湘教版 学案 1.1.2 命题的四种形式

合集下载

教学设计4:1.1.2 四种命题

教学设计4:1.1.2  四种命题

1.1.2四种命题教学目标:1. 通过实例理解命题的概念,会判断命题的真假;2. 了解命题的四种形式,能正确判断四种命题之间的关系.教学重点:会写命题的逆命题、否命题、逆否命题.教学难点:利用四种命题的关系判断命题的真假.教学方法:问题链导学,讲练结合.教学过程:一、问题情境我们知道,能够判断真假的语句叫做命题.例如,如果两个三角形全等,那么它们的面积相等;①如果两个三角形的面积相等,那么它们全等;②如果两个三角形不全等,那么它们的面积不相等;③如果两个三角形的面积不相等,那么它们不全等.④思考:命题②,③,④与命题①有什么关系?二、建构数学1.上面的四个命题都是“如果……,那么……”形式的命题,可以记为“若p则q”,其中p 是命题的条件,q是命题的结论.2.在上面的例子中:命题②的条件和结论分别是命题①的结论和条件,我们称这样的两个命题互为逆命题;命题③的条件和结论分别是命题①的条件的否定和结论的否定,我们称这样的两个命题互为否命题;命题④的条件和结论分别是命题①的结论的否定和条件的否定,我们称这样的两个命题互为逆否命题.3.一般地,设“若p则q”为原命题,那么“若q则p”就叫做原命题的逆命题;“若非p则非q”就叫做原命题的否命题;“若非q则非p”就叫做原命题的逆否命题.(非p、非q分别表示p和q的否定)三、数学运用例1设a,b是向量,命题“若a=-b,则|a|=|b|”的逆命题是()A.若a≠-b,则|a|≠|b|B.若a=-b,则|a|≠|b|C.若|a|≠|b|,则a≠-bD.若|a|=|b|,则a=-b2.已知a,b,c∈R,命题“若a+b+c=3,则2a+2b+2c≥3”的否命题是()A.若a+b+c≠3,则2a+2b+2c<3B.若a+b+c=3,则2a+2b+2c<3C.若a+b+c≠3,则2a+2b+2c≥3D.若2a+2b+2c≥3,则a+b+c=33.命题“若-1<x<1,则2x<1”的逆否命题是()A.若x≥1或x≤-1,则2x≥1B.若2x<1,则-1<x<1C.若2x>1,则x>1或x<-1D.若2x≥1,则x≥1或x≤-1例2 1.命题“个位数字为5的整数能被5整除”是(真、假)命题,它的逆命题为,是(真、假)命题.2.把下列命题改写成“若p,则q”的形式,并分别写出它们的逆命题、否命题与逆否命题,并判断真假:(1)负数小于零.(2)在三角形中,大边对大角.四、随堂练习:1.命题“a、b都是偶数,则a+b是偶数”的逆否命题是2.与命题“能被6整除的整数,一定能被3整除”等价的命题是3.已知命题甲:p⇒q,命题乙:q⇒p,命题丙:¬p⇒¬q,命题丁:¬q⇒¬p.(1)若甲真则乙为真;(2)若乙真则丙为真;(3)若丙真则丁为真;(4)若丁真则甲为真.说法正确的是4.命题“当AB=AC时,△ABC为等腰三角形”与它的逆命题、否命题、逆否命题中真命题的个数是5.命题“若x≤-3,则x2+x-6>0”的否命题是____________________.6.原命题:在空间中,若四点不共面,则这四个点中任何三点都不共线.其逆命题为________(真、假).7.命题“若A∪B=B,则A⊆B”的否命题是________,逆否命题是________.8.设原命题为“已知a、b是实数,若a+b是无理数,则a、b都是无理数”.写出它的逆命题、否命题和逆否命题,并分别说明它们的真假.9.证明:对任意非正数c,若有a≤b+c成立,则a≤b.10.命题“如果m>0,则x2+x-m=0有实根”的逆否命题是真命题吗?证明你的结论.参考答案例1【解析】1.选D.原命题的条件是a=-b,作为逆命题的结论;原命题的结论是|a|=|b|,作为逆命题的条件,即得逆命题“若|a|=|b|,则a=-b”,故选D.2.选A.命题“若p,则q”的否命题是“若¬p,则¬q”,故选A.3.选D.若原命题是“若p,则q”,则逆否命题为“若¬q,则¬p”,故此命题的逆否命题是“若x2≥1,则x≥1或x≤-1”.【拓展提升】1.四种命题的转换方法(1)交换原命题的条件和结论,所得命题是原命题的逆命题.(2)同时否定原命题的条件和结论,所得命题是原命题的否命题.(3)交换原命题的条件和结论,并且同时否定,所得命题是原命题的逆否命题.例2 【解析】1.命题“个位数字为5的整数能被5整除”是真命题,它的逆命题为:“能被5整除的整数的个位数字为5”,如20能被5整除,个位数字为0,是假命题.答案:真能被5整除的整数的个位数字为5假2.(1)原命题:若一个数是负数,则它小于零.真命题.逆命题:若一个数小于零,则它是负数.真命题.否命题:若一个数不是负数,则它不小于零.真命题.逆否命题:若一个数不小于零,则它不是负数.真命题.(2)原命题:在三角形中,大边对大角.真命题.逆命题:在三角形中,大角对大边.真命题.否命题:在三角形中,不是较大的边所对的角不是较大的.真命题.逆否命题:在三角形中,不是较大的角所对的边不是较大的.真命题.【拓展提升】四种命题真假的判断(1)对于不含关联词的命题,要先把命题写成“若p,则q”的形式,有些命题的条件和结论含有前提条件,在改写时,前提条件的位置不能改变,即前提条件不能作为命题的条件.(2)判断一个命题是真命题,可以根据定义、定理证明,判断一个命题是假命题,只要举出反例即可.随堂练习1.【答案】a +b 不是偶数,则a 、b 不都是偶数2.【答案】不能被3整除的整数,一定不能被6整除3.【答案】(2)(4)4.【答案】25.【答案】若x >-3,则x 2+x -6≤06.【答案】假7.【答案】若A ∪B ≠B ,则A B 若A B ,则A ∪B ≠B8.【答案】逆命题:已知a 、b 为实数,若a 、b 都是无理数,则a +b 是无理数. 如a =2,b =-2,a +b =0为有理数,故为假命题.否命题:已知a 、b 是实数,若a +b 不是无理数,则a 、b 不都是无理数.由逆命题为假知,否命题为假.逆否命题:已知a 、b 是实数,若a 、b 不都是无理数,则a +b 不是无理数.如a =2,b =2,则a +b =2+2是无理数,故逆否命题为假9.【答案】 若a >b ,由c ≤0知b ≥b +c ,∴a >b +c .∴原命题的逆否命题为真命题,从而原命题为真命题,即对任意c ≤0,若有a ≤b +c 成立,则a ≤b .10.【答案】 解法1:是真命题.∵m >0,∴Δ=1+4m >0.∴方程x 2+x -m =0有实根,故原命题“如果m >0,则x 2+x -m =0有实根”是真命题. 又因原命题与它的逆否命题等价.∴命题“如果m >0,则x 2+x -m =0有实根”的逆否命题也是真命题.解法2:是真命题.原命题“如果m >0,则x 2+x -m =0有实根”的逆否命题为“如果x 2+x -m =0无实根,则m ≤0”.∵x 2+x -m =0无实根,∴Δ=1+4m <0,m <-14≤0,故原命题的逆否命题为真命题.。

1.1.2四种命题学案.doc

1.1.2四种命题学案.doc

1.1.2四种命题学习目标四种命题的内在联系,能根据一个命题来构造它的逆命题、否命题和逆否命题.学习过程四种命题的概念(1)对两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件, 那么我们这样的两个命题叫做,其中一个命题叫做原命题为:“若p,贝化”,则逆命题为:"” .(2)一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p,贝Ug”,则否命题为:C3) 一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做,其中一个命题叫做命题,那么另一个命题叫做原命题的.若原命题为:“若p ,则/,则否命题为:练习:下列四个命题:(1)若/(X)是正弦函数,则/(X)是周期函数;(2)若/(x)是周期函数,则川)是正弦函数;(3)若/(x)不是正弦函数,则f(x)不是周期函数;(4)若/(x)不是周期函数,则f(x)不是正弦函数.(1) (2)互为(1) (3)互为(1) (4)互为(2) (3)互为例3命题:"已知a、b、c、d是实数,若子a =b,c = d ,贝a + c = b + d f,.写出逆命题、否命题、逆否命题.变式:设原命题为“已知a、人是实数,若a +力是无理数,贝"、人都是无理数”, 写出它的逆命题、否命题、逆否命题.动手试试写出下列命题的逆命题、否命题和逆否命题并判断它们的真假:(1)若一个整数的末位数是0,则这个整数能被5整除;(2)若一个三角形的两条边相等,则这个三角形的两个角相等;(3)奇函数的图像关于原点对称.这节课你学到了一些什么?你想进一步探究的问题是什么?课后作业1.写出下列命题的逆命题、否命题和逆否命题,并判断它们的真假(1 )若a,人都是偶数,贝是偶数;(2)若m >0 ,则方程x2 +x-m=O有实数根.2.把下列命题改写成“若p,则q”的形式,并写出它们的逆命题、否命题和逆否命题,并判断它们的真假:(1)线段的垂直平分线上的点到这条线段两个端点的距离相等;( 2 ) 矩形的对角线相等.写出下列命题的逆命题、否命题、逆否命题.并判断它们的真假::1)若x>0,则(2)若两个三角形全等.则两三角形的面积相等:3)等腰三角形两底角相等:(4)若x2=i'2-则4.写出下列命题的逆命题、杏命题和逆否命题.并判断它们的真假. (1)两条平行线不相交/X 2^1 X "-L J-I『111、上TfZ / " B A-rr TtA5.按要求写出下列命题并判断真偎. /(1)“若ah=O,则a、6中至少有一个为零”的否命题.(2)“若ac=bc.贝'J a=h'f的逆命题..已知函数“X/在R上为漕函数,a,膈R,对于命题“若a-62 0,财+ J\b)> f(-a) + f(-b):,(1)写出逆命题.判断其真假.并证明你的结论:(2)写出逆否命题.判断其真假,并证明你的结论.6.命题“如果x>a2+b2,那么x22ab ”的逆否命题是( )A.如果x<a2 +b2 ,那么x < 2abB.如果x > 2ab ,那么x>a2 +b2C.如果x < 2ab ,那么x<a2 +b2D.如果x>a2 +b2,那么x < lab7若ab=O则a=0或b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:8若妒+方2=0则a=0且b=0写出它们的逆命题、否命题和逆否命题,并判断它们的真假:四种命题二课时学习目标1四种命题关系图;2四种命题真假关系3,命题的否定与原命题真假关系,否命题及命题的否定形式区别。

学案8:1.1.2 四种命题

学案8:1.1.2 四种命题

1.1.2 四种命题自主预习·探新知情景引入阿凡提之《金币与毛驴的故事》中,有一天,财主想要阿凡提的毛驴但又不想给金币,就对阿凡提说:“你给我毛驴,我就给你金币”.阿凡提回答到:“你给我金币,我就给你毛驴”.狡猾的财主说:“你不给我毛驴,我就不给你金币”,阿凡提想了想说:“你不给我金币,我就不给你毛驴”.想想故事的结局如何呢?新知导学1.互逆命题一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的______和_________,那么我们把这样的两个命题叫做互逆命题,其中一个命题叫做_________,另一个命题叫做原命题的_________.若原命题是“若p ,则q ”,则其逆命题为“________________”.2.互否命题对于两个命题,其中一个命题的条件和结论分别是另一个命题的_______和________.我们把这样的两个命题叫做互否命题,如果把其中一个命题叫做原命题,那么另一个命题叫做原命题的_________.若原命题为“若p ,则q ”,则其否命题为“___________”.3.互为逆否命题对于两个命题,其中一个命题的条件和结论恰好是另一个命题的___________和___________,我们把这样的两个命题叫做互为逆否命题,如果把其中一个命题叫做原命题,那么另一个命题叫做原命题的___________.若原命题为“若p ,则q ”,则其逆否命题为“___________”.预习自测1.命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )A .逆命题B .否命题C .逆否命题D .无关命题2.已知a ,b ∈R ,则命题“若a +b =1,则a 2+b 2≥12”的否命题是( ) A .若a +b ≠1,则a 2+b 2<12B .若a +b =1,则a 2+b 2<12C .若a 2+b 2<12,则a +b ≠1 D .若a 2+b 2≥12,则a +b =1 3.命题“若α=π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4 D .若tan α≠1,则α=π44.命题“若a >3,则a >5”的逆命题是______________.5.命题“若x ≥0,则x 2≥0”的否命题是______________.互动探究·攻重难互动探究解疑命题方向1 四种命题的概念典例1 写出下列命题的逆命题、否命题与逆否命题.(1)等底等高的两个三角形是全等三角形;(2)当x =2时,x 2+x -6=0;(3)若a >b ,则ac 2>bc 2.规律总结 写出四种命题的方法(1)交换原命题的条件和结论,所得的命题是逆命题.(2)同时否定原命题的条件和结论,所得的命题是否命题.(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.跟踪练习1写出下列命题的逆命题、否命题、逆否命题.(1)若x 2+y 2=0,则x 、y 全为0;(2)若a +b 是偶数,则a 、b 都是偶数.命题方向2 四种命题真假的判断典例2判断下列命题的真假,写出它们的逆命题、否命题、逆否命题,并判断其真假.(1)若四边形的对角互补,则该四边形是圆的内接四边形;(2)若在二次函数y=ax2+bx+c中b2-4ac<0,则该函数图象与x轴有交点.规律总结判断四种命题真假的方法(1)要正确理解四种命题间的相互关系.(2)正确利用相关知识进行判断推理.(3)若由“p经逻辑推理得出q”,则命题“若p,则q”为真;确定“若p,则q”为假时,则只需举一个反例说明.跟踪练习2写出下列命题的逆命题、否命题和逆否命题,并判断命题的真假.(1)若m·n<0,则方程mx2-x+n=0有实数根;(2)相等的两个角的正弦值相等.学科核心素养由命题的真假求参数范围典例3给出下列两个命题:命题甲:关于x的不等式x2+(a-1)x+a2≤0的解集为∅;命题乙:函数y=(2a2-a)x为增函数.(1)甲、乙至少有一个是真命题;(2)甲、乙有且只有一个是真命题.分别求出符合(1)(2)的实数a的取值范围.跟踪练习3已知命题“若m-1<x<m+1,则1<x<2”的逆命题为真命题,则m的取值范围为________.易混易错警示典例4写出命题“已知a、b、c、d是实数,如果a=b,c=d,则a+c=b+d”的逆命题、否命题,并判断它们的真假.[错解]逆命题:如果a+c=b+d,则a、b、c、d是实数,且a=b,c=d.假命题.否命题:如果a、b、c、d不是实数,a≠b,c≠d,则a+c≠b+d.假命题.[辨析]上述解法没有弄清命题的条件,将大前提“a、b、c、d是实数”充当了条件.参考答案新知导学1.结论条件原命题逆命题若q,则p2.条件的否定 结论的否定 否命题 若¬p ,则¬q3.结论的否定 条件的否定 逆否命题 若¬q ,则¬p预习自测1.【答案】A2.【答案】A【解析】命题“若a +b =1,则a 2+b 2≥12”的逆命题是“若a +b ≠1,则a 2+b 2<12”,故选A . 3.【答案】C【解析】本题主要考查命题的四种形式.写逆否命题时,将原命题的题设和结论分别否定再交换.故选C .4.【答案】若a >5,则a >3【解析】 将原命题的条件改为结论,结论改为条件,即得原命题的逆命题.5.【答案】若x <0,则x 2<0【解析】原命题的否命题既否定条件又否定结论,故命题“若x ≥0,则x 2≥0”的否命题是“若x <0,则x 2<0”.互动探究·攻重难互动探究解疑命题方向1 四种命题的概念典例1 解:(1)原命题:若两个三角形等底等高,则这两个三角形全等;逆命题:若两个三角形全等,则这两个三角形等底等高;否命题:若两个三角形不等底或不等高,则这两个三角形不全等;逆否命题:若两个三角形不全等,则这两个三角形不等底或不等高.(2)原命题:若x =2,则x 2+x -6=0;逆命题:若x 2+x -6=0,则x =2;否命题:若x ≠2,则x 2+x -6≠0;逆否命题:若x 2+x -6≠0,则x ≠2.(3)原命题:若a >b ,则ac 2>bc 2;逆命题:若ac 2>bc 2,则a >b ;否命题:若a ≤b ,则ac 2≤bc 2;逆否命题:若ac 2≤bc 2,则a ≤b .跟踪练习1解:(1)逆命题:若x 、y 全为0,则x 2+y 2=0;否命题:若x 2+y 2≠0,则x 、y 不全为0;逆否命题:若x 、y 不全为0,则x 2+y 2≠0.(2)逆命题:若a 、b 都是偶数,则a +b 是偶数;否命题:若a +b 不是偶数,则a 、b 不都是偶数;逆否命题:若a 、b 不都是偶数,则a +b 不是偶数.命题方向2 四种命题真假的判断典例2 解:(1)该命题为真.逆命题:若四边形是圆的内接四边形,则四边形的对角互补,为真.否命题:若四边形的对角不互补,则该四边形不是圆的内接四边形,为真. 逆否命题:若四边形不是圆的内接四边形,则四边形的对角不互补,为真.(2)该命题为假.逆命题:若二次函数y =ax 2+bx +c 的图象与x 轴有公共点,则b 2-4ac <0,为假. 否命题:若二次函数y =ax 2+bx +c 中b 2-4ac ≥0,函数图象与x 轴无公共点,为假. 逆否命题:若二次函数y =ax 2+bx +c 的图象与x 轴无公共点,则b 2-4ac ≥0,为假. 跟踪练习2解:(1)逆命题:若方程mx 2-x +n =0有实数根,则m ·n <0,假命题.否命题:若m ·n ≥0,则方程mx 2-x +n =0没有实数根,假命题.逆否命题:若方程mx 2-x +n =0没有实数根,则m ·n ≥0,真命题.(2)逆命题:若两个角的正弦值相等,则这两个角相等,假命题.否命题:若两个角不相等,则这两个角的正弦值也不相等,假命题.逆否命题:若两个角的正弦值不相等,则这两个角不相等,真命题.学科核心素养 由命题的真假求参数范围典例3 解:甲为真时,Δ=(a -1)2-4a 2<0,即A ={a |a >13或a <-1}; 乙为真时,2a 2-a >1,即B ={a |a >1或a <-12}. (1)甲、乙至少有一个是真命题时,解集为A ,B 的并集,这时实数a 的取值范围是{a |a >13或a <-12}. (2)甲、乙有且只有一个是真命题时,有两种情况:当甲真乙假时,13<a ≤1; 当甲假乙真时,-1≤a <-12. 所以甲、乙中有且只有一个是真命题时,实数a 的取值范围为{a |13<a ≤1或-1≤a <-12}. 跟踪练习3【答案】[1,2]【解析】 逆命题为“若1<x <2,则m -1<x <m +1”.∵逆命题为真命题,∴⎩⎪⎨⎪⎧m -1≤1,m +1≥2, ∴1≤m ≤2.∴m 的取值范围为[1,2].易混易错警示典例4 [正解] 逆命题:已知a 、b 、c 、d 是实数,如果a +c =b +d ,则a =b ,c =d . 假命题.否命题:已知a 、b 、c 、d 是实数,如果a ≠b ,或c ≠d ,则a +c ≠b +d .假命题.。

1.1.2命题的四种形式_教案1-湘教版数学选修1-1

1.1.2命题的四种形式_教案1-湘教版数学选修1-1
-学生需在下次课前提交一份拓展学习总结,包括对命题的深入理解、在实际问题中的手,我尝试采用了多样化的教学方法和策略,力求让学生在轻松愉快的氛围中掌握知识。回顾整个教学过程,我深感在以下方面取得了不错的效果,但也存在一些不足。
在教学策略上,我使用了讲授、讨论、游戏等多种形式,使学生在互动中学习,提高了他们的参与度和兴趣。我观察到学生在课堂上的反应积极,对于命题的四种形式有了更直观的认识。然而,我也发现自己在课堂管理上还有待加强,有时候学生的讨论过于热烈,导致课堂秩序有些混乱。
5.总结回顾(5分钟)
回顾本节课学习的命题四种形式,通过问答形式检查学生对重点内容的掌握情况。举例说明命题在数学和其他学科中的应用,强调命题在逻辑推理中的重要性。布置课后作业,要求学生识别并构造不同形式的命题,以巩固所学内容。
学生学习效果
学生在完成本节课的学习后,应达到以下效果:
1.理解并能够准确描述命题的四种形式:肯定命题、否定命题、条件命题和混合命题。
2.设计命题转换游戏,如“命题接力”,促进学生参与和深化理解。
3.使用多媒体展示命题变化过程,增强直观性,帮助学生把握命题结构。
教学流程
1.导入新课(5分钟)
以学生已知的简单命题为例,如“所有的鸟都有翅膀”,引导学生思考命题的形式和结构。接着提出问题:“命题还可以有其他形式吗?”从而引出本节课的主题“命题的四种形式”。
5.教师评价与反馈:针对学生的表现,我给予积极的肯定,同时指出学生在理解和应用命题时需要注意的地方。对于课堂表现优秀的学生,我提供了额外的挑战性问题,以促进他们的深入思考。对于在随堂测试和作业中暴露出问题的学生,我进行了个别辅导,帮助他们理清概念,提高解题技巧。我还提供了详细的反馈,指导学生如何改进学习方法,鼓励他们不断练习,提升逻辑推理能力。在今后的教学中,我将继续关注学生的学习进展,适时调整教学方法和策略,以确保每个学生都能在数学学习上取得进步。

教学设计6:1.1.2 四种命题

教学设计6:1.1.2 四种命题

1.1.2 四种命题教学目标1.了解命题的逆命题、否命题与逆否命题的概念.2.会写出一个命题的其他三种命题,并会判断真假.教学重点:给出一个命题,写出它的其余三种命题.教学难点:对一些词语的否定,如“都是”、“全都”、“有的”等词语的否定.要点整合知识点四种命题的相关概念[填一填]1.原命题与逆命题:(1)关系:与互换.(2)结构形式:若原命题为“若p,则q”,则逆命题为“若q,则p”.(3)结论:这两个命题叫做.2.原命题与否命题:(1)关系:条件与结论都要.(2)结构形式:若原命题为“若p,则q”,则否命题为“若p,则q”.(3)结论:这两个命题叫做.3.原命题与逆否命题:(1)关系:条件与结论既要,又要.(2)结构形式:若原命题为“若p,则q”,则逆否命题为“若q,则p”.(3)结论:这两个命题叫做.参考答案1.(1)条件结论(3)互逆命题2.(1)否定(3)互否命题3.(1)否定互换(3)互为逆否命题[答一答]1.在四种命题中,原命题是固定的吗?1.提示:不是.原命题是人为指定的,是相对于其他三种命题而言的,可以把任何一个命题看作原命题,进而研究它的其他形式.2.如何写出一个命题的其他三种命题?提示:写一个命题的逆命题、否命题、逆否命题时,首先要找出该命题的条件和结论.逆命题是将原命题的条件和结论交换位置;否命题是对原命题的条件和结论都加以否定;逆否命题是对原命题的条件和结论交换位置,同时都加以否定.在对原命题的条件和结论进行否定时,一定要注意问题的全面性,千万不能遗漏或者重复,如“x>0”的否定是“x≤0”,而不是“x<0”.3.命题“若x≥0,则2x+1≥1”的否命题是什么?提示:若x<0,则2x+1<1.特别关注1.对四种命题概念的认识(1)原命题与逆命题:①逆命题是将原命题的条件与结论互换,写原命题的逆命题时,不要交换命题的前提条件;②原命题也可以看作是它的逆命题的逆命题.(2)原命题与否命题:①写一个命题的否命题时,要对条件和结论都进行否定,避免出现不否定条件,而只否定结论的错误;②原命题也可以看作是它的否命题的否命题.(3)原命题与逆否命题:将原命题的条件和结论“换位”得逆命题,“换质”(即否定)得否命题,既“换位”又“换质”得逆否命题.2.四种命题的相互关系(1)原命题是相对于逆命题、否命题、逆否命题而言的,任何一个给定的命题都可以作为原命题.(2)明确原命题的逆命题、否命题、逆否命题的条件和结论的位置关系和否定关系是解决四种命题的关键.典例讲练类型一写出一个命题的其他三种命题例1写出下列命题的逆命题、否命题和逆否命题.(1)垂直于同一平面的两直线平行;(2)若m·n<0,则方程mx2-x+n=0有实数根.解:(1)逆命题:如果两条直线平行,那么这两条直线垂直于同一个平面.否命题:如果两条直线不垂直于同一平面,那么这两条直线不平行.逆否命题:如果两条直线不平行,那么这两条直线不垂直于同一平面.(2)逆命题:若方程mx2-x+n=0有实数根,则m·n<0.否命题:若m·n≥0,则方程mx2-x+n=0没有实数根.逆否命题:若方程mx2-x+n=0没有实数根,则m·n≥0.通法练透1.写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.2.另外在写命题时,为了使句子更通顺,可以适当的添加一些词语,但不能改变条件和结论.针对训练1写出下列命题的逆命题、否命题和逆否命题.(1)直角等于90°;(2)若m≤0,n≤0,则m+n≤0.解:(1)原命题:若一个角是直角,则它等于90°.逆命题:若一个角等于90°,则它是直角.否命题:若一个角不是直角,则它不等于90°.逆否命题:若一个角不等于90°,则它不是直角.(2)逆命题:若m+n≤0,则m≤0且n≤0.否命题:若m>0或n>0,则m+n>0.逆否命题:若m+n>0,则m>0或n>0.类型二四种命题及其真假判断例2分别写出下列命题的逆命题、否命题、逆否命题,并判断其真假.(1)若q<1,则方程x2+2x+q=0有实根;(2)若ab=0,则a=0;(3)若x2+y2=0,则x,y全为零;(4)已知a,b,c为实数,若a=b,则ac=bc.解:(1)逆命题:若方程x2+2x+q=0有实根,则q<1.假命题.否命题:若q≥1,则方程x2+2x+q=0无实根,假命题.逆否命题:若方程x2+2x+q=0无实根.则q≥1,真命题.(2)逆命题:若a=0,则ab=0,真命题.否命题:若ab≠0,则a≠0,真命题.逆否命题:若a≠0,则ab≠0,假命题.(3)逆命题:若x,y全为零,则x2+y2=0,真命题.否命题:若x2+y2≠0,则x,y不全为零,真命题.逆否命题:若x,y不全为零,则x2+y2≠0,真命题.(4)逆命题:已知a,b,c为实数,若ac=bc,则a=b,假命题.否命题:已知a,b,c为实数,若a≠b,则ac≠bc,假命题.逆否命题:已知a,b,c为实数,若ac≠bc,则a≠b,真命题.通法提炼1.对于不含关联词的命题,要先把命题写成“若p,则q”的形式,有些命题的条件和结论含有前提条件,在改写时,前提条件的位置不能改变,即前提条件不能作为命题的条件.2.判断一个命题是真命题,可以根据定义、定理证明,判断一个命题是假命题,只要举出反例即可.针对训练2写出下面命题的逆命题、否命题、逆否命题,并判断其真假:若a>b,则ac2>bc2.解:原命题:若a>b,则ac2>bc2,是假命题;逆命题:若ac2>bc2,则a>b,是真命题;否命题:若a≤b,则ac2≤bc2,是真命题;逆否命题:若ac2≤bc2,则a≤b,是假命题.类型三素养提升命题中条件与结论的否定错误例3写出命题“乘积为奇数的两个整数都不是偶数”的逆命题、否命题、逆否命题,并判断真假.【错解】原命题可写成:若两个整数的乘积为奇数,则它们都不是偶数,是真命题.逆命题:若两个整数都不是偶数,则这两个整数的乘积为奇数,是真命题.否命题:若两个整数的乘积不为奇数,则这两个整数不都是偶数,是真命题.逆否命题:若两个整数不都是偶数,则这两个整数的乘积不为奇数,是真命题.【错因分析】对“都不是”的否定,大家可能都会误认为是“不都是”,这是错误的,应为“至少有一个是”,而“不都是”是对“都是”的否定.【正解】原命题可写成:若两个整数的乘积为奇数,则它们都不是偶数,是真命题.逆命题:若两个整数都不是偶数,则这两个整数的乘积为奇数,是真命题.否命题:若两个整数的乘积不为奇数,则这两个整数中至少有一个是偶数,是真命题.逆否命题:若两个整数中至少有一个是偶数,则这两个整数的乘积不为奇数,是真命题.【解后反思】在否定一个命题的条件或结论时,往往会对问题的否定不全面,尤其是对含有“全”“都”“都不”等词语的命题的否定,极易犯此类错误.针对训练3写出下列命题的逆命题、否命题和逆否命题.并判断其真假.(1)若x=3或x=7,则(x-3)(x-7)=0;(2)若a、b都是奇数,则ab必是奇数.解:(1)逆命题:若(x-3)(x-7)=0,则x=3或x=7;(真)否命题:若x≠3且x≠7,则(x-3)(x-7)≠0;(真)逆否命题:若(x-3)(x-7)≠0,则x≠3且x≠7.(真)(2)逆命题:若ab是奇数,则a、b都是奇数;(真)否命题:若a、b不都是奇数,则ab不是奇数;(真)逆否命题:若ab不是奇数,则a、b不都是奇数.(真)课堂达标1.若x>y,则x2>y2的否命题是()A.若x≤y,则x2>y2B.若x>y,则x2<y2C.若x≤y,则x2≤y2D.若x<y,则x2<y22.命题“若a2=b2,则|a|=|b|”的逆命题为()A.若a2=b2,则|a|≠|b|B.若a2≠b2,则|a|≠|b|C.若|a|=|b|,则a2=b2D.若|a|≠|b|,则a2≠b23.命题“若ab=0,则a=0”与命题“若a=0,则ab=0”是命题.4.命题“若直线a,b不平行,则直线a,b相交”的否命题的逆命题为,这是______命题(填真、假).5.把命题“当x=2时,x2-3x+2=0”写成“若p,则q”的形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.参考答案1.【答案】C2.【答案】C【解析】根据逆命题的定义可知逆命题为:若|a|=|b|,则a2=b2.故选C.3.【答案】互逆【解析】两个命题的条件和结论交换了,满足互逆命题的概念.4.【答案】若直线a,b不相交,则直线a,b平行假5.解:原命题:若x=2,则x2-3x+2=0,真命题.逆命题:若x2-3x+2=0,则x=2,假命题.否命题:若x≠2,则x2-3x+2≠0,假命题.逆否命题:若x2-3x+2≠0,则x≠2,真命题.。

1.1.2 命题的四种形式

1.1.2 命题的四种形式
即:第一步 假设命题的结论不成立(﹁q) 第二步 把﹁q当作新的条件,从﹁q出发,推理
得出矛盾 第三步 由矛盾可判定假设﹁q是错误的,从而
肯定命题的结论是正确的。 练习:求证:若x 2 y2 0, 则x y 0
作业:P8 2,6
1.1.2 命题的四种形式
命题的四种形式
例如:
(1)原命题:若两个三角形全等,则它们相似;
若p ,
则q
(2)逆命题:若两个三角形相似,则它们全等;
若q ,
则p
可以看到,(1)与(2)中的条件p和结论q互相交换了 例:同位角相等,两直线平行
逆命题:两直线平行,同位角相等
(3)否命题:若两个三角形不全等,则它们不相似 即同时否定了原命题的条件和结论,“若﹁p,则﹁q”.
们在证明某一个命 题为真 命 题 时, 可 以 通 过 证 明 它 的 逆 否 命 题 为 真 命 题, 来 间 接 地证明原命题为真命题.
例4 证明: 若 p2 q2 2,则 p q 2. 分析 将"若 p2 q2 2,则p q 2"视为原命题.
要证明原命题为真命题,可以考虑证明它的逆
3;
2
逆命题 若sin 3 ,则 600
2
否命题 若 600,则sin
3
逆否命题 若sin
3
, 则
2 60 0
(2)原命题
2
设a 0, b 0, 若a b,则a 2 b2
逆命题 设a 0, b 0, 若a 2 b2 ,则a b
否命题 设a 0, b 0, 若a b,则a 2 b2
逆命题 若ab 0, 则a 0且b 0 假 否命题 若a 0或b 0, 则ab 0 假 逆否命题 若ab 0, 则a 0或b 0 真 小结:若原命题为真时,逆命题不一定为真,否命题也

湘教版 作业 1.1.2 命题的四种形式

1.1.2命题的四种形式一、基础达标1.若“x>y,则x2>y2”的逆否命题是()A.若x≤y,则x2≤y2B.若x>y,则x2<y2 C.若x2≤y2,则x≤y D.若x<y,则x2<y2答案 C解析由互为逆否命题的定义可知,把原命题的条件的否定作为结论,原命题的结论的否定作为条件即可得逆否命题.2.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.若f(x)是偶函数,则f(-x)是偶函数B.若f(x)不是奇函数,则f(-x)不是奇函数C.若f(-x)是奇函数,则f(x)是奇函数D.若f(-x)不是奇函数,则f(x)不是奇函数答案 B解析否命题是既否定条件又否定结论.因此否命题应为“若函数f(x)不是奇函数,则f(-x)不是奇函数”.3.命题“若a>-3,则a>-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.1B.2C.3D.4答案 B解析原命题显然为真命题,故其逆否命题为真命题,而其逆命题为“若a>-6,则a>-3”,这是假命题,从而否命题也是假命题,因此只有两个真命题.4.有下列四个命题:①“若x+y=0,则x、y互为相反数”的逆命题;②“全等三角形的面积相等”的否命题;③“若q≤1,则x2+2x+q=0有实根”的逆命题;④“不等边三角形的三个内角相等”的逆否命题.其中真命题的序号为()A.①②B.②③C.①③D.③④答案 C解析命题①:“若x、y互为相反数,则x+y=0”是真命题;命题②:其逆命题“面积相等的三角形是全等三角形”是假命题,否命题也是假命题,因此命题②是假命题;命题③:“若x2+2x+q=0有实根,则q≤1”是真命题;命题④是假命题.5.“若x,y全为零,则xy=0”的否命题为____________________________.答案若x,y不全为零,则xy≠0解析由于“全为零”的否定为“不全为零”,所以“若x,y全为零,则xy=0”的否命题为“若x,y不全为零,则xy≠0”.6.下列命题中:①若一个四边形的四条边不相等,则它不是正方形;②正方形的四条边相等;③若一个四边形的四条边相等,则它是正方形.其中互为逆命题的有________;互为否命题的有________;互为逆否命题的有________(填序号).答案②和③①和③①和②7.已知命题p:“若ac≥0,则二次方程ax2+bx+c=0没有实根”.(1)写出命题p的否命题;(2)判断命题p的否命题的真假,并证明你的结论.解(1)命题p的否命题为:“若ac<0,则二次方程ax2+bx+c=0有实根.”(2)命题p的否命题是真命题.证明如下:∵ac<0,∴-ac>0⇒Δ=b2-4ac>0⇒二次方程ax2+bx+c=0有实根.∴该命题是真命题.二、能力提升8.命题“当AB=AC时,△ABC是等腰三角形”与它的逆命题、否命题、逆否命题这四个命题中,真命题有________个.答案 2解析原命题为真命题,逆命题“当△ABC是等腰三角形时,AB=AC”为假命题,否命题“当AB≠AC时,△ABC不是等腰三角形”为假命题,逆否命题“当△ABC不是等腰三角形时,AB≠AC”为真命题.9.已知原命题“两个无理数的积仍是无理数”,则:(1)逆命题是“乘积为无理数的两数都是无理数”;(2)否命题是“两个不都是无理数的积也不是无理数”;(3)逆否命题是“乘积不是无理数的两个数都不是无理数”;其中所有正确叙述的序号是________.答案(1)(2)解析原命题的逆命题、否命题叙述正确.逆否命题应为“乘积不是无理数的两个数不都是无理数”.10.给出如下三个命题:①四个非零实数a、b、c、d依次成等比数列的充要条件是ad=bc;②设a,b∈R,且ab≠0,若ab<1,则ba>1;③若f(x)=log2x,则f(|x|)是偶函数.其中不正确命题的序号是________.答案①②解析对于①,可举反例:如a,b,c,d依次取值为1,4,2,8,故①错;对于②,可举反例:如a、b异号,虽然ab<1,但ba<0,故②错;对于③,y=f(|x|)=log2|x|,显然为偶函数.11.写出命题“已知a,b∈R,若a2>b2,则a>b”的逆命题、否命题和逆否命题,并判断它们的真假.解逆命题:已知a,b∈R,若a>b,则a2>b2;否命题:已知a,b∈R,若a2≤b2,则a≤b;逆否命题:已知a,b∈R,若a≤b,则a2≤b2.∵原命题是假命题,∴逆否命题也是假命题.∵逆命题是假命题,∴否命题也是假命题.12.判断命题:“若b≤-1,则关于x的方程x2-2bx+b2+b=0有实根”的逆否命题的真假.解法一(利用原命题)因为原命题与逆否命题真假性一致,所以只需判断原命题真假即可.方程判别式为Δ=4b2-4(b2+b)=-4b,因为b≤-1,所以Δ≥4>0,故此方程有两个不相等的实根,即原命题为真,故它的逆否命题也为真.法二(利用逆否命题)原命题的逆否命题为“若关于x的方程x2-2bx+b2+b=0无实根,则b>-1”.方程判别式为Δ=4b2-4(b2+b)=-4b,因为方程无实根,所以Δ<0,即-4b<0,所以b>0,所以b>-1成立,即原命题的逆否命题为真.三、探究与创新13.已知函数f(x)在(-∞,+∞)上是增函数,a、b∈R,对命题“若a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).”(1)写出逆命题,判断其真假,并证明你的结论;(2)写出逆否命题,判断其真假,并证明你的结论.解(1)逆命题:若f(a)+f(b)≥f(-a)+f(-b),则a+b≥0,为真命题.由于逆命题与否命题具有相同的真假性,因此可转化为证明其否命题为真,即证明“若a+b<0,则f(a)+f(b)<f(-a)+f(-b)”为真命题.因为a+b<0,则a<-b,b<-a.因为f(x)在(-∞,+∞)上为增函数,则f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b).因此否命题为真命题,即逆命题为真命题.(2)逆否命题:若f(a)+f(b)<f(-a)+f(-b),则a+b<0,为真命题.因为一个命题的真假性与它的逆否命题的真假性相同,所以可证明原命题为真命题.因为a+b≥0,所以a≥-b,b≥-a.又因为f(x)在(-∞,+∞)上是增函数,所以f(a)≥f(-b),f(b)≥f(-a).所以f(a)+f(b)≥f(-a)+f(-b).所以逆否命题为真命题.。

《1.1.2四种命题》教学案1

《四种命题》教学案教学目标:1.知识与技能:了解四种命题的概念,能判断四种命题的真假.2.过程与方法:利用多媒体教学,多举命题的例子,让学生写出四种命题3.情感、态度与价值观:(1)通过学生的举例,培养他们的辨析能力;(2)以及培养他们的分析问题和解决问题的能力教学重点与难点:重点:(1)四种命题的概念理解及结构形式;(2)能熟练的写出一个命题的逆命题、否命题、逆否命题并会判断真假.难点:写出原命题的逆命题、否命题和逆否命题;教学过程:1.引入课题问题一:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数(2)若f(x)是周期函数,则f(x)是正弦函数(3)若f(x)不是正弦函数,则f(x)不是周期函数(4)若f(x)不是周期函数,则f(x)不是正弦函数通过学生观察讨论可以得到:2.定义:原命题、逆命题、否命题和逆否命题(1)、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那我们把这样的两个命题叫做____________,其中一个命题叫做原命题,另一个命题叫做原命题的_____________.原命题为:“若p,则q”,则逆命题为:“____________”.(2)、一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做____________,其中一个命题叫原命题,那么另一个命题叫做原命题的____________. 若原命题为:“若p,则q”,则否命题为:“____________”.说明:为书写简便,常把条件p的否定和结论q的否定分别记作“┐p”“┐q”,读做“非p”.(3)、一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做____________,其中一个命题叫做原命题,那么另一个命题叫做原命题的____________.若原命题为:“若p,则q”,则逆否命题为:“____________”.3.四种命题形式:(1)若原命题为:“若P则q”(2)逆命题为____________;(3)否命题为____________;(4)逆否命题为____________.注意:要写出原命题的逆命题、否命题与逆否命题,关键是找出原命题的条件p与结论q.4.例题讲解写出下面命题的逆命题、否命题与逆否命题并判断真假:(1)负数的立方是负数(2)对顶角相等;5.练一练1、写出它们的否定形式:(1)a>0;(2)a≥0或b<0;(3)a、b都是正数(4)A是B的子集2、写出下列命题的逆命题、否命题与逆否命题并判断真假.(1)末位是0的整数,可以被5整除;(2)奇函数的图像关于原点对称;3.写出命题“若x2+y2=0,则x=y=0.”,的逆命题、否命题、逆否命题.四:小结(1)四种命题的形式.(2)熟练写出一个命题条件和结论的否定形式(3)能熟练写出一个命题的逆命题、否命题、逆否命题.五:作业1.教材习题1.1第2题8.。

学案2:1.1.2—3 四种命题及其相互关系

1.1.2——3 四种命题及其相互关系课标点击1.了解原命题、逆命题、否命题、逆否命题的定义.2.掌握四种命题之间的关系并会判断四种命题的真假性.预习导学►基础梳理1.四种命题的概念.(1)一般地,对于两个命题,如果一个命题的分别是另一个命题的,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的.(2)如果一个命题的恰好是另一个命题的,我们把这样的两个命题叫做互否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的.(3)如果一个命题的恰好是另一个命题的,我们把这样的两个命题叫做互为逆否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的.2.四种命题的相互关系.3.四种命题的真假性.由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.►自测自评1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是( ) A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数2.在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数可以是( ) A.1或2或3或4B.1或3C.0或4D.0或2或43.若命题p的逆命题为q,命题q的否命题为r,则p是r的.随堂巩固1.“若x,y∈R且(x-1)2+(y-1)2=0,则x,y全为1”的否命题是( )A.若x,y∈R且(x-1)2+(y-1)2≠0,则x,y全不为1B.若x,y∈R且(x-1)2+(y-1)2≠0,则x,y不全为1C.若x,y∈R且x,y全为1,则(x-1)2+(y-1)2=0D.若x,y∈R且xy≠1,则(x-1)2+(y-1)2=02.下列命题中,不是真命题的是( )A.“若b2-4ac>0,则二次方程ax2+bx+c=0有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“x2=9,则x=3”的否命题D.“内错角相等”的逆命题3.命题“a,b是实数,若|a-1|+|b-1|=0,则a=b=1”,用反证法证明时反设为:________________________________________________________________________.4.已知命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.5.已知函数y=f(x)是R上的增函数,对a,b∈R,若f(a)+f(b)≥f(-a)+f(-b)成立,证明a+b≥0.课时训练1.否定结论“至多有两个解”的说法中,正确的是( )A .有一个解B .有两个解C .至少有三个解D .至少有两个解2.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a >b ”与“a +c >b +c ”不等价C .“a 2+b 2=0,则a ,b 全为0”的逆否命题是“若a ,b 全不为0,则a 2+b 2≠0”D .一个命题的否命题为真,则它的逆命题一定为真3.已知原命题“若两个三角形全等,则这两个三角形面积相等”,那么它的逆命题、否命题、逆否命题中,真命题的个数是( )A .0个B .1个C .2个D .3个4.有下列四个命题:①“若x +y =0,则x 、y 互为相反数”的逆命题;②“若a >b ,则a 2>b 2”的逆否命题;③“若x ≤-3,则x 2+x -6>0”的否命题;④“若ab 是无理数,则a 、b 是无理数”的逆命题.其中真命题的个数是( )A .0个B .1个C .2个D .3个5.命题“若c >0,则函数f (x )=x 2+x -c 有两个零点”的逆否命题的是:________________________________________________________________________________________________________________________________________________,则c ≤0.6.若命题p 的否命题是q ,命题q 的逆命题是r ,则r 是p 的逆命题的________.7.(x -1)(x +2)=0的否定形式是__________________________________________________.8.命题“若a >b ,则2a >2b -1”的否命题为____________________________________________ ________________________________________________________________________.9.有下列五个命题:①“若a 2+b 2=0,则ab =0”的逆否命题;②“若a >b ,则ac >bc ”的逆命题③“若a <b <0,则1a >1b”的逆否命题; ④“若1a <1b<0,则ab <b 2”的逆否命题; ⑤“若b a >a b,则a <b <0”的逆命题其中假命题有________.10.若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.►体验高考1.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A .3个B .2个C .1个D .0个2.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是( )A .若a +b +c ≠3,则a 2+b 2+c 2<3B .若a +b +c =3,则a 2+b 2+c 2<3C .若a +b +c ≠3,则a 2+b 2+c 2≥3D .若a 2+b 2+c 2≥3,则a +b +c =33.命题“若一个数是负数,则它的平方是正数”的逆命题是( )A .若一个数是负数,则它的平方不是正数B .若一个数的平方是正数,则它是负数C .若一个数不是负数,则它的平方不是正数D .若一个数的平方不是正数,则它不是负数4.命题“若p 则q ”的逆命题是( )A .若q 则pB .若﹁p 则﹁qC .若﹁q 则﹁pD .若p 则﹁q5.命题“若a =π4,则tan α=1”的逆否命题是( ) A .若α≠π4,则tan α≠1 B .若α=π4,则tan α≠1 C .若tan α≠1,则α≠π4πD.若tan α≠1,则α=4答案预习导学►基础梳理1.(1)条件和结论结论和条件逆命题(2)条件和结论条件的否定和结论的否定否命题(3)条件和结论结论的否定和条件的否定逆否命题►自测自评1.【答案】A2.【答案】D3.【解析】设p为:“若m,则n”,则q为:“若n,则m”,所以r为:“若﹁n,则﹁m”.故p是r的逆否命题.随堂巩固1.【答案】B2.【答案】D3.【答案】若a≠1或b≠14.【答案】逆命题:已知,a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题.否命题:已知,a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题.逆否命题:已知,a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.5.【答案】证明:原命题的逆否命题为:a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).以下证明其逆否命题:若a+b<0,则a<-b,b<-a,又因为y=f(x)是R上的增函数,所以f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.又因为原命题和逆否命题有相同的真假性,所以求证成立.课时训练1.【答案】C2.【答案】D【解析】否命题和逆命题是互为逆否命题,有着一致的真假性.3. 【答案】B4. 【答案】B5. 【答案】若函数f (x )=x 2+x -c 没有两个零点6. 【解析】本题主要考查四种命题的相互关系.显然,r 与p 互为逆否命题.【答案】否命题7. 【答案】(x -1)(x +2)≠08. 【答案】若a ≤b ,则2a ≤2b -19. 【解析】①逆否命题为“若ab ≠0,则a 2+b 2≠0”,这是一个真命题.②逆命题为“若ac >bc ,则a >b ”,这是一个假命题.③原命题是一个真命题,所以逆否命题也为真命题.④若1a <1b<0,则b <a <0,则ab >b 2故原命题为真命题,所以逆否命题也为真命题. ⑤逆命题为“若a <b <0,则b a >a b”. 若a <b <0,则⎩⎪⎨⎪⎧-a >-b >0,1b <1a<0, 则⎩⎪⎨⎪⎧-a >-b >0,-1b >-1a>0,故a b >b a . 故这是一个假命题.【答案】②⑤10.【答案】证明(用反证法):假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,而a +b +c =⎝⎛⎭⎫x 2-2y +π2+⎝⎛⎭⎫y 2-2z +π3+⎝⎛⎭⎫z 2-2x +π6 =(x 2-2x )+(y 2-2y )+(z 2-2z )+π=(x -1)2+(y -1)2+(z -1)2+π-3,显然a +b +c >0,这与假设a +b +c ≤0相矛盾.因此a ,b ,c 中至少有一个大于0.►体验高考1.【答案】C【解析】本小题主要考查四种命题的真假,易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题有一个,选C.2.【答案】A 3.【答案】B 4.【答案】A 5.【答案】C。

《1.1.2 四种命题》教学案5

《1.1.2 四种命题》教学案5●三维目标1.知识与技能初步理解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式;初步理解四种命题间的相互关系并能判断命题的真假.2.过程与方法培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.3.情感、态度与价值观激发学生学习数学的兴趣和积极性,优化学生的思维品质,培养学生勤于思考、勇于探索的创新意识,感受探索的乐趣.●重点难点重点:四种命题之间相互的关系.难点:互为逆否关系的应用及命题真假的判断.通过一个生活中的场景引出逻辑在生活中必不可少的重要地位,从而引发学生学习四种命题的兴趣,然后主要通过对概念的讲解和分析,并配以适量的课堂练习,让学生掌握四种命题的概念,会写四种命题,并掌握四种命题之间的关系以及通过逆否命题来判断命题的真假;最后运用所学命题知识解决实际生活中的问题,让学生学会用理性的逻辑推理能力思考问题,从而突破重难点.●教学建议这节内容是以概念的理解和关系的思辨为主的,因此以讲解和练习强化为主要方法,并在讲解过程中引导和启发学生的思维,让学生充分地思考和动手演练.宜采取的教学方法:(1)启发式教学.这能充分调动学生的主动性和积极性,有利于学生对知识进行主动建构,从而发现数学规律.(2)讲练结合法.这样更能突出重点、解决难点,让学生的分析问题和解决问题的能力得到进一步的提高.学习方法:(1)由特殊到一般的化归方法:学习中学生在教师的引导下,通过具体的实例,让学生去观察、讨论、探索、分析、发现、归纳、概括.(2)讲练结合法:让学生知道数学重在运用,从而检验知识的应用情况,找出未掌握的内容及其差距并及时加以补救.通过本节的学习,了解命题的四种形式及其关系,利用原命题与逆否命题,逆命题与否命题之间的等价性解决有关问题,渗透由特殊到一般的化归数学思想.●教学流程创设问题情境,给出四个命题,引出问题:四个命题的条件与结论有何区别与联系?⇒引导学生观察、比较、分析,得出四种命题的概念与他们之间的相互关系.⇒通过引导学生回答所提问题,层层深入地得出四种命题真假的关系.⇒通过例1及其互动探究,使学生掌握四种命题的概念及相互转化.⇒通过例2及其变式训练,使学生掌握四种命题真假的判断方法.⇒探究四种命题的真假关系,完成例3及其变式训练,从而解决等价命题相互转化在判断命题真假时的应用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.理解“若p,则q”形式的命题及其逆命题、否命题与逆否命题的概念.(重点)2.能熟练地写出一个“若p,则q”形式的命题的逆命题、否命题和逆否命题.(重点)3.掌握四种命题的相互关系并能判断命题的真假.(难点)【问题导思】观察下面四个命题:(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1.2命题的四种形式
1.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.会判断四种命题的真假.
下列四个命题:
(1)若f(x)是正弦函数,则f(x)是周期函数;
(2)若f(x)是周期函数,则f(x)是正弦函数;
(3)若f(x)不是正弦函数,则f(x)不是周期函数;
(4)若f(x)不是周期函数,则f(x)不是正弦函数.
观察命题(1)与命题(2)(3)(4)的条件和结论之间分别有什么关系?
答:命题(1)的条件是命题(2)的结论,且命题(1)的结论是命题(2)的条件.对于命题(1)和(3).其中一个命题的条件和结论分别是另一个命题的条件的否定和结论的否定;
对于命题(1)和(4).其中一个命题的条件和结论分别是另一个命题的结论的否定和条件的否定.
1.命题“若p则q”的四种形式
原命题:若p则q;
逆命题:若q则p;
否命题:若¬p则¬q;
逆否命题若¬q则¬p.
2.四种命题间的关系
3.四种命题的真假判断
(1)原命题为真,它的逆命题可以为真,也可以为假.
(2)原命题为真,它的否命题可以为真,也可以为假.
(3)原命题为真,它的逆否命题一定为真.
(4)互为逆否的两个命题是等价命题,它们同真同假,同一个命题的逆命题和否命题是一对互为逆否的命题,所以它们同真同假.
要点一四种命题的概念
例1分别写出下列命题的逆命题、否命题、逆否命题,并判断它们的真假:
(1)实数的平方是非负数;
(2)若x、y都是奇数,则x+y是偶数.
解(1)原命题是真命题
逆命题:若一个数的平方是非负数,则这个数是实数.真命题.
否命题:若一个数不是实数,则它的平方不是非负数.真命题.
逆否命题:若一个数的平方不是非负数,则这个数不是实数.真命题.
(2)原命题是真命题
逆命题:若x+y是偶数,则x、y都是奇数,是假命题.
否命题:若x、y不都是奇数,则x+y不是偶数,是假命题.
逆否命题:若x+y不是偶数,则x、y不都是奇数,是真命题.
规律方法(1)写命题的四种形式时,首先要找出命题的条件和结论,然后写出命题的条件的否定和结论的否定,再根据四种命题的结构写出所求命题.
(2)在写命题时,为了使句子更通顺,可以适当的添加一些词语,但不能改变条件和结论.
跟踪演练1写出以下命题的逆命题、否命题和逆否命题.
(1)如果一条直线垂直于平面内的两条相交直线,那么这条直线垂直于这个平面;
(2)如果x>10,那么x>0;
(3)当x=2时,x2+x-6=0.
解(1)逆命题:如果一条直线垂直于平面,那么该直线垂直于平面内的两条相交直线.
否命题:如果一条直线不垂直于平面内的两条相交直线,那么这条直线不垂直于这个平面.
逆否命题:如果一条直线不垂直于平面,那么这条直线不垂直于平面内的两条相交直线.
(2)逆命题:如果x>0,那么x>10.
否命题:如果x≤10,那么x≤0.
逆否命题:如果x≤0,那么x≤10.
(3)逆命题:如果x2+x-6=0,那么x=2.
否命题:如果x≠2,那么x2+x-6≠0.
逆否命题:如果x2+x-6≠0,那么x≠2.
要点二四种命题的关系
例2下列命题:
①“若xy=1,则x、y互为倒数”的逆命题;
②“四边相等的四边形是正方形”的否命题;
③“梯形不是平行四边形”的逆否命题;
④“若ac2>bc2,则a>b”的逆命题.
其中是真命题的是________.
答案①②③
解析①“若xy=1,则x,y互为倒数”的逆命题是“若x,y互为倒数,则xy=1”,是真命题;②“四边相等的四边形是正方形”的否命题是“四边不都相等的四边形不是正方形”,是真命题;③“梯形不是平行四边形”本身是真命题,所以其逆否命题也是真命题;④“若ac2>bc2,则a>b”的逆命题是“若a>b,则ac2>bc2”,是假命题.所以真命题是①②③.
规律方法要判断四种命题的真假:首先,要熟练四种命题的相互关系,注意它们之间的相互性;其次,利用其他知识判断真假时,一定要对有关知识熟练掌握.
跟踪演练2有下列四个命题:
①“若x+y=0,则x,y互为相反数”的否命题;
②“若x≤-3,则x2-x-6>0”的否命题;
③“同位角相等”的逆命题.
其中真命题的个数是________.
答案 1
解析①“若x+y≠0,则x,y不是相反数”,是真命题.
②“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0可得-2≤x≤3,而x=4>-3不是不等式的解,故是假命题.
③“相等的角是同位角”是假命题.
要点三等价命题的应用
例3判断命题“已知a,x为实数,若关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,则a≥1”的逆否命题的真假.
解法一原命题的逆否命题:
已知a,x为实数,若a<1,则关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.真假判断如下:因为抛物线y=x2+(2a+1)x+a2+2开口向上,判别式Δ=(2a+1)2-4(a2+2)=4a-7,
若a<1,则4a-7<0.
即抛物线y=x2+(2a+1)x+a2+2与x轴无交点.
所以关于x的不等式x2+(2a+1)x+a2+2≤0的解集为空集.
故原命题的逆否命题为真.
法二先判断原命题的真假.
因为a,x为实数,且关于x的不等式x2+(2a+1)x+a2+2≤0的解集不是空集,
所以Δ=(2a+1)2-4(a2+2)≥0,
即4a-7≥0,
所以a≥1.所以原命题成立.
又因为原命题与其逆否命题等价,所以逆否命题为真.
规律方法由于原命题和它的逆否命题有相同的真假性,即互为逆否命题的
命题具有等价性,所以我们在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.
跟踪演练3判断命题“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题的真假.
解∵m>0,∴12m>0,∴12m+4>0.
∴方程x2+2x-3m=0的判别式Δ=12m+4>0.
∴原命题“若m>0,则方程x2+2x-3m=0有实数根”为真.
又因原命题与它的逆否命题等价,所以“若m>0,则方程x2+2x-3m=0有实数根”的逆否命题也为真.
1.命题“若a∉A,则b∈B”的否命题是()
A.若a∉A,则b∉B B.若a∈A,则b∉B C.若b∈B,则a∉A D.若b∉B,则a∉A 答案 B
解析命题“若p,则q”的否命题是“若¬p,则¬q”,“∈”与“∉”互为否定形式.
2.命题“若A∩B=A,则A∪B=B”的逆否命题是()
A.若A∪B=B,则A∩B=A
B.若A∩B≠A,则A∪B≠B
C.若A∪B≠B,则A∩B≠A
D.若A∪B≠B,则A∩B=A
答案 C
解析注意“A∩B=A”的否定是“A∩B≠A”.
3.命题“若平面向量a,b共线,则a,b方向相同”的逆否命题是______________________________,它是________命题(填“真”或“假”).答案若平面向量a,b的方向不相同,则a,b不共线假
4.给出以下命题:
①“若x2+y2≠0,则x、y不全为零”的否命题;
②“正多边形都相似”的逆命题;
③“若m>0,则x2+x-m=0有实根”的逆否命题.
其中为真命题的是________.
答案①③
解析①否命题是“若x2+y2=0,则x,y全为0”.真命题.
②逆命题是“若两个多边形相似,则这两个多边形为正多边形”,假命题.
③∵Δ=1+4m,若m>0时,Δ>0,∴x2+x-m=0有实根,即原命题为真.∴逆否命题为真.
1.写四种命题时,可以按下列步骤进行:
(1)找出命题的条件p和结论q;
(2)写出条件p的否定¬p和结论q的否定¬q;
(3)按照四种命题的结构写出所有命题.
2.每一个命题都有条件和结论组成,要分清条件和结论.
3.判断命题的真假可以根据互为逆否的命题真假性相同来判断,这也是反证法的理论基础.。

相关文档
最新文档