三相整流电路网侧谐波分析

合集下载

三相电压型SVPWM整流器仿真研究

三相电压型SVPWM整流器仿真研究

三相电压型SVPWM整流器仿真研究一、概述随着电力电子技术的快速发展,三相电压型SVPWM(空间矢量脉宽调制)整流器作为一种高效、可靠的电能转换装置,在新能源发电、电机驱动、电网治理等领域得到了广泛应用。

SVPWM技术以其独特的调制方式,能够实现输出电压波形的高精度控制,提高整流器的电能转换效率,降低谐波污染,成为现代电力电子技术的研究热点。

三相电压型SVPWM整流器的基本工作原理是通过控制整流器的开关管通断,将交流电源转换为直流电源,为负载提供稳定、可靠的直流电能。

在SVPWM调制策略下,整流器能够实现对输入电压、电流的高效控制,使电网侧的功率因数接近1,从而减小对电网的谐波污染,提高电能质量。

为了深入了解三相电压型SVPWM整流器的性能特点,本文将对其仿真研究进行深入探讨。

通过建立整流器的数学模型,利用仿真软件对其进行仿真分析,可以直观地了解整流器在不同工作条件下的运行特性,为实际工程应用提供有力支持。

仿真研究还可以为整流器的优化设计、参数选择等提供理论依据,推动三相电压型SVPWM整流器技术的进一步发展。

三相电压型SVPWM整流器作为一种高效、可靠的电能转换装置,在现代电力电子技术中具有重要的应用价值。

通过仿真研究,可以深入了解其性能特点,为实际应用提供有力支持,推动相关技术的不断发展。

1. 研究背景:介绍三相电压型SVPWM整流器的研究背景及其在电力电子领域的应用价值。

能源转换效率的提升:在当前的能源结构中,电力是最主要的能源形式之一。

电力在传输和分配过程中往往存在损耗和污染。

三相电压型SVPWM整流器作为一种能够实现AC(交流)到DC(直流)高效转换的装置,能够显著提高能源转换效率,降低能源浪费,从而满足日益增长的能源需求。

电网稳定性的改善:随着可再生能源的快速发展,电网的稳定性问题日益突出。

三相电压型SVPWM整流器具有快速响应和精准控制的特点,能够有效地改善电网的电能质量,提高电网的稳定性。

整流电路的谐波分析

整流电路的谐波分析
2 2
I
n2

2 n
1 为电压与基波电流间的相位差
1.2无功的基本概念
三相电路的功率因数: 对称:
P S P S
不对称:没有统一定义
理论依据不充分
关于无功、功率因数的计算值得探讨
3.谐波的产生与危害
主要谐波源: 传统非线性设备,包括变压器、旋转电机以及电弧炉等。 现代电力电子非线性设备 由于电力电子设备在各行业的大量应用,作为非线性设备 (谐波源)衍生物的电力谐波也比较普遍,根据日本电 气学会对186家有代表性的电力用户的调查结果,无谐 波源的用户仅占6%,主要谐波源来自90%的电力电子 装置用户,电力电子变换装置是目前主要的谐波源。
-50
-10
-50
-1
-100 0.5 0.505 0.51 0.515 time(s) 0.52 0.525
-20 0.53
-100 0.5 0.505 0.51 0.515 time(s) 0.52 0.525
-2 0.53
-400 0.10
0.12
0.14
0.16无功的基本概念
2) 非线性电路:
P, S 定义与线性电路相同
P U d I d U n I n cos n
n 1

S UI
U I
n 1 n n 1


n
U1 I1 1 THDu2 1 THDi2
2.无功的基本概念
Q 至今没有被广泛接受的权威定义
Q S 2 P2
3.谐波的产生与危害 谐波的危害:

1、线路损耗增加,传输能力下降 2、引起谐振和谐波的放大 3、使电机和变压器损耗增加,引起电机机械 振动 4、对继电保护、通信系统产生干扰

三相电压型整流器的LCL型滤波器分析与设计

三相电压型整流器的LCL型滤波器分析与设计

! 设计样例及分析
下面利用第!节中介绍的滤波器设计方法,对 滤波器进行设计。系统参数设为:额定有功功率 ( * ( ’ ’ + ,,电网线电压有效值 ) *. / ’ 0,直流电 压 *1 ,相电流峰值为, * "" ’ ’ 0, 3 + 4 5 * + 2 # $* 6 7 ( 3 3 8。 ( )采用允许的最大电流纹波值为相电流峰值 " 的! / ’ ,根据式 ( ) , ’ 9,即 ! 9, 3 : 6 7 ; < =6 > ? !*! 7 7 可以计算出’ ! @ . ( 6 4,为了更好 @ ! ! (. 6 4!%%! 地滤除谐波,取 %%* ’ @ ( 6 4。 ( )取 "*( 9,则 根 据 式 ( A)可 求 出 电 容 ! 。 & * . ’ B & " ( )选择开关频率附近高次谐波的衰减比例为 ( ,则由式 ( )可以求出 "* ,结合式 !* ’ @ " ! " ( " @ . ( )可知 %* " ) ’ @ " " 3 6 4,% * ’ @ " C 3 6 4。图(描述 & 了谐振频率 + 与 " 的关系,从图中可以看出,分 : < # 别由式 ( ) 、式 ( )表示的谐振频率曲线在 "* C " ! )有正数解。 " @ .处有交点,这也说明式 ( " ( ( )由于在大功率系统中为了降低功率损耗, ) 滤波器中的电阻非常小,可以忽略不计,因此在谐 振频率处,整个滤波器的阻尼为零,可能会导致该 频率处谐波的幅值增大。为了抑制 D E D 滤波器的 谐振,给滤波电容串联阻尼电阻 -1,首先根据式 ,取 ( )可知+ * !) ( C 4 5 C : < # " @ ) $ ’’ & (.! # + : < # & 为了更好地分析电感 %、% & 与高次谐波的衰

三电平PWM整流器网侧LCL滤波器设计_刘超

三电平PWM整流器网侧LCL滤波器设计_刘超

第31卷第1期2012年1月电工电能新技术Advanced Technology of Electrical Engineering and EnergyVol.31,No.1Jan.2012收稿日期:2011-03-14基金项目:国家自然科学基金资助项目(50737002)作者简介:刘超(1986-),男,湖北籍,硕士生,研究方向为三电平PWM 整流器网侧LCL 滤波器;赵争鸣(1959-),男,湖南籍,教授,研究方向为大容量电力电子变换器与太阳能光伏并网。

三电平PWM 整流器网侧LCL 滤波器设计刘超,赵争鸣,鲁挺(电力系统及发电设备安全控制和仿真国家重点实验室,清华大学电机工程与应用电子技术系,北京100084)摘要:采用LCL 滤波器代替L 滤波器对入网电流进行滤波已成为变换器并网的趋势,相对于L 滤波器,LCL 滤波器具有成本低,体积小,整流器动态响应快等优点。

然而,目前关于LCL 滤波器的研究都是针对两电平变换器进行的,对多电平变换器鲜有涉及。

本文以三电平PWM 整流器为研究对象,提出了适用于三电平PWM 整流器LCL 滤波器的设计方法,并通过Simulink 仿真和实验验证了滤波器的优良性能。

关键词:电压型PWM 整流器;LCL 滤波器;三电平中图分类号:TM46文献标识码:A文章编号:1003-3076(2012)01-0056-041前言采用LCL 滤波器代替L 滤波器对入网电流进行滤波已成为当前研究热点,相对于传统L 滤波器,LCL 滤波器具有成本低,体积小,整流器动态响应快等优点。

LCL 滤波器是一个三阶的滤波系统,由网侧电感L g ,滤波电容C f ,整流器侧电感L 组成。

比较L 滤波器与LCL 滤波器的幅频响应可以发现,LCL 滤波器高频衰减快,并且存在谐振点。

图1L 滤波器和LCL 滤波器幅频响应比较Fig.1Comparison of amplitude-frequency response between L-filter and LCL-filter从图1也可以看出设计LCL 滤波器的两个关键要素,一是要合理设计LCL 滤波器参数[1,2],让开关频率落在LCL 滤波器衰减较快的区段,二是要消除LCL 滤波器的谐振尖峰[3,4],对LCL 滤波器进行稳定性控制。

三相电流型整流器的线性自抗扰控制

三相电流型整流器的线性自抗扰控制

响应时间过长的问题ꎬ采用线性自抗扰控制策略ꎬ利用线性扩张状态观测器( LESO) 对电流型整流器的扰动进行观
测和补偿ꎮ 通过对电流型整流器的数学模型以及线性自抗扰控制器( LADRC) 结构原理进行分析ꎬ设计了电流型脉
冲宽度调制( PWM) 整流器的 LADRC 电流外环控制器及电流内环 d 轴和 q 轴控制器ꎬ通过仿真平台将 PI 控制和
( TD) 、扩张状态观测器( ESO) 和非线性状态误差反
馈( NLSEF) 部分组成ꎮ 扩张状态观测器( ESO) 连接
系统的输入输出观测得到系统状态变量估计值 Z1
- Z n 和总扰动估计值 Z n + 1 ꎮ 跟踪微分器( TD) 用来
实现对系统输入信号的无超调快速跟踪并给出微分
75
其中:ε1 为误差信号ꎻα 为可调参数ꎬ且 α1 > α2 ꎻσ 为
哈 尔 滨 理 工 大 学 学 报 第 28 卷
74
PWM) 整流器的控制系统往往采用由外电压环和内
电流环组成的双闭环串级控制结构
[1 - 2]
ꎮ PWM 整
流器的控制器虽然一直采用比例积分 ( proportional
integralꎬ PI) 控制策略ꎬ但由于 PI 动态响应速度慢ꎬ
再将式(4) 经过坐标变换可得基于 dq 坐标系的
数学模型:
L dc
di dc 3
= ( v q σ q + v d σ d ) - i dc ( R dc + R L )
dt


图 1 电流型整流器拓扑结构
Fig 1 Current source rectifier topology
在静止坐标系 a ̄b ̄c 中ꎬ三相电流型整流器的数

电网谐波分析解析

电网谐波分析解析

5
Rms(均方根)值
? 非正弦周期信号的rms值是:
rms value (值 ) ? H 12 ? H 2 2 ? ... ? Hn 2
H1=基波分量 H2,…, Hn=谐波分量 缩写词 rms 代表均方根。
? 例: 计算由单相负载(例如个人电脑)引导的 rms 电流: I fund. = 56.2A; Ih3 = 27.2A; Ih5 = 2.7A; Ih7 = 9.2A;
Ih9 = 7.8A.
I rms ? 56 .2 2 ? 27 .2 2 ? 2.7 2 ? 9.2 2 ? 7.8 2
Presented by : Christ CHUNG
6
谐波畸变
? 总谐波畸变(THD):
谐波的rms值与基波的rms值的比率(CIGRE定义)
THD
% = 100 x
H 2 2 + H 3 2 + ... + Hn 2
Presented by : Christ CHUNG
8
变速传动装置 ? 3相负载 ? 产生5,7,11,13的高谐波电流 ? 电流是不稳定的
? 谐波电流是
S=23KVA THDI=124% 2.5 12 .5001.5 -0.5 --11.5 -2 -2.5
Presented by : Christ CHUNG
y (t)
1.5
1
0.5
=
0
-0.5
-1
-1.5
h1 (t)
1.5 1 0.5 +0 -0.5 -1 -1.5
h3 (t)
? 谐波是由非线性负载产生
Presented by : Christ CHUNG
3

电力系统中谐波分析与治理

电力系统中谐波分析与治理

电力系统中谐波分析与治理在当今高度依赖电力的社会中,电力系统的稳定和高效运行至关重要。

然而,谐波问题却成为了影响电力系统性能的一个重要因素。

谐波的存在不仅会降低电能质量,还可能对电力设备造成损害,增加能耗,甚至影响整个电力系统的安全稳定运行。

因此,对电力系统中的谐波进行深入分析,并采取有效的治理措施,具有极其重要的意义。

一、谐波的产生谐波是指频率为基波频率整数倍的正弦波分量。

在电力系统中,谐波的产生主要源于以下几个方面:1、非线性负载电力系统中的许多负载,如电力电子设备(如变频器、整流器、逆变器等)、电弧炉、荧光灯等,其电流与电压之间不是线性关系,从而导致电流发生畸变,产生谐波。

2、电力变压器变压器的铁芯饱和特性会导致磁化电流出现尖顶波形,进而产生谐波。

3、发电机由于发电机的三相绕组在制作上很难做到绝对对称,以及铁芯的不均匀等因素,也会产生少量的谐波。

二、谐波的危害谐波对电力系统的危害是多方面的,主要包括以下几点:1、增加电能损耗谐波电流在电力线路中流动时,会增加线路的电阻损耗和涡流损耗,导致电能的浪费。

2、影响电力设备的正常运行谐波会使电机产生额外的转矩脉动和发热,降低电机的效率和使用寿命;对电容器来说,谐波可能导致其过电流和过电压,甚至损坏;对于变压器,谐波会增加铁芯损耗和绕组的发热。

3、干扰通信系统谐波会产生电磁干扰,影响通信设备的正常工作,导致信号失真、误码率增加等问题。

4、降低电能质量谐波会使电压和电流波形发生畸变,导致电压波动、闪变等问题,影响供电的可靠性和稳定性。

三、谐波的分析方法为了有效地治理谐波,首先需要对其进行准确的分析和测量。

常见的谐波分析方法主要有以下几种:1、傅里叶变换这是谐波分析中最常用的方法之一。

通过对周期性信号进行傅里叶级数展开,可以得到各次谐波的幅值和相位。

2、快速傅里叶变换(FFT)FFT 是一种快速计算傅里叶变换的算法,大大提高了计算效率,适用于对大量数据的实时分析。

三相电压型PWM整流器控制策略及应用研究

三相电压型PWM整流器控制策略及应用研究

三相电压型PWM整流器控制策略及应用研究一、概述随着电力电子技术的快速发展,三相电压型PWM(脉冲宽度调制)整流器作为一种高效、可靠的电能转换装置,在电力系统中得到了广泛应用。

其不仅能够实现AC(交流)到DC(直流)的高效转换,还具有功率因数高、谐波污染小等优点,对于改善电网质量、提高能源利用效率具有重要意义。

对三相电压型PWM整流器的控制策略及应用进行深入研究,对于推动电力电子技术的发展和电力系统的优化升级具有重要意义。

三相电压型PWM整流器的控制策略是实现其高效稳定运行的关键。

目前,常用的控制策略包括基于电压矢量控制的直接电流控制、基于空间矢量脉宽调制的间接电流控制等。

这些控制策略各有优缺点,适用于不同的应用场景。

需要根据实际应用需求,选择合适的控制策略,并进行相应的优化和改进。

在实际应用中,三相电压型PWM整流器被广泛应用于风力发电、太阳能发电、电动汽车充电站等领域。

在这些领域中,整流器的稳定性和效率对于保证整个系统的正常运行和提高能源利用效率具有至关重要的作用。

对三相电压型PWM整流器的控制策略及应用进行研究,不仅有助于推动电力电子技术的发展,还有助于提高能源利用效率、促进可再生能源的发展和应用。

本文将对三相电压型PWM整流器的控制策略及应用进行深入研究。

介绍三相电压型PWM整流器的基本原理和常用控制策略分析不同控制策略的优缺点及适用场景结合实际应用案例,探讨三相电压型PWM整流器的优化改进方法和发展趋势。

通过本文的研究,旨在为三相电压型PWM整流器的设计、优化和应用提供理论支持和实践指导。

1. 研究背景与意义随着全球能源危机和环境污染问题日益严重,可再生能源的利用与开发已成为世界各国关注的焦点。

作为清洁、可再生的能源形式,电能在现代社会中发挥着至关重要的作用。

传统的电能转换和利用方式存在能量转换效率低、谐波污染严重等问题,严重影响了电力系统的稳定性和电能质量。

研究高效、环保的电能转换技术具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

LC滤波的三相桥式整流电路网侧谐波分析
裴云庆姜桂宾王兆安 2006-02-20 17:06:19 西安交通大学(西安 710049)
Analyze of line harmonic current of three phase rectifier with LC filter
Abstract: For the 3 phase capacitive rectifier, which was widely used in the power electronics equipment, LC filter in DC is an effective structure to improve the power factor and reduce the input harmonic current. A theory equation was derived in this paper, which show the relationship between the input characteristics and the circuit parameter. It was proved by the simulation and the experiment.
Key words: 3 phase rectifier harmonic power factor
1 概述
随着电力电子技术的飞速发展,其应用已经深入到电力、冶金、化工、通讯、铁路电气以及家电等各个领域,在电力电子装置中,整流器作为装置与电网的接口占有相当大的比重,采用电容滤波、二极管构成的三相不可控整流电路随着变频器、开关电源及UPS等装置的广泛应用,其所占比例越来越高。

同时这种整流电路对电网的不利影响,如输入电流谐波等,也受到了广泛的重视。

虽然目前可以采用PFC装置、有源滤波器等方案解决其带来的各种不利影响,但采用接入电抗器仍为最为简单和常用的一种提高功率因数、抑制谐波的方法。

目前对采用电抗器改善整流器输入谐波及功率因数的分析主要采用计算机仿真,文献[1]~[3]对不同结构的整流器进行了分析,得出了一些有价值的数据及图表,但采用仿真的方法难以建立各项指标与电路参数间的理论公式。

文献[4]提出了采用整流器开关函数、基于频域的分析方法,对同时含有直流侧及交流侧滤波元件的情况得到了很好求解公式,但公式形式十分
复杂,很难被读者所使用。

由于在整流电路的直流侧或交流侧接入电抗器均可以起到改善整流器输入谐波及功率因数的作用,而在直流侧接入电抗器效果更为明显。

本文将对直流侧采用LC滤波的三相桥式不可控整流电路网侧特性与滤波器参数的关系进行分析。

在一定程度近似的基础上获得了各项输入指标与滤波参数的计算公式,仿真及实验表明,公式具有较高的精度。

2 理论分析
采用LC滤波的三相桥式不可控整流电路的等效结构如图1所示。

其中R为直流侧负载等效电阻。

本文将在以下条件下对电路特性进行分析:
图1 采用LC滤波的三相不可控整流电路
1) 三相电源为对称正弦。

2) 忽略三相进线阻抗及二极管压降。

3) 滤波电容C对6次及以上频率谐波的阻抗远小于R。

在通常情况下,上述假设条件对于整流器都是可以满足的。

下面将对直流侧电压、电流及交流侧电流进行分别讨论。

2.1 直流侧电压及电流分析
在假设条件2情况下,即不考虑换相重叠角时,及直流电流连续情况下,不可控整流电
路输出的直流电压波形ud如图2所示,采用傅立叶级数形式可表示为:
(1) 其中U2l为交流侧线电压有效值。

直流侧电流id可采用直流电压表达式与LCR电路的阻抗计算获得:
式中Zn为LCR电路的n次谐波阻抗,考虑假设条件3时,Zn仅与LC的阻抗相关,即
Zn=j(XLn-XCn),则:
(2)
图2 直流侧电压及电流波形
由式(1)、(2)可以看出整流电压ud中的谐波电压Un随着频率的增加而迅速减小,而滤波电路的阻抗Zn迅速增加,因而id 中的主要谐波成份为6次谐波,12次谐波仅为6次谐波的12%以下,18次谐波仅为6次谐波的3.6%。

因此12次及以上的谐波分量可以忽略,同时令
,这样式(2)可简化为:
由此可得电感电流峰值为:
(3)
电容电流有效值为:
(4)
由直流侧电流最小值为零可确定直流侧电流连续条件为:
(5) 式(3)~(5)可分别用于直流侧滤波电感及电容的设计。

图3 交流侧电压及电流波形
2.2 交流侧电流波形分析
采用LC滤波的三相桥式不可控整流电路交流输入电压及电流波形如图3所示。

根据直流侧电流波形及二极管整流桥的导通规律可得交流电流波形,由于电流波形正负半波对称,式(6)仅给出了半周期内电流的表达式:
(6)
由直流电流波形可直接获得交流电流有效值为:
(7)
为获得交流电流的各次谐波含量,可对式(6)进行傅立叶分解:
式中,
将i2表达式带入并考虑交流电流中仅含奇次谐波的特点可化简得:
(8)
(9)
由式(8)(9)可以看出系数an仅与X6有关,bn仅与R有关,所以an是由直流电流纹波引起的基波无功分量及谐波分量,而bn是由直流平均电流引起的基波有功分量及谐波分量。

表1列出了根据式(8)(9)计算的基波、5次及7次谐波计算公式。

由此可以依据式
(10)~(12)获得整流器的功率因数、基波因数及电流畸变率。

表1 交流侧电流频谱分量
-0.0464
-0.298
(10)
(11)
(12) 图4绘出了整流电路功率因数、电流畸变率以及5次、7次谐波与X6/R的关系。

图4 整流电路输入指标与电路参数的关系
3 仿真与实验:
为验证所获得结果的正确性,分别采用计算机仿真及实验对采用LC滤波的三相整流器输入电流谐波进行了分析和对比。

分析对象为输出功率为15kW的开关电源。

考虑开关电源的损耗,电路模型参数为:输入电源线电压U2l=380V,直流侧滤波电感1=0.86mH,滤波电容
C=4700uF,等效负载电阻R=15.5Ω。

因此X6=1.51Ω。

表2列出了在该参数条件下的计算、仿真及实验结果。

计算机仿真采用了作者研制的电力电子系统仿真软件PECS,实验结果采用FLUKE F43电能质量分析仪记录。

表2 理论计算、计算机仿真及实验结果对比
由上述结果可以看出,理论分析与仿真结果及文献[1]~[4]相吻合,具有较高的精度。

实验结果也与理论分析基本一致,由于实际电路中交流电源侧存在阻抗,使两者之间存在一定误
差。

4 结论
本文针对采用LC滤波的三相桥式整流电路网侧各项指标的分析方法进行了研究,在一定程度近似的基础上获得了功率因数、各次谐波、THD等指标的计算方法,简单明了地描述了其与滤波参数间的关系,使用方便。

将该分析方法用于大功率开关电源等电力电子装置输入电路设计,取得了良好的效果。

参考文献:
[1] J.S.C.Htsui and W.Shephered,”Method of digital computation of thyristor switching circuits,” Proc. IEE, vol. 118, no. 8, pp. 993-998, Aug. 1971.
[2] A. W. Kelley and W. F. Yadusky, “Rectifier for minimum line-current harmonics and maximum power factor,” IEEE Trans. Power Electron., vol. PE-7, no. 2, pp. 332-341, Apr. 1992
[3] Conway, G.A.; Jones, K.I., “Harmonic currents p roduced by variable speed drives with uncontrolled rectifier inputs,” Three Phase LV Industrial Supplies: Harmonic Pollution and Recent Developments in Remedies, IEE Colloquium on ,1993, Page(s): 4/1 -4/5
[4] Masaaki Sakui, Hiroshi Fujita, “An analyticial method for Calculating Harmonic Currents of a Three-Phase Diode-Bridge Rectifier with dc Filter,” IEEE Trans. Power Electron., vol.9, No.6, Nov.,1994
/mech_article/2/2006-09/1295023408.shtml。

相关文档
最新文档