题(本大题共8小题)1.在空间直角坐标系中,已知点,点则( )Oxyz ()1,3,5P ()1,3,5Q --A .点和点关于轴对称B .点和点关于轴对称P Q x P Q y C .点和点关于轴对称D .点和点关于原点中心对称P Q z P Q 2.向量,若,则( )()()2,1,3,1,2,9a x b y ==- a ∥b A .B .1x y ==11,22x y ==-C .D .13,62x y ==-12,63x y =-=3.直三棱柱中,若,则( )111ABC A B C -1,,CA a CB b CC c === 1A B =A .B .a b c +-r r ra b c -+r r rC .D .a b c -++ a b c -+- 4.下列可使非零向量构成空间的一组基底的条件是( ),,a b c A .两两垂直B .,,a b c b cλ= C .D .a mb nc =+a b c ++=5.已知,则直线恒过定点( )2b a c =+0ax by c ++=A .B .(1,2)-(1,2)C .D .(1,2)-(1,2)--6.已知:,:,则两圆的位1C 2222416160x y x y +++-=2C 22228840x y x y ++--=置关系为( )A .相切B .外离C .相交D .内含7.已知点为椭圆上任意一点,直线过的圆心且P 22:11612x y C +=l 22:430M x y x +-+= 与交于两点,则的取值范围是( )M ,A B PA PB ⋅A .B .C .D .[]3,35[]2,34[]2,36[]4,368.已知圆和圆交于两点,点在圆221:2470C x y x y +---=222:(3)(1)12C x y +++=P 上运动,点在圆上运动,则下列说法正确的是( )1C Q 2C A .圆和圆关于直线对称1C 2C 8650x y +-=B .圆和圆的公共弦长为1C 2CC .的取值范围为PQ0,5⎡+⎣D .若为直线上的动点,则的最小值为M 80-+=x y PM MQ+-二、多选题(本大题共3小题)9.已知向量,,则下列正确的是( )()1,2,0a =-()2,4,0b =-A .B .//a ba b⊥ C .D .在方向上的投影向量为2b a = a b ()1,2,0-10.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图,把三片这样的达·芬奇方砖拼成组合,把这个组合再转换成空间几何体.若图中每个正方体的棱长为1,则下列结论正确的是( )A .B .点到直线的距离是122CQ AB AD AA =--+1C CQ C .D .异面直线与所成角的正切值为43CQ = CQ BD 11.已知实数满足方程,则下列说法正确的是( ),x y 22410x y x +-+=A .的最大值为B .的最大值为y x -2-22x y +7+C .的最大值为D .的最小值为y x x y+2三、填空题(本大题共3小题)12.O 为空间任意一点,若,若ABCP 四点共面,则3148OP OA OB tOC=++ t =.13.已知点和点,是动点,且直线与的斜率之积等于,则()2,0A -()2,0B P AP BP 34-动点的轨迹方程为.P 14.已知点为圆上位于第一象限内的点,过点作圆P 221:(5)4C x y -+=P 的两条切线,切点分别为,直线222:2C x y ax +-220(25)a a a +-+=<<,PM PN M N 、分别交轴于两点,则 , .,PM PN x (1,0),(4,0)A B ||||PA PB =||MN =四、解答题(本大题共5小题)15.分别求满足下列各条件的椭圆的标准方程.(1)已知椭圆的离心率为,短轴长为23e =(2)椭圆与有相同的焦点,且经过点,求椭圆的标准方程.C 2212x y +=31,2M ⎛⎫⎪⎝⎭C 16.已知圆心为的圆经过点,且圆心在直线上.C ()()1,4,3,6A B C 340x y -=(1)求圆的方程;C (2)已知直线过点且直线截圆所得的弦长为2,求直线的一般式方程.l ()1,1l C l 17.如图,四边形与四边形均为等腰梯形,ABCD ADEF,,,,,平面,//BC AD //EF AD 4=AD AB =2BC EF ==AF =FB ⊥ABCD 为上一点,且,连接、、M AD FM AD ⊥BD BE BM(1)证明:平面;⊥BC BFM (2)求平面与平面的夹角的余弦值.ABF DBE18.已知圆与圆内切.()222:0O x y r r +=>22:220E x y x y +--=(1)求的值.r (2)直线与圆交于两点,若,求的值;:1l y kx =+O ,M N 7OM ON ⋅=-k (3)过点作倾斜角互补的两条直线分别与圆相交,所得的弦为和,若E O AB CD ,求实数的最大值.AB CDλ=λ19.已知两个非零向量,,在空间任取一点,作,,则叫a bO OA a = OB b = AOB ∠做向量,的夹角,记作.定义与的“向量积”为:是一个向量,它与向a b ,a ba b a b ⨯ 量,都垂直,它的模.如图,在四棱锥中,底面a b sin ,a b a b a b ⨯=⋅ P ABCD -为矩形,底面,,为上一点,.ABCD PD ⊥ABCD 4DP DA ==E AD AD BP ⨯=(1)求的长;AB (2)若为的中点,求二面角的余弦值;E AD P EB A --(3)若为上一点,且满足,求.M PB AD BP EM λ⨯=λ答案1.【正确答案】B【详解】由题得点与点的横坐标与竖坐标互为相反数,纵坐标相同,P Q 所以点和点关于轴对称,P Q y 故选:B.2.【正确答案】C【分析】利用空间向量平行列出关于的方程组,解之即可求得的值.,x y ,x y 【详解】因为,所以,由题意可得,a b ∥a b λ=()()()2,1,31,2,9,2,9x y y λλλλ=-=-所以则.2,12,39,x y λλλ=⎧⎪=-⎨⎪=⎩131632x y λ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩故选C.【思路导引】根据题目条件列出关于的方程组,解方程组即可得到答案.a∥b ,x y 3.【正确答案】D【详解】.()11111A A B B a b B A B cCC C CB =+=-+=-+--+ 故选:D .4.【正确答案】A【详解】由基底定义可知只有非零向量不共面时才能构成空间中的一组基底.,,a b c对于A ,因为非零向量两两垂直,所以非零向量不共面,可构成空间的一,,a b c ,,a b c 组基底,故A 正确;对于B ,,则共线,由向量特性可知空间中任意两个向量是共面的,所以b c λ=,b c 与共面,故B 错误;a,b c 对于C ,由共面定理可知非零向量共面,故C 错误;,,a b c 对于D ,即,故由共面定理可知非零向量共面,故D 错误.0a b c ++= a b c =--,,a b c 故选:A.5.【正确答案】A【分析】由题意可得,可得定点坐标.(1)(2)0a x b y -++=【详解】因为,所以,2b a c =+2c b a =-由,可得,所以,0ax by c ++=(2)0ax by b a ++-=(1)(2)0a x b y -++=当时,所以对为任意实数均成立,1,2x y ==-(11)(22)0a b -+-+=,a b 故直线过定点.(1,2)-故选A.6.【正确答案】C 【详解】因为可化为22221:22416160,2880C x y x y x y x y +++-=+++-= ,则,半径,()()221425x y +++=()11,4C --15r =因为可化为,22222:228840,4420C x y x y x y x y ++--=++--= ()()222210x y ++-=则,半径()22,2C -2r =则,因为.1C =122155r r r r -=<<+=+故选:C.7.【正确答案】A【详解】,即,22:430M x y x +-+= ()2221x y -+=则圆心,半径为.(2,0)M 1椭圆方程,,22:11612x y C +=2216,12a b ==则,22216124,2c a b c =-=-==则圆心为椭圆的焦点,(2,0)M 由题意的圆的直径,且AB 2AB = 如图,连接,由题意知为中点,则,PM M AB MA MB =-可得()()()()PA PB PM MA PM MB PM MB PM MB ⋅=+⋅+=-+ .2221PM MB PM =-=- 点为椭圆上任意一点,P 22:11612x y C +=则,,min 2PM a c =-= max 6PM a c =+= 由,26PM ≤≤ 得.21PA PB PM ⋅=- []3,35∈故选:A.8.【正确答案】D【详解】对于A ,和圆,221:2470C x y x y +---=222:(3)(1)12C x y +++=圆心和半径分别是,()()12121,2,3,1,C C R R --==则两圆心中点为,11,2⎛⎫- ⎪⎝⎭若圆和圆关于直线对称,则直线是的中垂线,1C 2C 8650x y +-=12C C 但两圆心中点不在直线上,故A 错误;11,2⎛⎫- ⎪⎝⎭8650x y +-=对于B ,到直线的距离,1C 8650x y ++=81255102d ++==故公共弦长为,B错误;=对于C ,圆心距为,当点和重合时,的值最小,5=P QPQ当四点共线时,的值最大为12,,,P Q C CPQ 5+故的取值范围为,C 错误;PQ0,5⎡+⎣对于D ,如图,设关于直线对称点为,1C 80-+=x y (),A m n则解得即关于直线对称点为,21,11280,22n mm n -⎧=-⎪⎪-⎨++⎪-+=⎪⎩6,9,m n =-⎧⎨=⎩1C 80-+=x y ()6,9A -连接交直线于点,此时最小,2AC M PM MQ +122PM MQ MC MC C A +≥+-=-==即的最小值为,D 正确.PM MQ+故选:D.9.【正确答案】ACD【详解】ABC 选项,由题意得,故且,AC 正确,B 错误;2b a= //a b2b a= D 选项,在,Da b ()01,2,=-正确.故选:ACD10.【正确答案】ABC 【详解】依题意得,12CQ CB BQ AD BA =+=-+()11222AD AA AB AB AD AA =-+-=--+ 故A 正确;如图,以为坐标原点,建立空间直角坐标系,1A 111(0,1,0),(1,1,0),(1,0,0),(0,1,1),(1,1,1),(1,1,1),B C D Q C E -------,(1,1,1),(0,1,1),(1,0,1)G B D -----对于BC ,,1(1,2,1),(1,2,2)QC CQ =--=-所以,设,3CQ==173QC CQ m CQ ⋅==- 则点到直线的距离BC 正确;1C CQd ==对于D ,因为,(1,2,2),(1,1,0)CQ BD ---==所以cos ,CQ BD 〈〉==tan ,CQ BD 〈〉= 所以异面直线与所成角的正切值为D 错误.CQ BD 故选:ABC .11.【正确答案】ABD【详解】根据题意,方程,即,22410x y x +-+=22(2)3x y -+=表示圆心为,半径为(2,0)对于A ,设,即,y x z -=0x y z -+=直线与圆有公共点,0x y z -+=22(2)3x y -+=所以≤22z ≤≤则的最大值为,故A 正确;z y x =-2-对于B ,设,其几何意义为圆上的点到原点的距离,t =22(2)3x y -+=所以的最大值为,t 2故的最大值为B 正确;22x y +22(27t ==+对于C ,设,则,直线与圆有公共点,yk x =0kx y -=0kx y -=22(2)3x y -+=则,解得的最大值为C 错误;≤k ≤≤yx 对于D ,设,作出图象为正方形,作出圆,如图,m x y=+22(2)3x y -+=由图象可知,正方形与圆有公共点A 时,有最小值m 2即的最小值为,故D 正确;x y+2故选:ABD12.【正确答案】/0.12518【详解】空间向量共面的基本定理的推论:,且、、不共OP xOA yOB zOC =++ A B C 线,若、、、四点共面,则,A B C P 1x y z ++=因为为空间任意一点,若,且、、、四点共面,O 3148OP OA OB tOC=++ A B C P所以,,解得.31148t ++=18t =故答案为.1813.【正确答案】221(2)43x y x +=≠±【详解】设动点的坐标为,又,,P (,)x y ()2,0A -()2,0B 所以的斜率,的斜率,AP (2)2AP y k x x =≠-+BP (2)2BP yk x x =≠-由题意可得,3(2)224y y x x x ⨯=-≠±+-化简,得点的轨迹方程为.P 221(2)43x y x +=≠±故221(2)43x y x +=≠±14.【正确答案】 2,【详解】圆的标准方程为,圆心,2C 22()2(2)x a y a a -+=->()2,0C a 则为的角平分线,所以.2PC APB ∠22AC PA BC PB=设,则,()00,P x y ()22054x y -+=所以,则,2PAPB===222AC BC =即,解得,则,()124a a -=-3a =222:(3)1C x y -+=所以点与重合,N ()4,0B 此时,可得,221,30C M MAC =∠=52M ⎛ ⎝.故;215.【正确答案】(1)或;22114480x y +=22114480y x +=(2).22143x y +=【详解】(1)由题得,222212328c a a b b a b c c ⎧=⎪=⎧⎪⎪⎪=⇒=⎨⎨⎪⎪=+=⎩⎪⎪⎩所以椭圆的标准方程为或.22114480x y +=22114480y x +=(2)椭圆满足,故该椭圆焦点坐标为,2212x y +=1c ==()1,0±因为椭圆与有相同的焦点,且经过点,C 2212x y +=31,2M ⎛⎫ ⎪⎝⎭所以可设椭圆方程为,且,解得,C 22221x y a b +=22222231211ab a b ⎧⎛⎫⎪ ⎪⎪⎝⎭+=⎨⎪⎪=+⎩4241740a a -+=故,解得(舍去)或,故.()()224140aa --=214a =24a =2213b a =-=所以椭圆的标准方程为.C 22143x y +=16.【正确答案】(1)()()224310x y -+-=(2)或10x -=512170x y +-=【详解】(1)由题意,则的中点为,且,()()1,4,3,6A B AB (2,5)64131AB k -==-故线段中垂线的斜率为,AB 1-则中垂线的方程为,即,5(2)y x -=--70x y +-=联立,解得,即圆心,34070x y x y -=⎧⎨+-=⎩43x y =⎧⎨=⎩()4,3C 则半径r CA ===故圆的方程为.C ()()224310x y -+-=(2)当直线斜率不存在时,直线的方程为,l 1x =圆心到直线的距离为,由半径,(4,3)C 3r =则直线截圆所得的弦长,满足题意;l C 2=当直线斜率存在时,设直线方程为,l l 1(x 1)y k -=-化为一般式得,10kx y k -+-=由直线截圆所得的弦长,半径.l C 2r =1则圆心到直线的距离,又圆心,3d ==(4,3)由点到直线的距离公式得,3d 解得,故直线方程为,512k =-l 51(1)12y x -=--化为一般式方程为.512170x y +-=综上所述,直线的方程为或.l 10x -=512170x y +-=17.【正确答案】(1)证明见详解;【分析】(1)根据线面垂直的性质,结合线面垂直的判定定理、平行线的性质进行证明即可;(2)作,垂足为,根据平行四边形和矩形的判定定理,结合(1)的结论,EN AD ⊥N 利用勾股定理,因此可以以,,所在的直线分别为轴、轴、轴建立空BM BC BF x y z 间直角坐标系,利用空间向量夹角公式进行求解即可.【详解】(1)因为平面,又平面,FB ⊥ABCD AD ⊂ABCD 所以.又,且,FB AD ⊥FM AD ⊥FB FM F ⋂=所以平面.因为,所以平面.AD ⊥BFM //BC AD ⊥BC BFM (2)作,垂足为.则.又,EN AD ⊥N //FM EN //EF AD 所以四边形是平行四边形,又,FMNE EN AD ⊥所以四边形是矩形,又四边形为等腰梯形,且,,FMNE ADEF 4=AD 2EF =所以.1AM =由(1)知平面,所以.又,AD ⊥BFM BM AD⊥AB =所以.在中,1BM =Rt AFMFM ==在中,.Rt FMB 3FB ==所以由上可知,能以,,所在的直线分别为轴、轴、轴建立如图所示空间BM BC BF x y z 直角坐标系.则,,,,,所以,,(1,1,0)A --(0,0,0)B (0,0,3)F (1,3,0)D -(0,2,3)E (1,1,0)AB =,,,设平面的法向量为,(0,0,3)BF = (1,3,0)BD =- (0,2,3)BE =ABF ()111,,m x y z = 由,得可取.00m AB m BF ⎧⋅=⎪⎨⋅=⎪⎩ 1110,0,x y z +=⎧⎨=⎩(1,1,0)m =- 设平面的法向量为,BDE ()222,,n x y z =由,得,可取.00n BD n BE ⎧⋅=⎪⎨⋅=⎪⎩ 222230,230,x y y z -+=⎧⎨-+=⎩(9,3,2)n = 因此,.cos ,m n m n m n ⋅===依题意可知,平面与平面的夹角的余弦值为ABFDBE 18.【正确答案】(1)r =(2);1k =±(3)max λ=【详解】(1)由题意得,,O (0,0)()()2222220112x y x y x y +--=⇒-+-=故圆心,圆E 的半径为()1,1E 因为,故在圆E 上,()()2201012-+-=O (0,0)所以圆O 的半径,且r >OE r ==r =(2)由(1)知,联立,22:8O x y +=()2222812701x y k x kx y kx ⎧+=⇒++-=⎨=+⎩设,则恒成立,()()1122,,,M x y N x y ()22Δ42810k k =++>且,12122227,11k x x x x k k +=-=-++所以,()2222121212222721811111k k k y y k x x k x x k k k -=+++=--+=+++所以,解得.221212222718681711O k k x x y O y k k k M N ⋅=---+=-+==+++-1k =±(3)如图,因为直线和直线倾斜角互补,AB CD所以当直线斜率不存在时,此时直线的斜率也不存在,AB CD 此时,,AB CD=1AB CDλ==当直线的斜率为0时,直线的斜率为0,不满足倾斜角互补,AB CD 当直线斜率存在且不为0时,设直线 即,AB ():11AB y k x -=-10kx y k --+=圆心O 到直线的距离为AB d故AB ===由直线方程得直线的方程为即,AB CD ()11y k x -=--10kx y k +--=同理得CD =则,AB CD λ====当,,0k>AB CDλ====因为对勾函数在上单调递减,在上单调递增,()1f x x x =+(0,1)(1,+∞)所以时,,0x >()())[)1,2,f x f ∞∞⎡∈+=+⎣所以时,故,0k >[)17212,k k ∞⎛⎫+-∈+ ⎪⎝⎭4411,1372k k ⎛⎤+∈ ⎥⎛⎫⎝⎦+- ⎪⎝⎭所以,λ⎛= ⎝当,0k <AB CDλ====由上知时,故,0k <()[)17216,k k ∞⎡⎤⎛⎫-+-+∈+ ⎪⎢⎥⎝⎭⎣⎦()431,14172k k ⎡⎫-∈⎪⎢⎡⎤⎛⎫⎣⎭-+-+ ⎪⎢⎥⎝⎭⎣⎦所以.λ⎫=⎪⎪⎭综上,max λ=19.【正确答案】(1)2(2)13-(3)10【分析】(1)首先说明为直线与所成的角,即,设PBC ∠AD PB ,AD BP PBC=∠,根据所给定义得到方程,解得即可;()0AB x x =>(2)在平面内过点作交的延长线于点,连接,为二ABCD D DF BE ⊥BE F PF PFD ∠面角的平面角,由锐角三角函数求出,设二面角的平面P EB D --cos PFD ∠P EB A --角为,则,利用诱导公式计算可得;θπPFD θ=-∠(3)依题意可得平面,在平面内过点作,垂足为,即EM ⊥PBC PDC D DN PC ⊥N 可证明平面,在平面内过点作交于点,在上取点DN ⊥PBC PBC N //MN BC PB M DA,使得,连接,即可得到四边形为平行四边形,求出,即E DE MN =EM DEMN DN可得解.【详解】(1)因为底面为矩形,底面,ABCD PD ⊥ABCD 所以,,又底面,所以,//AD BC BC DC ⊥BC ⊂ABCD PD BC ⊥又,平面,所以平面,PD DC D = ,PD DC ⊂PDC BC ⊥PDC 又平面,所以,PC ⊂PDC BC PC ⊥所以为直线与所成的角,即,PBC ∠AD PB ,AD BP PBC=∠设,则,()0AB x x =>PC ==PB ==在中Rt PBC s n i PCPBC PB ∠==又,解得(负值已舍去),AD BP ⨯==2x =所以;2AB =(2)在平面内过点作交的延长线于点,连接,ABCD D DF BE ⊥BE F PF 因为底面,底面,所以,又,PD ⊥ABCD BF ⊂ABCD PD BF ⊥DF PD D = 平面,所以平面,又平面,所以,,DF PD ⊂PDF BF ⊥PDF PF ⊂PDF BF PF ⊥所以为二面角的平面角,PFD ∠P EB D --因为为的中点,E AD所以π2sin4DF ==PF ==所以,1cos 3DF PFD PF ∠===设二面角的平面角为,则,P EB A --θπPFD θ=-∠所以,()1cos cos πcos 3PFD PFD θ=-∠=-∠=-即二面角的余弦值为;P EB A --13-(3)依题意,,又,()AD BP AD⨯⊥ ()AD BP BP⨯⊥ AD BP EM λ⨯= 所以,,又,所以,EM AD ⊥EM BP ⊥//AD BC EM BC ⊥又,平面,所以平面,PB BC B = ,PB BC ⊂PBC EM ⊥PBC 在平面内过点作,垂足为,PDC D DN PC ⊥N 由平面,平面,所以,BC ⊥PDC DN ⊂PDC BC DN ⊥又,平面,所以平面,PC BC C = ,PC BC ⊂PBC DN ⊥PBC 在平面内过点作交于点,在上取点,使得,连接PBC N //MN BC PB M DA E DE MN =,EM 所以且,所以四边形为平行四边形,//DE MN DE MN =DEMN 所以,又,即EM DN =DN ==EM=所以.10AD BP EMλ⨯===【关键点拨】本题关键是理解并应用所给定义,第三问关键是转化为求.DN。
湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)
2024年湖北云学名校联盟高二年级10月联考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项考试时间:2024年10月15日15:00-17:00 时长:120分钟满分:150分是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果.【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i32i 12i 1i 1i1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1C. 0或1D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可. 【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅ 169912129=++−−+19=.所以PQ =.故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误; 对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ==,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213APk −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−±.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.【答案】BCD 【解析】【分析】以{},,OA OB OC为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅=.对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+−2133AB AC +()()2133OB OA OC OA =−+−2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA =时,DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− ,又AB OB OA =−,所以13DH AB OC − .故DH ,AB ,OC 共面.故B 正确;对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+−12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++,所以:HG OA ⋅= 111336OA OB OC OA −++⋅ 2111336OA OB OA OC OA =−+⋅+⋅1119660336=−×+×+×=,所以HG OA ⊥ ,故GH OA ⊥,故C 正确;对D :设OH OA λ=,()01λ≤≤.因为:DH OH OD =−()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− .所以DH OH ⋅ 2133OA OB OC OAλλ =−−⋅()2233OA OA OB OA OCλλλ−⋅−⋅296λλ−,()01λ≤≤.当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8. 【答案】ACD 【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假. 【详解】对A :由222382103410a +−×−×−+<⇒8a >. 此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP=又CP =⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==,cos ACP ∠==41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角, 所以存在直线l 使得CA CB ⊥.故C 正确; 对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MP NPBP=⇒(4AP BP MP NP ⋅=⋅=−+=.又1sin 2PACS PA PC APC APC =⋅⋅∠=∠ ,PBCS BPC =∠ ,且sin sin APC BPC ∠=∠.所以22sin PAC PBC S S PA PB APC⋅=⋅⋅∠ 28sin APC ∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确. 故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值. 三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______. 【答案】49 【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点, 圆224x y +=的圆心OO (0,0),半径2r =, 则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max 27PA AO r=+=+=, 所以22max749PA==; 故()()2243x y −++的最大值是49. 故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = ,则BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−,sin cos cos sin 2sin cos A B A B C A +=, ()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C >,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =..14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED ,EG ,因为H 为AAAA 上的靠近D 的三分点,所以13DH AD =, 因为E 为AAAA 的中点,所以点E 到AAAA 的距离为点B 到AAAA 的距离的一半, 所以16DEH BAD S S = , 又G 为CCAA 上靠近D 的三分点,所以点G 到平面ABD 的距离为点C 到平面ABD 的距离的13, 所以111119663182G DEH G BAD C BAD V V V −−−==×=×=, 1233BCD FCG BCD BCD BCD BFGD S S S S S S =−=−= 四边形, 所以2211933323E BFGD E BCD A BCD V V V −−−==×=×=, 所以多面体EFGHBD 的体积为17322G DEH E BFGD V V −−+=+=. 故答案为:72. 【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】 样本中男生的人数为:100900601500×=;女生的人数为:1006040−=. 所以总样本的平均数为:6013.24015.214100x ×+×=. 【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=. (1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线0x y −+=上, 所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=, 又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=, .又因为ACB ∠的角平分线所在的直线方程为10x y −+=, 在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=,整理得21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=. 17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠, 因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA A C ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC =, 为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E , 设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅=== 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标;(3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= ,由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】 设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = = , 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+=可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=, 由220,230x y y +−= −=可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°. 所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =−− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= ++−+=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。
山西省山西大学附属中学校2024-2025学年高二10月月考数学试题
山西大学附属中学2024~2025学年第一学期高二10月月考(总第二次)数 学 试 题考试时间:120分钟 满分:150分一、选择题(本小题8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有2.已知向量,若,则( )A . B. C . D .3.已知直线:与直线:,则“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.在空间四边形中,若分别是的中点,是上的5.如图,在圆锥SO 中,AB 是底面圆的直径,, D ,E分别为SO,SB 的中点,点C 是底面圆周上一点(不同于A ,B )且,则直线AD 与直线CE 所成角的余弦值为( )6.已知直线过点,且为其一个方向向量,则点到直线的距离为( )7.已知两点,若直线与线段有公共点,则的取值范围为( )A .B .C .D .8.已知点P 和非零实数,若两条不同的直线,均过点P ,且斜率之积为,则称直(,2,1),(2,4,2)a x b =-=- //a b x =1-15-51l 2y x a =-+2l ()222y a x =-+1a =-12l l //OABC ,E F ,AB BC H EF O 2AB SO ==OC AB ⊥l (2,3,1)A (1,1,1)a = (4,3,2)P l ()()1,5,0,0A B -:22l y kx k =-+AB k (][),11,-∞-+∞ (][],10,1-∞- [][)1,01,-+∞ []1,1-λ1l 2l λ项符合题目要求的,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9.下列说法中不正确的是( )A. 若直线的倾斜角越大,则直线的斜率就越大B. 若直线过点,且它的倾斜角为,则这条直线必过点C. 过两点的直线的方程为D. 直线在在y 轴上的截距为10.在空间直角坐标系中,点,,,下列结论正确的有()A .B .向量与的夹角的余弦值为C .点关于轴的对称点坐标为D .向量在11.如图,在三棱锥中,,,为的中点,点是棱上一动点,则下列结论正确的是( )A. 三棱锥B. 若为棱的中点,则异面直线与C. 若与平面所成角的正弦值为,则二面角D. 的取值范围为三、填空题(12.已知点在13.直线的一个方向向量为,且经过点,则直线的一般式方程为 . 14.在棱长为1的正方体中,为棱上一点,且,为正方形内一动点(含边界),若且与平面所成的角最大时,线段的长度为 .(1,2)45︒(3,4)()()1122,,,x y x y 112121y y x x y y x x --=--2y kx =-2Oxyz (0,0,0)O (2,1,1)A --(3,4,5)B AB =OA OB A z OA OB -P ABC AB BC ==BA BC ⊥2PA PB PC ===O AC M -P ABC 1M BC PM AB PC PAM 12M PA C --PM MA +4⎤⎥⎦P 12OP OA mOB =+ 1111ABCD A B C D -P 1BB 12B P PB =Q 11BB C C 1D Q =1D Q 1A PD 1A Q(1)若直线不经过第四象限,求的取值范围;(2)若直线交轴负半轴于点,交轴正半轴于点,为坐标原点,设的面积为,求的最小值及此时直线的方程.l k l x A y B O AOB V S S l18.(本小题满分17分)已知在四棱锥中,底面是边长为4的正方形,是正三角形,点分别是的中点,平面.(1)求证:;(2)求点B 到平面的距离;(3)在线段上是否存在点N ,使得直线与平面所成角的正弦值为在,求线段的长度;若不存在,说明理由.19.分)已知的正四面体,设的四个顶点到平面的距离所构成的集合为,若中元素的个数为,则称为的阶等距平面,为的阶等距集.(1)若为的1阶等距平面且1阶等距集为,求的所有可能值以及相应的的个数;(2)已知为的4阶等距平面,且点与点分别位于的两侧. 是否存在,使的4阶等距集为,其中点到的距离为?若存在,求平面与夹角的余弦值;若不存在,说明理由. P ABCD -ABCD PAD △,,,E F M O ,,,PC PD BC AD ⊥PO ABCD EF PA ⊥EFM PA MN EFM PN ΩABCD ΩαM M k αΩk M Ωk αΩ{}a a αβΩA ,,B C D ββΩ{},2,3,4b b b b A βb BCD β。
高二数学第一次月考模拟(基础卷)(学生版)
2024-2025学年高二上学期第一次月考模拟(基础卷)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.(23-24高二上·重庆·月考)已知A 1,2,-3 ,则点A 关于xOy 平面的对称点的坐标是()A.-1,2,-3B.-1,-2,3C.-1,2,3D.1,2,32.(23-24高二上·河南·月考)若直线经过A 1,0 ,B 2,3 两点,则直线AB 的倾斜角为()A.30°B.45°C.60°D.135°3.(23-24高二上·广东湛江·月考)已知a =1,2,-y ,b =x ,1,2 ,且a +2b ∥2a -b ,则()A.x =13,y =1 B.x =2,y =14C.x =12,y =-4 D.x =1,y =-14.(23-24高二上·福建福州·期中)两条平行直线2x -y +3=0和ax -3y +6=0间的距离为d ,则a ,d 的值分别为()A.a =6,d =63B.a =-6,d =63C.a =-6,d =55D.a =6,d =555.(23-24高二上·黑龙江哈尔滨·期中)如图,空间四边形OABC 中,OA =a ,OB =b ,OC =c,点M在OA 上,且OM =23OA ,点N 为BC 中点,则MN等于()A.12a +12b -12c B.-23a +12b +12cC.-23a +23b -12cD.23a +23b -12c6.(23-24高二上·山东·月考)过点P 0,-1 作直线l ,若直线l 与连接A -2,1 ,B 23,1 两点的线段总有公共点,则直线l 的倾斜角范围为()A.π4,π6B.π6,3π4C.0,π6 ∪3π4,π D.π6,π2 ∪3π4,π 7.(23-24高二上·天津河西·月考)以下各组向量中的三个向量,不能构成空间基底的是()A.a =1,0,0 ,b =0,2,0 ,c =12,-2,0B.a =1,0,0 ,b =0,1,0 ,c=0,0,2C.a =1,0,1 ,b =0,1,1 ,c=2,1,2D.a =1,1,1 ,b =0,1,0 ,c=1,0,28.(23-24高二上·江苏南京·月考)点P (-2,-1)到直线l :(1+3λ)x +(1+λ)y -2-4λ=0(λ∈R )的距离最大时,其最大值以及此时的直线方程分别为()A.13;3x +2y -5=0B.11;3x +2y -5=0C.13;2x -3y +1=0D.11;2x -3y +1=0二、多选选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.(23-24高二上·浙江嘉兴·月考)已知AB =(-2,1,4),AC =(4,2,0),AP =(1,-2,1),AQ=(0,4,4),则下列说法正确的是()A.AP是平面ABC 的一个法向量B.A ,B ,C ,Q 四点共面C.PQ ∥BCD.BC =5310.(23-24高二上·河北保定·月考)已知直线l 1:x +a -1 y +1=0,直线l 2:ax +2y +2=0,则下列结论正确的是()A.l 1在x 轴上的截距为-1B.l 2过定点0,-1C.若l 1⎳l 2,则a =-1或a =2D.若l 1⊥l 2,则a =2311.(24-25高二上·湖南邵阳·开学考试)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点P 是正方体的上底面A 1B 1C 1D 1内(不含边界)的动点,点Q 是棱BC 的中点,则以下命题正确的是()A.三棱锥Q -PCD 的体积是定值B.存在点P ,使得PQ 与AA 1所成的角为60°C.直线PQ 与平面A 1ADD 1所成角的正弦值的取值范围为0,22D.若PD 1=PQ ,则P 的轨迹的长度为354三、填空题:本题共3小题,每小题5分,共15分.12.(23-24高二上·山东德州·月考)已知a =-2,1,3 ,b =-1,2,1 ,则a与b 夹角的余弦值为.13.(23-24高二下·江苏扬州·月考)在空间直角坐标系中,点M 0,0,1 为平面ABC 外一点,其中A 1,0,0 、B 0,2,1 ,若平面ABC 的一个法向量为1,y 0,-1 ,则点M 到平面ABC 的距离为.14.(23-24高二上·四川达州·月考)直线l 1:x +m +1 y -2m -2=0与直线l 2:m +1 x -y -2m -2=0相交于点P ,对任意实数m ,直线l 1,l 2分别恒过定点A ,B ,则P A +PB 的最大值为四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(23-24高二上·广东湛江·月考)已知点P -2,0,2 ,Q -1,1,2 ,R -3,0,4 ,设a =PQ ,b =PR ,c=QR .(1)若实数k 使ka +b 与c垂直,求k 值.(2)求a 在b上的投影向量.16.(23-24高二上·江苏南京·月考)已知△ABC 的三个顶点为A 4,0 ,B 0,2 ,C 2,6 .(1)求AC 边上的高BD 所在直线的方程;(2)求BC 边上的中线AE 所在直线的方程.17.(23-24高二上·安徽安庆·月考)已知平行六面体ABCD -A 1B 1C 1D 1,底面是正方形,AD =AB =2,AA 1=1,∠A 1AB =∠DAA 1=60°,A 1C 1 =3NC 1 ,D 1B =2MB ,设AB =a ,AD =b ,AA 1 =c.(1)试用a ,b ,c表示AN ;(2)求MN 的长度.18.(23-24高二上·湖北武汉·月考)已知直线l 过点P 4,1 且与x 轴、y 轴的正半轴分别交于A 、B 两点,O 为坐标原点,(1)求三角形OAB 面积取最小值时直线l 的方程;(2)求OA +OB 取最小值时直线l 的方程.19.(24-25高二上·安徽阜阳·开学考试)如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,∠ADC=∠BCD=90°,BC=1,CD=3,PD=2,∠PDA=60°,∠P AD=30°,且平面P AD⊥平面ABCD,在平面ABCD内过B作BO⊥AD,交AD于O,连PO.(1)求证:PO⊥平面ABCD;(2)求二面角A-PB-C的正弦值;(3)在线段P A上存在一点M,使直线BM与平面P AD所成的角的正弦值为277,求PM的长.。
黑龙江省哈尔滨市2024-2025学年高二上学期10月月考试题 数学含答案
哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(答案在最后)(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)1.在空间直角坐标系中,点()2,1,4-关于x 轴对称的点坐标是()A.()2,1,4-- B.()2,1,4 C.()2,1,4--- D.()2,1,4-2.若向量{}123,,e e e 是空间中的一个基底,那么对任意一个空间向量a,存在唯一的有序实数组(),,x y z ,使得:123a xe ye ze =++ ,我们把有序实数组(),,x y z 叫做基底{}123,,e e e 下向量a 的斜坐标.设向量p 在基底{},,a b c 下的斜坐标为()1,2,3-,则向量p 在基底{},,a b a b c +-下的斜坐标为()A.13,,322⎛⎫--⎪⎝⎭B.13,,322⎛⎫-- ⎪⎝⎭ C.13,,322⎛⎫-⎪⎝⎭ D.13,,322⎛⎫-⎪⎝⎭3.已知两条直线12:410,:20l ax y l x ay +-=++=,则“2a =”是“12l l //”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.已知平面α的一个法向量(2,2,1)n =--,点()1,3,0A -在平面α内,若点()2,1,P z -到α的距离为103,则z =()A.16B.4- C.4或16- D.4-或165.已知点()2,3A -,()3,2B --,若过点()1,1的直线与线段AB 相交,则该直线斜率的取值范围是()A.[)3,4,4⎛⎤-∞-+∞ ⎥⎝⎦B.(]3,4,4⎡⎫+∞⎪⎢⎣--⋃⎭∞C.3,44⎡⎤-⎢⎥⎣⎦D.34,4⎡⎤-⎢⎣⎦6.直线l 过点()2,3A ,则直线l 与x 轴、y 轴的正半轴围成的三角形的面积最小值为()A.9B.12C.18D.247.如图,在平行六面体ABCD A B C D -''''中,5,3,7AB AD AA ='==,60BAD ∠=︒,45BAA DAA ''∠=∠=︒,则AC '的长为()A. B.C.D.8.正三棱柱ABC ﹣A 1B 1C 1中,所有棱长均为2,点E ,F 分别为棱BB 1,A 1C 1的中点,若过点A ,E ,F 作一截面,则截面的周长为()A. B.C. D.2+二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)9.下列命题中正确的是()A.若向量,a b 满足0a b ⋅<,则向量,a b 的夹角是钝角B.若,,OA OB OC 是空间的一组基底,且232OD OA OB OC =-+,则,,,A B C D 四点共面C.若向量{},,a b c 是空间的一个基底,若向量m a c =+,则{},,a b m 也是空间的一个基底D.若直线l 的方向向量为(1,0,3)e = ,平面α的法向量为(2,0,2)n =-,则直线l 与平面α所成角的余弦值为5510.以下四个命题为真命题的是()A.过点()10,10-且在x 轴上的截距是在y 轴上截距的4倍的直线的方程为11542y x =-+B.直线()cos 20R x θθ+=∈的倾斜角的范围是π5π0,,π66⎡⎤⎡⎫⎪⎢⎢⎣⎦⎣⎭C.直线10x y +-=与直线2210x y ++=D.直线()()()1213m x m y m m -+-=-∈R 恒过定点()5,2-11.如图,在多面体ABCDES 中,SA ⊥平面ABCD ,四边形ABCD 是正方形,且//DE SA ,22SA AB DE ===,,M N 分别是线段,BC SB 的中点,Q 是线段DC 上的一个动点(含端点,D C ),则下列说法正确的是()A.不存在点Q ,使得NQ SB⊥B.存在点Q ,使得异面直线NQ 与SA 所成的角为60o C.三棱锥Q AMN -体积的最大值是23D.当点Q 自D 向C 处运动时,直线DC 与平面QMN 所成的角逐渐增大第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)12.已知()()()1,1,0,0,3,0,2,2,2A B C ,则向量AB 在AC上的投影向量的坐标是______.13.当点()2,1P --到直线l :()()()131240x y λλλλ+++--=∈R 距离的最大值时,直线l 的一般式方程是______.14.离散曲率是刻画空间弯曲性的重要指标.设P 为多面体Γ的一个顶点,定义多面体Γ在点P 处的离散曲率为()122311112πP k k k Q PQ Q PQ Q PQ Q PQ -∅=-∠+∠++∠+∠ ,其中i Q (1i =,2,……,k ,3k ≥)为多面体Γ的所有与点P 相邻的顶点,且平面12Q PQ ,平面23Q PQ ,…,平面1k k Q PQ -和平面1k Q PQ 为多面体Γ的所有以P 为公共点的面.如图,四棱锥S ABCD -的底面ABCD 是边长为2的菱形,且2AC =,顶点S 在底面的射影O 为AC 的中点.若该四棱锥在S 处的离散曲率13S ∅=,则直线OS 与平面SAB 所成角的正弦值为___________.四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)15.已知直线()():12360m a x a y a -++-+=,:230n x y -+=.(1)若坐标原点O 到直线m ,求a 的值;(2)当0a =时,直线l 过m 与n 的交点,且它在两坐标轴上的截距相反,求直线l 的方程.16.已知ABC V 的顶点()1,2,A AB 边上的中线CM 所在直线的方程为210,x y ABC +-=∠的平分线BH 所在直线的方程为y x =.(1)求直线BC 的方程和点C 的坐标;(2)求ABC V 的面积.17.如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求证:PD ⊥平面PAB .(2)在棱PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AMAP的值;若不存在,说明理由.18.已知两个非零向量a ,b ,在空间任取一点O ,作OA a = ,OB b =,则AOB ∠叫做向量a ,b 的夹角,记作,a b <> .定义a 与b 的“向量积”为:a b ⨯是一个向量,它与向量a ,b 都垂直,它的模sin ,a b a b a b ⨯=.如图,在四棱锥P ABCD -中,底面ABCD 为矩形,PD ⊥底面ABCD ,4DP DA ==,E 为AD 上一点,AD BP ⨯=.(1)求AB 的长;(2)若E 为AD 的中点,求二面角P EB A --的余弦值;19.如图①所示,矩形ABCD 中,1AD =,2AB =,点M 是边CD 的中点,将ADM △沿AM 翻折到PAM △,连接PB ,PC ,得到图②的四棱锥P ABCM -,N 为PB 中点,(1)若平面PAM ⊥平面ABCD ,求直线BC 与平面PMB 所成角的大小;(2)设P AM D --的大小为θ,若π0,2θ⎛⎤∈ ⎥⎝⎦,求平面PAM 和平面PBC 夹角余弦值的最小值.哈尔滨市2024-2025学年度上学期十月学业阶段性评价考试高二数学学科考试试卷(考试时间:120分钟满分150分)第Ⅰ卷(共58分)一、单选题(共8小题,每小题5分,每小题只有一个选项符合题意)【1题答案】【答案】C【2题答案】【答案】D【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】A【8题答案】【答案】B二、多选题(共3小题,每小题有多个选项符合题意,全部选对的得6分,部分选对得得部分分,有选错的得0分)【9题答案】【答案】BC【10题答案】【答案】BD【11题答案】【答案】CD第Ⅱ卷(共92分)三、填空题(共3个小题,每小题5分)【12题答案】【答案】111,,663⎛⎫ ⎪⎝⎭【13题答案】【答案】3250x y +-=【14题答案】【答案】1323-四、解答题(共5小题,总计77分,解答应写出必要的文字说明、证明过程或演算步骤)【15题答案】【答案】(1)14a =-或73a =-(2)370x y -=或120x y -+=【16题答案】【答案】(1)2310x y --=,51(,)77,(2)107.【17题答案】【答案】(1)证明见解析;(2)存在,AM AP 的值为14.【18题答案】【答案】(1)2(2)13-【19题答案】【答案】(1)π6;(2)11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.函数y =x 2co sx 的导数为( )
(A ) y ′=2x co sx -x 2s i nx
(B ) y ′=2x co sx +x 2s i nx (C) y ′=x 2co sx -2xs i nx (D) y ′=x co sx -x 2s i nx
2.某个命题与正整数有关,若当)(*N k k n ∈=时该命题成立,那么可推得当=n 1+k 时该命题也成立,现已知当5=n 时该命题不成立,那么可推得( )
(A )当6=n 时,该命题不成立 (B )当6=n 时,该命题成立
(C )当4=n 时,该命题成立 (D )当4=n 时,该命题不成立
3.由x 轴和x x y -=22所围成的图形的面积为( )
(A )⎰-502)2(dx x x (B )⎰-502)2(dx x x (C )⎰-2
1
02
)2(dx x x (D )⎰+2102)2(dx x x 4、以下说法正确的该数为:( )
①公安人员由罪犯的脚印的尺寸,所运用的是推理
②农谚“瑞雪兆丰年”是通过归纳推理得到的
③由平面几何中圆的一些性质,推测出球的某些性质这是运用的类比推理
④2375的个位是5,因此2375是5的倍数,这是运用的演绎推理
A 、0
B 、2
C 、3
D 、4
5.“凡自然数是整数,4是自然数,所以4是整数.”以上三段推理( )
A.完全正确
B.推理形式不正确
C.不正确,因为两个“自然数”概念不一致
D.不正确,因为两个“整数”概念不一致
6.如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数
A. 13(,)x x
B. 24(,)x x
C.46(,)x x
D.56(,)x x
7.设,,,a b c d R ∈,若a bi c di
+-为实数,则( ) A.0bc ad +≠ B.0bc ad -≠ C.0bc ad += D. 0bc ad -=
8.对于R 上可导的任意函数f (x ),若满足(x -1)f x '()≥0,则必有( )
A . f (0)+f (2)<2f (1) B. f (0)+f (2)≤2f (1)
C. f (0)+f (2)≥2f (1)
D. f (0)+f (2)>2f (1)
9.已知不等式1
()()9a x y x y
++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 ( )
(A)8 (B)6 (C )4 (D )2
10.( 2006年重庆卷)若a ,b ,c >0且a (a +b +c )+bc =4-23,则2a +b +c 的最小值为 ( )
(A )3-1 (B) 3+1 (C) 23+2 (D) 23-2
11.已知)(x f 为一次函数,且10()2
()f x x f t dt =+⎰,则)(x f =_______. 12、用定积分的几何意义,则dx x ⎰--3
329=_____ __
13.若x ax x f +=3)(恰有三个单调区间,则a 的取值范围为_____ __
14.函数12)(2++=ax ax x f 在[-3,2]上有最大值4。
那么实数a =
15.如图,将一个边长为1的正三角形的每条边三等分,以中间一段为边向形外作正三角形,并擦去中间一段,得图(2),如此继续下去,得图(3)……
试用 n 表示出第n 个图形的边数 ____________n a =
16、已知函数3()3f x x x =-
(I )求函数()f x 在3[3,]2
-上的最大值和最小值.
(II )过点(2,6)P -作曲线()y f x =的切线,求此切线的方程
17.(2006年福建卷)统计表明,某种型号的汽车在匀速行驶中每小
时的耗
油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为: 3138(0120).12800080
y x x x =-+<≤已知甲、乙两地相距100千米。
(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要
耗油多少升?
(II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
18.设点P 在曲线2x y =上,从原点向A (2,4)移动,如果直线OP ,曲线2
x y =及直线x=2所围成的面积分别记为1S 、2S 。
(Ⅰ)当21S S =时,求点P 的坐标;
(Ⅱ)当21S S +有最小值时,求点P 的坐标和最小值。
19、
*121211111123421211111232(1),,,.
(2),.
n n n n n N S n n
T n n n n
S S T T S T ∈=-+-++--=+++++++当时,求猜想与的关系并用数学归纳法证明 20.已知函数2()8,()6ln .f x x x g x x m =-+=+
(I )求()f x 在区间[],1t t +上的最大值();h t
(II )是否存在实数,m 使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由。
21. 已知函数()e x f x kx x =-∈R ,
(Ⅰ)若e k =,试确定函数()f x 的单调区间; (Ⅱ)若0k >,且对于任意x ∈R ,()0f x >恒成立,试确定实数k 的取值范围; (Ⅲ)设函数()()()F x f x f x =+-,求证:12(1)(2)()(e 2)()n
n F F F n n +*>+∈N .。