牛吃草问题ppt1

合集下载

《牛吃草问题》 ppt课件

《牛吃草问题》 ppt课件
所以,这片草地可供25头牛吃5天。
在例1的解法中要注意三点:
(1)每天新长出的草量是通过已知的两种不同情 况吃掉的总草量的差及吃的天数的差计算出来的。
(2)在已知的两种情况中,任选一种,假定其中 几头牛专吃新长出的草,由剩下的牛吃原有的草, 根据吃的天数可以计算出原有的草量。
(3)在所求的问题中,让几头牛专吃新长出的草, 其余的牛吃原有的草,根据原有的草量可以计算出 能吃几天。
《牛吃草问题》
解:设出水管每分钟排出得水为1份,每分钟进 水量(2×8-3×5)/(8-5)=1/3(份)
进水管提前开了(2-1/3)×8÷1/3=40(分) 答:出水管比进水管晚开40分钟。
《牛吃草问题》
变式训练2: 自动扶梯以均匀速度由下往上 行驶着,两位性急的孩子要从扶梯上楼。已 知男孩每分钟走20级梯级,女孩每分钟走15 级梯级,结果男孩用了5分钟到达楼上,女孩 用了6分钟到达楼上。问:该扶梯共有多少级?
《牛吃草问题》
设1头牛一天吃的草为1份。那么,10头牛20天吃200 份,草被吃完;15头牛10天吃150份,草也被吃完。 前者的总草量是200份,后者的总草量是150份,前者 是原有的草加 20天新长出的草,后者是原有的草加 10天新长出的草。
200-150=50(份),20—10=10(天),
天,寒冷占去10头牛,所以,可供5头牛吃10天。
《牛吃草问题》
分析:虽然表面上没有“牛吃草”,但因为总的水 量在均匀变化,“水”相当于“草”,进水管进的 水相当于新长出的草,出水管排的水相当于牛在吃 草,所以也是牛吃草问题,解法自然也与例1相似。
出水管所排出的水可以分为两部分:一部分是出水 管打开之前原有的水量,另一部分是开始排水至排 空这段时间内进水管放进的水。因为原有的水量是 不变的,所以可以从比较两次排水所用的时间及排 水量入手解决问题。

【奥数】牛吃草问题PPT课件

【奥数】牛吃草问题PPT课件

答:需要12台同样的抽水机6天抽干。
.
14
规律总结
这是一道变相的“牛吃草”问题。抽 水机相当于牛,水相当于草。最一问给出 了时间,求抽水机台数(相当于“牛数”)。 找到题中的“牛”与“草”,问题就迎刃而 解了。
.
15
牛吃草问 题总结
(1)求草每天的生长量
第一步
第三步 (3)求给定时间内草总量 或(3)求牛每天净吃草量
漏进水为2,所以实际上船中每小时减少 的水量为(17-2)=15
(4)30÷15=2(小时)
答:17人2小时可以淘完水。
当给出人数求时间时, 从总人数里可减去每小 时进水量。这样工作总 量就相当于不变了,再 除以人数即可求出时间。
.
9
练习1
举一反三
1.一个牧场长满青草,牛在吃草而草又在不断生长,已知牛
=总草量
问题的核心就是求出原有的草。
.
5
答案揭秘
摘录条件: 10头 20天 原有草+20天生长草 15头 10天 原有草+10天生长草 ?头 5天 原有草+5天生长草 设每头牛每天吃草量为1, 按四个步骤解答。
解:(1)每天的生长量 (10×20- 15×10)÷(20-10)=5 (2)求原有草量 15×10-5×10=100 (3)求5 天内草总量 100+5×5=125 (4)求多少头牛5 天吃完草
(2)求原有草量
第二步
第四步 (4)求多少头牛 或(4)多少天吃完草
.
16
.
17
(4)求21头牛多少 天吃完草:72÷6=12(天)
.
11
规律总结
当给出牛头数(人数)求时间时,从 牛(人)总数里可减去单位时间增加量。 这样工作总量就相当于不变了,再除以牛 (人)数即可求出时间。

演示文稿牛吃草问题课件

演示文稿牛吃草问题课件

解:假设1头牛1天吃的草的数量是1份
30×8=240份……原草量-8天的减少量
25×9=225份……原草量-9天的减少量
草每天的减少量:
原草量:
(240-225)÷(9-8)=15份
240+8×15=360份
或220+9×15=360份
第九页,共27页。
400份 - 15份
15头牛在吃 360份草可供21头牛吃几天?
1188÷33=36份
第二块草量为: 17×84=1428份
平均每公顷有草量: 1428÷28=51份
每公顷草每天的生长量为:
(51-36)÷(84-54)=0.5份
每公亩的草量: 36-54×0.5=9份 第三块牧场可供: 或51-84×0.5=9份
(40×9+40×0.5×24)÷24=35(头)
女孩: 15×6 = 自动扶梯的级数-6分钟减少的级数
每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级) 自动扶梯的级数= 20×5+5×10=150(级)
第二十五页,共27页。
[自主训练] 两个顽皮孩子逆着自动扶梯行驶的方向行走,男 孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从扶梯的 一端到达另一端男孩走了100秒,女孩走了300秒。问该扶 梯共有多少级?
(优选)牛吃草问题课件
第一页,共27页。
1、牛吃草问题
牛吃草问题最先在牛顿的《普通算术》中出现,所以人们 又习惯上称之为牛顿的牛吃草问题。
2、牛顿牧场 牛顿牧场是理想牧场,在这个牧场上草是匀速生长的 3、牛吃草问题三部曲 (1)先算新生草量
(2)再算原有草量
(3)最后计算问题
第二页,共27页。

牛吃草问题(共10张PPT)

牛吃草问题(共10张PPT)
第9页,共10页。
(★★★★★)
小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,
每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上; 若开汽车,每小时行45千米,多少分钟可以追上小明?
思路分析 小神童妙解题Fra bibliotek将一段时间后两人的距离当作草地上原有的草;这样原题可变为
小神童妙解题
当题目中出现两种或几种动物一起吃草时,可以能过它们的关系把它们转 化成一种动物,化繁为简
第7页,共10页。
(★★★★)
有三块草地,面积分别为5公顷、15公顷和24公顷。草地上的草一样厚,而且 长得一样快。第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天。问:
第三块草地可供多少头牛吃80天?
小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上; 一片草地,每天都匀速长出青草,如果可供24头牛吃6天,或20头牛吃10天,那么可供18头牛吃几天? ——牛吃草问题 问:第三块草地可供多少头牛吃80天? 画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队; 有三块草地,面积分别为5公顷、15公顷和24公顷。 若骑摩托车,每小时行35千米,1小时可以追上; 求第一个观众到达的时间。 与牛吃草的各种量一一对应 有一片草场,草每天的生长速度相同。 ——牛吃草问题 如果有多块地,大小一一样,可以转化成最小单位,求出最小单位的地上的原有有草和每天长出的草量 若56只羊30天可将草吃完,70只羊16天也可将草吃完(4只羊一天的吃草量相当于1头牛一天的吃草量)。 5:让其它牛去吃原来的草。 问:第三块草地可供多少头牛吃80天? “一片草地,15头牛3小时可以吃完; 如果开5个入场口,9点5分就没有人排队。

趣味数学牛吃草问题(经典课件)

趣味数学牛吃草问题(经典课件)
趣味数学牛吃草问题(经典 课件)
目录
• 牛吃草问题简介 • 牛吃草问题的基本类型 • 牛吃草问题的解题方法 • 牛吃草问题的实际应用 • 牛吃草问题的扩展思考 • 牛吃草问题的趣味挑战
01 牛吃草问题简介
牛吃草问题的起源
牛吃草问题起源于古代数学问题 ,最早记录在《张丘建算经》中

它最初是为了解决放牧牛群与草 场资源之间的矛盾而提出的。
在牛吃草问题中,微积分法可以用来分析草的生长速度和牛的吃草速度之间的关系,以及随着时间的变化,草的剩余量会如 何变化。通过微积分的方法,可以更精确地描述问题的动态变化过程,从而找到解决问题的最佳方案。这种方法需要较高的 数学水平,但可以解决较为复杂和精确的问题。
04 牛吃草问题的实 际应用
生态平衡问题
最短时间吃完草场问题
总结词
求牛吃完整个草场所需的最短时间
详细描述
在牛吃草的过程中,草场上的草会不 断生长。我们需要计算在草场上的草 被吃完所需的最短时间。这需要考虑 牛每天吃的草的量和草场每天生长的 草的量。
最少草料吃完草场问题
总结词
求用最少的草料让牛吃完整个草场
详细描述
在牛吃草的过程中,我们希望用最少的草料让牛吃完整个草场。这需要考虑每天牛吃的 草的量和草场每天生长的草的量,以及牛的消化能力。
05 牛吃草问题的扩 展思考
多种动物共享草场问题
多种动物共享草场问题是在牛吃草问 题的基础上进行扩展,考虑多个动物 同时吃草的情况。
解决此类问题需要考虑不同动物吃草 的速度和数量,以及草场上的总草量 。
假设草场上的草量一定,多个动物同 时吃草会导致草场上的草量迅速减少 。
草场边界移动问题
草场边界移动问题是指草场的边界在不断变化的情况。 当草场边界移动时,草场上的草量也会随之变化。

牛吃草问题课件

牛吃草问题课件

01
牛吃草问题的扩展与挑战
多物种模型
多种草本植物
在牛吃草的问题中,草本植物的种类和数量 是影响牛食量的重要因素。不同种类的草本 植物具有不同的营养成分和消化率,牛在选 择时需考虑这些因素。
多种家畜
除了牛之外,还有其他家畜如羊、猪等,它 们与牛竞争食物,从而影响牛的食量和生长

不确定性因素
要点一
问题的历史与发展
历史
牛吃草问题最早可以追溯到古希腊数学家欧几里得的时代, 在其《几何原本》中就有涉及草块问题的论述。而到了近代 ,牛顿在其《自然哲学的数学原理》中也对这类问题进行了 深入的研究。
发展
随着数学和计算机科学的发展,牛吃草问题的解法也不断得 到改进和完善,同时其应用领域也越来越广泛,如生态学、 农业、经济学等。
案例二:城市绿化与牛吃草问题的应用
总结词
城市绿化是牛吃草问题在城市规划中的一个重要应用 。通过合理规划城市绿化,可以改善城市环境、提高 居民生活质量并促进城市可持续发展。
详细描述
在城市规划中,绿化带和公园是重要的城市基础设施 ,可以为居民提供休闲、娱乐和亲近自然的空间。同 时,绿化带还可以净化空气、降低噪音和改善城市微 气候。在城市绿化规划中,需要考虑不同植物的生长 特性和生态位,通过合理搭配实现绿地的稳定和多样 性。此外,还需要根据城市的气候、土壤和居民需求 等因素来选择合适的植物种类和配置方式。
01
牛吃草问题的应用场景
资源管理
资源分配
牛吃草问题可以应用于资源管理 领域,例如在有限资源的情况下 ,如何合理分配资源以确保多个
项目或部门的需求得到满足。
资源优化
通过牛吃草问题,可以研究如何 优化资源利用,提高资源产出效

《牛吃草问题》PPT课件

《牛吃草问题》PPT课件
因此,这片草地可以喂养25头牛5天。
在例1的解法中,要注意三点:
(1)每天新长的草量是用已知的两种不同情况下 吃草总量与吃草天数之差来计算的。
(2)在已知的两种情况中的任何一种情况下,假 定其中几头牛吃新长出的草,剩下的几头牛吃原草, 原草量可根据它们吃的天数计算出来。
(3)在所问的问题中,让几头牛吃新长的草,其 余的吃原来的草。根据原来的草量,就可以算出可 以吃多少天。
解决方案:扶梯分分钟走 (20×5-15×6)÷(6-5)=10(等级), 自动扶梯共有(20+10)×5=150(等级)。 A:有150部自动扶梯。
解决方案:扶梯分分钟走 (20×5-15×6)÷(6-5)=10(等级), 自动扶梯共有(20+10)×5=150(等级)。 A:有150部自动扶梯。
200-150=50(份),20-10=10(天),
表明牧场10天有50株草,1天有5株草。也就是说,五 头牛刚吃完新长出的草,五头牛以外的牛吃的草就是 牧场上原来的草。得出结论:牧场上的原草
(10-5)×20=100(份)或(15-5)×10=100(份)。
现在了解到,原来的草有100株,每天长出5株新草。 25头牛时,其中5头吃新长的草,其余20头吃原来的 草,需要100÷20=5(天)。
若出水管从水箱排出的水为每分钟1份,则两 根出水管排出8分钟的水为2×8=16份(份), 三根出水管排出5分钟的水为3×5=15份 (份)。两次排出的水量包括原来的水量和
从开始排水到放空这段时间的进水量。两者 相减为8-5=3(份)以内的放水量,因此每分 钟的流入量为1/3(份)。原始水量为:(21/3)×8=40/3(份)

解析:上楼的速度可以分为两部分:一部分是少 男少女自身的速度,另一部分是自动扶梯的 速度。

牛吃草问题PPT课件

牛吃草问题PPT课件

01
C(t) = C + g * t
牛吃草的速度与数量和时间的关系
02
v*n*t
牛吃草后草场剩余的草量
03
C(t) - v * n * t
模型解析与求解方法
如果v * n > g,即牛吃草的速度 大于草的生长速度,那么草场将 无法满足牛的吃草需求,草场的 草量将逐渐减少。
如果v * n < g,即牛吃草的速度 小于草的生长速度,那么草场将 能够满足牛的吃草需求,并且剩 余的草量将逐渐增加。
05
拓展延伸与实际应用
牛吃草问题在其他领域的拓展
经济学领域
类似于“牛吃草”的资源分配问题,在经济学中经常涉及到如何合理分配有限资源的问题 。通过引入经济学中的供需关系、边际分析等概念,可以帮助学生理解资源分配的原理和 方法。
生态学领域
在生态系统中,资源的有限性和生物之间的竞争关系与“牛吃草”问题相似。通过引入生 态学中的竞争排斥原理、生态平衡等概念,可以引导学生思考如何在生态系统中实现资源 的可持续利用。
案例三:多牛多草场的复杂情况分析
要点一
4. 根据三片草地的总面积和总生 长量,求出总的原有草量
(3+2+1)-(24+30+48)b。
要点二
5. 根据总的原有草量和每天每头 牛的吃草量,求出需要的…
(3+2+1)-(24+30+48)b/a。
04
解题思路与技巧总结
解题思路梳理
理解问题背景
首先,需要明确问题的背景,即牛吃 草的场景,以及草的生长速度、牛吃 草的速度等关键信息。
案例一:基础牛吃草问题
问题描述
一片均匀生长的草地,可以供10头牛吃20天,或者供15头牛吃10天。问:如果 这片草地可以供25头牛吃,那么可以吃多少天?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

若4头牛不死,这群牛在6+2=8天内共吃草 240+9×8+2×4=320份
320份草可共几头牛吃8天? 320÷8=40头
[自主训练] 一个牧场上长满了青草,这些牧草可供5只羊 吃30天,或者可供7只羊吃20天,现在牧场上有8只羊, 10天后,有2只羊死亡,剩下的羊多少天可以将牧场上的 草吃完?
分析] 这个问题的难点在于草的总量在变,但牧场上的牧草时刻都在匀速 生长,因此,草的总量是由两部分组成: (1)某个时间期限前,草场上原有的草量,并且是不变的 (2)某个时间期限后,草场每单位时间生长而新增的草量,并 且也是不变的。 因此,必须先设法求出这两个量来 ,我们可以画以下线段图:
27头 牛 吃 6周 的 草 量
[自主训练] 盛德美9时开门营业,开门前就有人等候入场, 如果第一个顾客来时起,每分钟来的顾客人数同样多,那 么开4个门等候的人全部进入商场要8分钟,开6个门等候 的人全部进入商场只要4分钟,问第一个顾客到达时是几 时几分? 假设每分钟每个检票口进的人数为1份 4×8= 原有等待的人数+8分钟新增的人数 6×4= 原有等待的人数+6分钟新增的人数 每分钟新增的人数= (4×8-6×4)÷(8-6) = 4(份) 原有等待的人数= 4×8-8×4=0(份)
72份
+
15份
剩下21-15=6头
15头

6头牛吃72份草能吃几周?
72÷(21-15)=12 周

同一片牧场中的“牛吃草”问题,一般的解法可总结为: • ⑴设定1头牛1天吃草量为“1”; • ⑵草的生长速度=(对应牛的头数×对应较多天数-相应牛的头数×对应吃
的少的天数)÷(吃的较多的天数-吃的较少的天数);
假设每头牛每天的吃草量是1份
20×50=10公亩原有草量+10公亩50天新增量 20×50÷10=100 =1公亩原有草量+1公亩50天新增量 40×30=15公亩原有草量+15公亩30天新增量
40×30÷15=80 =1公亩原有草量+1公亩30天新增量
1公亩每天生长量= (100-80)÷(50-30)=1(份) 1公亩的草量= 100-1×50=50(份) 1 (40×50+40×1×24)÷24 123 3
3×36=108份……原水量+36分钟进水量
5×20=100份……原水量+20分钟的进水 量 每分钟的进水量: (108-100)÷(36-20)=0.5份
原水量: 108-36×0.5=90份 或100-20×0.5=90份
90份
+
0.5份
8-0.5=7.5份 90份水需要8台抽水机几分钟舀完?
例6 有3个牧场长满草,第一牧场33公亩,可供 22头牛吃54天,第二牧场28公亩,可供17头牛吃 84天,第三牧场40公亩,可供多少头牛吃24天?
解:假设1头牛1天吃1份草
22×54=1188份 平均每公顷有草量: 1188÷33=36份 第二块草量为: 17×84=1428份
平均每公顷有草量: 1428÷28=51份
90÷(8-0.5)=12小时
例4 自动扶梯以均匀速度由下往上行驶着,两位性急的 孩子要从扶梯上楼。已知男孩每分钟走20级梯级,女孩 每分钟走15级梯级,结果男孩用了5分钟到达楼上,女孩 用了6分钟到达楼上。问:该扶梯共有多少级? 男孩: 20×5 = 自动扶梯的级数-5分钟减少的级数
女孩: 15×6 = 自动扶梯的级数-6分钟减少的级数
Байду номын сангаас
360份
-
15份
15头牛在吃
360份草可供21头牛吃几天? 360÷(21+15)=10天
[自主训练] 有一口水井,持续不断地涌出水,而且每分 钟涌出的水量相等。如果用3台抽水机抽水36分钟可以抽 完,如果用5台抽水机抽水,20分钟可以抽完,现在用8 台抽水机抽完水,需要几分钟?
解:假设1台抽水机1小时抽1份水
假设每分钟每个检票口进的人数为1份
4×30= 原有等待的人数+30分钟新增的人数
5×20= 原有等待的人数+20分钟新增的人数
每分钟新增的人数= (4×30-5×20)÷(30-20) = 2(份) 原有等待的人数= 4×30-30×2=60(份) 专门安排2个检票口检新增加的人
60÷(7-2)=12(分钟)
解:假设1只羊1天吃1份草
草每天的生长量为:
(5×30-7×20)÷(30-20)=1份
原有的草量为: 5×30-30×1=120份 或7×20-20×1=120份
10天后所剩草量: 120+10×1-8×10=50份
10天还有6只羊可吃几天? 50÷(6-1)=10天
第一块草量为:
每公顷草每天的生长量为:
(51-36)÷(84-54)=0.5份
每公亩的草量:
第三块牧场可供:
36-54×0.5=9份 或51-84×0.5=9份
(40×9+40×0.5×24)÷24=35(头)
[自主训练] 有3个牧场长满草,第一牧场10公亩,可供 20头牛吃50天,第二牧场15公亩,可供40头牛吃30天, 第三牧场40公亩,可供多少头牛吃24天?(每块地每公 亩的草量相同而且都是匀速生长)
每分钟减少的级数= (20×5-15×6) ÷(6-5)=10(级)
自动扶梯的级数= 20×5+5×10=150(级)
[自主训练] 两个顽皮孩子逆着自动扶梯行驶的方向行走, 男孩每秒可走3级阶梯,女孩每秒可走2级阶梯,结果从 扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。 问该扶梯共有多少级? 3×100=自动扶梯级数+100秒新增的级数
解:假设1头牛1天吃的草的数量是1份
30×8=240份……原草量-8天的减少量
25×9=225份……原草量-9天的减少量
草每天的减少量: (240-225)÷(9-8)=15份 原草量: 240+8×15=360份 或220+9×15=360份
例3 一只船有一个漏洞,水以均匀的速度进入船内,发 现漏洞时已经进入了一些水,如果用12人舀水,3小时舀 完,如果只有5个人舀水,要10小时才能舀完,现在想在 6小时舀完,需要多少人?
1、牛吃草问题 牛吃草问题最先在牛顿的《普通算术》中出现,所以 人们又习惯上称之为牛顿的牛吃草问题。
2、牛顿牧场
牛顿牧场是理想牧场,在这个牧场上草是匀速生长的
3、牛吃草问题三部曲
(1)先算新生草量 (2)再算原有草量 (3)最后计算问题
例1 牧场上有一片牧草,可供27头牛吃6周,或者供23头牛吃 9周.如果牧草每周匀速生长,可供21头牛吃几周?
120份
+
3份
剩下18-3=15头
3头

15头牛吃120份草能吃几天?
120÷(18-3)=8天
例2 由于天气逐渐冷起来,牧场上的草不仅不长大,反 而以固定速度在减少。已知某块草地上的草可供20头牛 吃5天,或可供15头牛吃6天。照此计算,可供多少头牛 吃10天?
解:假设1头牛1天吃的草的数量是1份 20×5=100份……原草量-5天的减少量
解:假设1人1小时舀1份水 12×3=36份……原水量+3小时进水量
5×10=50份……原水量+10小时的进水量
每小时的进水量: (50-36)÷(10-3)=2份 原水量: 36-3×2=30份 或50-10×2=30份
30份
+
2份
2×6=12份 (30+12)份水需要几个人6小时舀完?
(30+12)÷6=7小时
• ⑶原来的草量=(对应牛的头数×吃的天数)-(草的生长速度×吃的天数) • ⑷吃的天数=原来的草量÷(牛的头数-草的生长速度);
• ⑸牛的头数=原来的草量÷吃的天数+草的生长速度.
“牛吃草”问题有很多的变例,像抽水问题、检票口检票问题等等, 只有理解了“牛吃草”问题的本质和解题思路, 才能以不变应万变,轻松解决此类问题
2×300=自动扶梯级数+300秒新增的级数
每秒新增的级数:
(2×300-3×100)÷(300-100)=1.5(级)
自动扶梯级数= 3×100-100×1.5=150(级)
例5 某车站在检票前若干分钟就开始排队,每分钟来的 旅客人数一样多。从开始检票到等候检票的队伍消失,同 时开4个检票口需30分钟,同时开5个检票口需20分钟。 如果同时打开7个检票口,那么需要多少分钟?
例7 有一牧场长满牧草,每天牧草匀速生长,这个牧场 可供17头牛吃30天,可供19头牛吃24天,现在有若干头 牛在吃草,6天后,4头牛死亡,余下的牛吃2天将草吃完, 问原来有多少头牛?
解:假设1头牛1天吃1份草
草每天的生长量为:
(17×30-19×24)÷(30-24)=9份
原有的草量为: 17×30-30×9=240份 或29×24-24×9=240份
15×6=90份……原草量-6天的减少量
草每天的减少量: (100-90)÷(6-5)=10份 原草量: 100+5×10=150份 或90+6×10=150份
150份
-
10份
剩下150-100=50份
10天减少
10×10=100份
50份草可供多少头牛吃10天?
(150-10×10)÷10=5头
[自主训练] 由于天气逐渐寒冷,牧场上的牧草每天以均 匀的速度减少,经测算,牧场上的草可供30头牛吃8天, 可供25头牛吃9天,那么可供21头牛吃几天?
[自主训练] 牧场上长满了青草,而且每天还在匀速生长, 这片牧场上的草可供9头牛吃20天,可供15头牛吃10天, 如果要供18头牛吃,可吃几天?
相关文档
最新文档