函数单调性方法和各种题型

合集下载

高一函数单调性题型大全

高一函数单调性题型大全

高一函数单调性题型大全【知识点梳理】1.函数单调性的定义:如果函数f(x)对区间D 内的任意x ₁,x ₂,当x ₁<x ₂时都有f(x ₁)<f(x ₂),则f(x)在D 内是增函数:当x ₁<x ₂时都有f(x ₁)>f(x ₂),则f(x)在D 内时减函数。

f (x 1)−f (x 2)x 1−x 2<0f (x )在[a,b]是减函数:(x 1−x 2)[f (x 1)−f (x 2)]<0f (x )在[a,b]是减函数。

(x 1−x 2)[f (x 1)−f (x 2)]>0f (x )在[a,b]是增函数。

3.复合函数单调性的判断。

(同增异减)4.函数单调性的应用.利用定义都是充要性命题.即若f(x) 在区间D 上递增(递减)且, f (x 1)<f (x 2)x 1<x 2(x 1,x 2∈D );若f(x)在区间D 上递递减且. f (x 1)<f (x 2)x 1>x 2.(x 1,x 2∈D )5.在公共定义域内,增函数f(x)+增函数g(x)是增函数:减函数f(x)+减函数g(x) 是减函数:增函数 f(x)-减函数g(x)是增函数; 减函数f(x)-增函数g(x)是减函数。

6.函数 y =ax +b x (a⟩0,b >0)在 (−∞,−√] [√,)上单调递增:在 [−√,0)THN (0,√]上是单调递减。

1.若u=g(x), y=f(u)在所讨论的区间上都是增函数或都是减函数,则y=f[g(x)]为增函数;2. 若u=g(x), y=f(u)在所讨论的区间上一个是增函数,另一个是减函数,则y=f[g(x)]为减函数. 列表如下:. 因此判断复合函数的单调性可按下列步骤操作:1.将复合函数分解成基本初等函数: y=f(u), u=g(x);2.分别确定各个函数的定义域;2.单调性的定义的等价形式: 设x ₁,x ₂∈[a,b]. 那么 f (x 1)−f (x 2)x 1−x 2>0f (x )在[a,b]是增函数:7.复合函数单调性的判断 讨论复合函数y=f[g(x)]的单调性时要注意:既要把握复合过程,又要掌握基本函数的单调性. 一般需要先求定义域,再把复杂的函数正确地分解为两个简单的初等函数的复合,然后分别判断它们的单调性,再用复合法则,复合法则如下:3.分别确定分解成的两个基本初等函数的单调区间.注若两个基本初等函数在对应的区间上的单调性是同增或同减,则y=f[g(x)]为增函数;若为一增一减或一减一增,则y=f[g(x)]为减函数.题型目录:题型一:用定义法证明函数单调性题型二:抽象函数单调性的判断证明题型三:函数单调性定义的理解题型四:基本初等函数的单调性题型五:函绝对值函数的单调性判断题型六:已知函数的单调性求参数范围题型七:分段函数的单调性求参数范围题型八:复合函数单调性(同增异减)题型九:抽象函数单调性解不等式【典型例题】题型一:用定义法证明函数单调性证明函数单调性的步骤:(1)取值:设x₁,x₂是f(x)定义域内一个区间上的任意两个量,且;x₁<x₂:(2)变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;(3)定号:判断差的正负或商与1的大小关系:(4)得出结论.【例1】证明函数f(x)=x+1x在(0, 1)上是减函数。

函数的单调性的题型分类及解析

函数的单调性的题型分类及解析

函数的单调性知识点1、增函数定义、减函数的定义:(1)设函数)(x f y =的定义域为A ,区间M ⊆A ,如果取区间M 中的任意两个值21,x x ,当改变量012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ,那么就称函数)(x f y =在区间M 上是增函数,如图(1)当改变量012>-=∆x x x 时,都有0)()(12<-=∆x f x f y ,那么就称 函数)(x f y =在区间M 上是减函数,如图(2)注意:单调性定义中的x 1、x 2有什么特征:函数单调性定义中的x 1,x 2有三个特征,一是任意性,二是有大小,三是同属于一个单调区间.1、 根据函数的单调性的定义思考:由f (x )是增(减)函数且f (x 1)<f (x 2)能否推出x 1<x 2(x 1>x 2)2、我们来比较一下增函数与减函数定义中y x ∆∆,的符号规律,你有什么发现没有?3、如果将增函数中的“当012>-=∆x x x 时,都有0)()(12>-=∆x f x f y ”改为当012<-=∆x x x 时,都有0)()(12<-=∆x f x f y 结论是否一样呢?4、定义的另一种表示方法如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,若0)()(2121>--x x x f x f 即0>∆∆x y ,则函数y=f(x)是增函数,若0)()(2121<--x x x f x f 即0<∆∆x y,则函数y=f(x)为减函数。

判断题:①已知1()f x x=因为(1)(2)f f -<,所以函数()f x 是增函数. ②若函数()f x 满足(2)(3)f f <则函数()f x 在区间[]2,3上为增函数.③若函数()f x 在区间(1,2]和(2,3)上均为增函数,则函数()f x 在区间(1,3)上为增函数.④因为函数1()f x x =在区间(,0),(0,)-∞+∞上都是减函数,所以1()f x x=在(,0)(0,)-∞⋃+∞上是减函数.通过判断题,强调几点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性. ②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③单调性是对定义域的某个区间上的整体性质,不能用特殊值说明问题。

利用导数研究函数单调性5种常见题型总结(原卷版)

利用导数研究函数单调性5种常见题型总结(原卷版)

第10讲 利用导数研究函数单调性5种常见题型总结【考点分析】考点一:利用导数判断函数单调性的方法 ①求函数的定义域(常见的0,ln >x x );①求函数的导数,如果是分式尽量通分,能分解因式要分解因式;①令()0='x f ,求出根 ,,,321x x x ,数轴标根,穿针引线,注意x 系数的正负;④判断()x f '的符号,如果()0f x '>,则()y f x =为增函数;如果()0f x '<,则()y f x =为减函数. 考点二:已知函数的单调性求参数问题①若()f x 在[]b a ,上单调递增,则()0f x '≥在[]b a ,恒成立(但不恒等于0); ①若()f x 在[]b a ,上单调递减,则()0f x '≤在[]b a ,恒成立(但不恒等于0).【题型目录】题型一:利用导数求函数的单调区间题型二:利用导函数与原函数的关系确定原函数图像 题型三:已知含量参函数在区间上单调性求参数范围 题型四:已知含量参函数在区间上不单调求参数范围 题型五:已知含量参函数存在单调区间求参数范围【典型例题】题型一:利用导数求函数的单调区间【例1】(2022·广东·雷州市白沙中学高二阶段练习)函数()()2e x f x x =+的单调递减区间是( )A .(),3-∞-B .()0,3C .()3,0-D .()3,-+∞【例2】(2022·北京市第三十五中学高二阶段练习)函数ln xy x=的单调递增区间是( ) A .1,e ⎛⎫-∞ ⎪⎝⎭B .()e,+∞C .10,e ⎛⎫⎪⎝⎭D .()0,e【例3】(2023·全国·高三专题练习)函数21()ln 2f x x x =-的单调递减区间为( ) A .(1,1)-B .(0,1)C .(1,)+∞D .(0,2)【例4】(2022·黑龙江·铁人中学高三开学考试)函数2()ln 1f x x x =--的单调增区间为_________.【例5】(2022·河南·安阳一中高三阶段练习(理))已知函数()()ln 1f x x x =+,则( ) A .()f x 在()1,-+∞单调递增 B .()f x 有两个零点C .曲线()y f x =在点11,22f⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭处切线的斜率为1ln2-- D .()f x 是偶函数【例6】(2022·江苏·盐城市第一中学高三阶段练习)若函数()312f x x x =-在区间()1,1k k -+上不是单调函数,则实数k 的取值范围是( ) A .3k ≤-或11k -≤≤或3k ≥ B .31k -<<-或13k << C .22k -<<D .不存在这样的实数【例7】(2022·全国·高二课时练习多选题)设函数()e ln x f x x =,则下列说法正确的是( )A .()f x 的定义域是()0,∞+B .当()0,1x ∈时,()f x 的图象位于x 轴下方C .()f x 存在单调递增区间D .()f x 有两个单调区间【例8】(2022·河北·石家庄二中模拟预测)已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .()0,∞- B .(1,+∞)C .()1,∞-D .(0,+∞)【例9】 (2022·全国·高二专题练习)已知函数()1xlnx f x e +=,(其中e =2.71828…是自然对数的底数).求()x f 的单调区间.【例10】【2020年新课标2卷理科】已知函数()x x x f 2sin sin 2=.(1)讨论()x f 在区间()π,0的单调性;【例11】(2022·黑龙江·哈尔滨市第六中学校高二期末)已知函数()ln f x x x x =-. (1)求()f x 的单调区间;【例12】(2022·陕西渭南·高二期末(文))函数()()2e x f x x ax b =++,若曲线()y f x =在点()()0,0f 处的切线方程为:450x y ++=. (1)求,a b 的值;(2)求函数()f x 的单调区间.【例13】【2020年新课标1卷理科】已知函数2()e x f x ax x =+-. (1)当1=a 时,讨论()x f 的单调性;【例14】【2019年新课标2卷理科】已知函数()11ln x f x x x -=-+.(1)讨论()x f 的单调性,并证明()x f 有且仅有两个零点;【题型专练】1.(2022湖南新邵县教研室高二期末(文))函数()4ln f x x x =-的单调递减区间为( ) A .()0,∞+ B .10,4⎛⎫⎪⎝⎭C .1,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫+∞ ⎪⎝⎭2.(2022·广东·东莞四中高三阶段练习)函数()()3e x f x x =-,则()f x 的单调增区间是( )A .(),2-∞B .()2,+∞C .(),3-∞D .()3,+∞3.(2022·四川绵阳·高二期末(文))函数()2ln 2x x x f -=的单调递增区间为( )A .()1,-∞-B .()+∞,1C .()1,1-D .()1,04.(2022·广西桂林·高二期末(文))函数()3213f x x x =-的单调递减区间为( )A .()02,B .()()02∞∞-+,,,C .()2+∞,D .()0-∞,5.(2022·重庆长寿·高二期末)函数()65ln f x x x x=--的单调递减区间为( )A .(0,2)B .(2,3)C .(1,3)D .(3,+∞)6.(2023·全国·高三专题练习)函数21()ln 3f x x x =-的单调减区间为__________.7.(2022·全国·高二专题练习)函数2()2x x f x =的单调递增区间为__________.8.(2022·全国·高二专题练习)函数cos y x x =+的单调增区间为_________.9.(2023·全国·高三专题练习)求下列函数的单调区间(1)()211x f x x +=-;(2)()21ln 2f x x x =-; (3)()3223361f x x x x =+-+;(4)()sin ,0f x x x x π=-<<;(5)()()22e xf x x x -=+;(6)()sin 2cos xf x x=+.10.(2022·全国·高二单元测试)已知函数()()321313x x x f x =-++,求()f x 的单调区间.11.函数()x e x x f -=2的递增区间是( ) A .()0,2B .(),0∞-C .(),0∞-,()2,+∞D .()(),02,-∞+∞12.【2022年新高考2卷】已知函数f(x)=x e ax −e x . (1)当a =1时,讨论f(x)的单调性;13.(2022·四川省绵阳南山中学高二期末(理))已知函数()29ln 3f x x x x =-+在其定义域内的一个子区间()1,1m m -+上不单调,则实数m 的取值范围是( )A .51,2⎡⎫⎪⎢⎣⎭B .31,2⎛⎫ ⎪⎝⎭C .51,2⎛⎫⎪⎝⎭D .31,2⎡⎫⎪⎢⎣⎭14.(2020·河北省石家庄二中高二月考)函数1()ln f x x x=的单调递减区间为____________. 15.(2022·全国·高三专题练习(文))函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________.题型二:利用导函数与原函数的关系确定原函数图像【例1】(2022·河南·高三阶段练习(文))如图为函数()f x (其定义域为[],m m -)的图象,若()f x 的导函数为()f x ',则()y f x '=的图象可能是( )A .B .C .D .【例2】(2022·四川·遂宁中学外国语实验学校高三开学考试(理))设()f x '是函数()f x 的导函数,()y f x '=的图像如图所示,则()y f x =的图像最有可能的是( )A .B .C .D .【例3】(2022·全国·高二课时练习)已知函数()y f x =在定义域3,32⎛⎫- ⎪⎝⎭内可导,其图象如图所示.记()y f x =的导函数为()y f x '=,则不等式()0xf x '≤的解集为( )A .[][)31,0,12,323⎛⎤--⋃⋃ ⎥⎝⎦B .[]18,01,2,333⎡⎤⎡⎫-⋃⋃⎪⎢⎥⎢⎣⎦⎣⎭C .[)1,12,33⎡⎤-⎢⎥⎣⎦D .31148,,,323233⎛⎫⎡⎤⎡⎫--⋃⋃ ⎪⎪⎢⎥⎢⎝⎭⎣⎦⎣⎭【例4】(2022·全国·高二单元测试)已知函数()f x 的导函数()'f x 图像如图所示,则()f x 的图像是图四个图像中的( ).A .B .C .D .【例5】(2022·广东潮州·高二期末多选题)已知函数()f x 与()f x '的图象如图所示,则下列结论正确的为( )A .曲线m 是()f x 的图象,曲线n 是()f x '的图象B .曲线m 是()f x '的图象,曲线n 是()f x 的图象C .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为()0,1D .不等式组()()02f x f x x >⎧⎨<<'⎩的解集为41,3⎛⎫⎪⎝⎭【题型专练】1.(2022·江苏常州·高三阶段练习)如图是()y f x '=的图像,则函数()y f x =的单调递减区间是( )A .()2,1-B .()()2,0,2,-+∞C .(),1-∞-D .()(),1,1,-∞-+∞2.(2022·吉林·东北师大附中高三开学考试)已知函数()y f x =的部分图象如图所示,且()f x '是()f x 的导函数,则( )A .()()()()12012f f f f ''''-=-<<<B .()()()()21012f f f f ''''<<<-=-C .()()()()02112f f f f ''''>>>-=-D .()()()()21021f f f f ''''<<<-<-3.(2022·福建莆田·高二期末)定义在()1,3-上的函数()y f x =,其导函数()y f x '=图像如图所示,则()y f x =的单调递减区间是( )A .()1,0-B .()1,1-C .()0,2D .()2,34.(2022·广东广州·高二期末)已知函数()y f x =的图象是下列四个图象之一,函数()y f x ='的图象如图所示,则函数()y f x =图象是( )A .B .C .D .5.(2022·北京·牛栏山一中高二阶段练习)设()f x '是函数()f x 的导函数,在同一个直角坐标系中,()y f x =和()y f x '=的图象不可能是( )A .B .C .D .6.(2022·福建宁德·高二期末多选题)设()f x 是定义域为R 的偶函数,其导函数为()f x ',若0x ≥时,()f x 图像如图所示,则可以使()()0f x f x '⋅<成立的x 的取值范围是( )A .(),3-∞-B .()1,0-C .()0,1D .()1,3题型三:已知含量参函数在区间上单调性求参数范围【例1】(2023·全国·高三专题练习)已知函数()ax x x x f ++=2ln 的单调递减区间为1,12⎛⎫ ⎪⎝⎭,则( ).A .(],3a ∈-∞-B .3a =-C .3a =D .(],3a ∈-∞【例2】(2022·全国·高三专题练习)已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( ) A .(),1-∞- B .[]1,1- C .[]1,3 D .[]1,3-【例3】(2022·浙江·高二开学考试)已知函数()sin cos f x x a x =+在区间ππ,42⎛⎫ ⎪⎝⎭上是减函数,则实数a 的取值范围为( )A .1a >B .1a ≥C .1a >D .1a ≥-【例4】(2022·全国·高二课时练习)若函数()2ln f x x ax x =-+在区间()1,e 上单调递增,则实数a 的取值范围是( ) A .[)3,+∞ B .(],3-∞C .23,e 1⎡⎤+⎣⎦ D .(2,e 1⎤-∞+⎦【例5】(2022·河南·荥阳市教育体育局教学研究室高二阶段练习)已知函数()321f x x x ax =+-+在R 上为单调递增函数,则实数a 的取值范围为( ) A .1,3⎛⎤-∞- ⎥⎝⎦B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .1,3⎡⎫-+∞⎪⎢⎣⎭【例6】(2023·全国·高三专题练习)若函数1()sin 2cos 2f x x a x =+在区间(0,)π上单调递增,则实数a 的取值范围是( ) A .(,1]-∞-B .[1,)-+∞C .(,1)-∞-D .[1,)+∞【例7】(2022·山东临沂·高二期末)若对任意的()12,,x x m ∈+∞,且当12x x <时,都有121212ln ln 3x x x x x x ->-,则m 的最小值是________.【例8】(2022·全国·高三专题练习(文))已知函数()()0ln 232>+-=a x x axx f ,若函数()x f 在[]2,1上为单调函数,则实数a 的取值范围是________.【题型专练】1.(2023·全国·高三专题练习)若函数2()ln 5f x x ax x =+-在区间11,32⎡⎤⎢⎥⎣⎦内单调递增,则实数a 的取值范围为( ) A .(,3]-∞ B .3,2⎛⎤-∞- ⎥⎝⎦C .253,8⎡⎤⎢⎥⎣⎦D .25,8⎡⎫+∞⎪⎢⎣⎭2.(2022·山西·平遥县第二中学校高三阶段练习)若函数()ln 1f x x x ax =-+在[e,)+∞上单调递增,则实数a 的取值范围是( ) A .(,2)-∞ B .(,2]-∞ C .(2,)+∞ D .[2,)+∞3.(2023·全国·高三专题练习)已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-4.(2022·全国·高三专题练习)若函数()d cx bx x x f +++=23的单调递减区间为()3,1-,则=+c b ( )A .-12B .-10C .8D .105.(2022·全国·高三专题练习)若函数()32236f x x mx x =-+在区间()1,+∞上为增函数,则实数m 的取值范围是_______. 6.函数321()3f x ax x a =-+在[1,2]上单调递增,则实数a 的取值范围是( ) A .1a >B .1a ≥C .2a >D .2a ≥7.对于任意1x ,2[1,)x ∈+∞,当21x x >时,恒有2211ln 2()x a x x x <-成立,则实数a 的取值范围是( ) A .(,0]-∞ B .(,1]-∞C .(,2]-∞D .(,3]-∞8.若函数2()ln f x x x x=++在区间[],2t t +上是单调函数,则t 的取值范围是( ) A .[1,2] B .[1,)+∞C .[2,)+∞D .(1,)+∞题型四:已知含量参函数在区间上不单调,求参数范围【例1】(2022·河南宋基信阳实验中学高三阶段练习(文))已知函数()3212132a g x x x x =-++.若()g x 在()2,1--内不单调,则实数a 的取值范围是______.【例2】(2021·河南·高三阶段练习(文))已知函数()()41xf x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭【题型专练】 1.函数()()2244xf x e xx =--在区间()1,1k k -+上不单调,实数k 的范围是 .2.(2022·全国·高三专题练习)若函数()324132x a f x x x =-++在区间(1,4)上不单调,则实数a 的取值范围是___________.题型五:已知含量参函数存在单调区间,求参数范围【例1】(2023·全国·高三专题练习)若函数()21()ln 12g x x x b x =+--存在单调递减区间,则实数b 的取值范围是( ) A .[)3,+∞ B .()3,+∞ C .(),3-∞D .(],3-∞【例2】(2022·全国·高三专题练习)若函数()313f x x ax =-+有三个单调区间,则实数a 的取值范围是________.【例3】(2022·河北·高三阶段练习)若函数()2()e xf x x mx =+在1,12⎡⎤-⎢⎥⎣⎦上存在单调递减区间,则m 的取值范围是_________.【例4】(2023·全国·高三专题练习)已知()2ln ag x x x x=+-. (1)若函数()g x 在区间[]1,2内单调递增,求实数a 的取值范围; (2)若()g x 在区间[]1,2上存在单调递增区间,求实数a 的取值范围.【题型专练】1.(2022·全国·高三专题练习(文))若函数()()0221ln 2≠--=a x ax x x h 在[]4,1上存在单调递减区间”,则实数a 的取值范围为________.2.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为 .3.故函已知函数32()3()f x ax x x x =+-∈R 恰有三个单调区间,则实数a 的取值范围为( ) A .()3,-+∞ B .()()3,00,-+∞C .()(),00,3-∞D .[)3,-+∞4.已知函数()()R a x ax x x f ∈+++=123在⎪⎭⎫⎝⎛--31,32内存在单调递减区间,则实数a 的取值范围是( ) A .(0,√3] B .(−∞,√3]C .(√3,+∞)D .(√3,3)。

单调性 题型归纳讲义

单调性 题型归纳讲义

专题四《函数》讲义5.5单调性知识梳理.单调性1.增函数、减函数定义:设函数f(x)的定义域为I:(1)增函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说函数f(x)在区间D上是增函数.(2)减函数:如果对于定义域I内某个区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说函数f(x)在区间D上是减函数.2.单调性、单调区间若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做函数y=f(x)的单调区间.3.判断函数单调性常用方法(1)定义法:一般步骤为设元→作差→变形→判断符号→得出结论.(2)图象法:如果f(x)是以图象形式给出的,或者f(x)的图象易作出,则可由图象的上升或下降确定单调性.(3)导数法:先求导数,利用导数值的正负确定函数的单调区间.(4)性质法:①对于由基本初等函数的和、差构成的函数,根据各初等函数的增减性及f(x)±g(x)增减性质进行判断;②对于复合函数,先将函数y=f(g(x))分解成y=f(t)和t=g(x),再讨论(判断)这两个函数的单调性,最后根据复合函数“同增异减”的规则进行判断.4.函数的最值设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M或f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,我们称M是函数y=f(x)的最大值或最小值.题型一.常见函数的单调性(单调区间)1.函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是()A.(﹣∞,﹣2)B.(﹣∞,﹣1)C.(1,+∞)D.(4,+∞)【解答】解:由x2﹣2x﹣8>0得:x∈(﹣∞,﹣2)∪(4,+∞),令t=x2﹣2x﹣8,则y=lnt,∵x∈(﹣∞,﹣2)时,t=x2﹣2x﹣8为减函数;x∈(4,+∞)时,t=x2﹣2x﹣8为增函数;y=lnt为增函数,故函数f(x)=ln(x2﹣2x﹣8)的单调递增区间是(4,+∞),故选:D.2.已知函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数,则a的取值范围是()A.(﹣∞,1)B.(﹣∞,1]C.(1,+∞)D.[1,+∞)【解答】解:因为函数f(x)=e|x﹣a|(a为常数).若f(x)在区间[1,+∞)上是增函数由复合函数的单调性知,必有t=|x﹣a|在区间[1,+∞)上是增函数又t=|x﹣a|在区间[a,+∞)上是增函数,所以[1,+∞)⊆[a,+∞),故有a≤1,故选:B.3.已知函数f(x)=2+(4−3)+3,<0l(+1)+2,≥0(a>0且a≠1)是R上的单调函数,则a的取值范围是()A.(0,34]B.[34,1)C.[23,34]D.(23,34]【解答】解:由题意,分段函数是在R上单调递减,可得对数的底数需满足0<a<1,根据二次函数开口向上,二次函数在(﹣∞,−2)单调递减,可得−2≥0.且[x2+(4a ﹣3)x+3a]min≥[log a(x+1)+2]max,故而得:−4K32≥0,解答a≤34,并且3a≥2,a∈(0,1)解得:1>a≥23.∴a的取值范围是[23,34],故选:C.4.已知函数f(x)=(−2),≥2(12)−1,<2,满足对任意的实数x1≠x2,都有o1)−o2)1−2<0成立,则实数a的取值范围为()A.(1,+∞)B.(−∞,138]C.(−∞,138)D.(138,+∞)【解答】解:由于f(x)满足对任意的实数x1≠x2,都有o1)−o2)1−2<0成立,∴f(x)为R上的减函数,又函数f(x)=(−2),≥2(12)−1,<2,∴−2<02(−2)≤(12)2−1,解得a≤138,∴实数a的取值范围为(−∞,138).故选:C.题型二.利用函数单调性求值域、最值1.若函数f(x)=(1−2p+3,<12−1,≥1的值域为R,则a的取值范围是()A.[0,12)B.(12,1]C.[﹣1,12)D.(0,12)【解答】解:由题意可得,y=(1﹣2a)x+3a单调递增且1﹣2a+3a≥1,故1−2>01+≥1,解可得,0≤<12.故选:A.2.已知函数f(x)=lg(ax2+(2﹣a)x+14)的值域为R,则实数a的取值范围是()A.(1,4)B.(1,4)∪{0}C.(0,1]∪[4,+∞)D.[0,1]∪[4,+∞)【解答】解:对a分类讨论:a=0时,函数f(x)=lg(2x+14),由2x+14>0,可得函数f(x)的值域为R,因此a=0满足题意.a≠0时,要使得函数f(x)=lg(ax2+(2﹣a)x+14)的值域为R,则>0△=(2−p2−4×14≥0,解得0<a≤1,或a≥4.则实数a的取值范围是[0,1]∪[4,+∞),故选:D.3.已知函数f(x)=2−2B+12,≤1+4+,>1,若f(x)的最小值为f(1),则实数a的取值范围是[3,+∞).【解答】解:由题意可知要保证f(x)的最小值为f(1),需满足≥1o2)≥o1),即≥12+42+≥1−2+12,解得a≥3.故答案为:[3,+∞)4.已知函数f(x)=2x,则函数f(f(x))的值域是()A.(0,+∞)B.(1,+∞)C.[1,+∞)D.R【解答】解:由指数函数的性质可知,函数f(x)=2x的值域为(0,+∞),令t=2x,则t>0,∴f(f(x))=f(t)=2t>20=1,即所求函数的值域为(1,+∞).故选:B.5.已知函数f(x)=lnx−12B2+(a﹣1)x+a(a>0)的值域与函数f(f(x))的值域相同,则a的取值范围为()A.(0,1]B.(1,+∞)C.(0,43]D.[43,+∞)【解答】解:函数f(x)=lnx−12B2+(a﹣1)x+a(a>0),其定义域满足:x>0.则f′(x)=1−ax+(a﹣1)(a>0)令f′(x)=0,可得x=−1(舍去),x=1.当x∈(0,1)时,f′(x)>0,f(x)在区间(0,1)递增;当x∈(1,+∞)时,f′(x)<0,f(x)在区间(1,+∞)递减;∴当x=1时,f(x)取得最大值为32−1;f(x))的值域为(﹣∞,32−1],∴函数f(f(x))的值域为(﹣∞,32−1],则32−1≥1;解得:a≥43.则a的取值范围为[43,+∞);故选:D.题型三.利用函数单调性比较大小1.已知函数f(x)的图象关于直线x=1对称,当x2>x1>1时,[f(x2)﹣f(x1)](x2﹣x1)<0恒成立,设a=f(−12),b=f(2),c=f(e),则a,b,c的大小关系为()A.c>a>b B.c>b>a C.a>c>b D.b>a>c【解答】解:∵当x2>x1>1时,[f(x2)﹣f(x1)](x2﹣x1)<0恒成立,∴f(x)在(1,+∞)上单调递减,又∵函数f(x)的图象关于直线x=1对称,∴a=f(−12)=f(52),又∵b=f(2),c=f(e),且2<52<e,f(x)在(1,+∞)上单调递减,∴f(2)>f(52)>f(e),∵a=f(−12)=f(52),b=f(2),c=f(e),∴b>a>c,故选:D.2.已知函数y=f(x)在区间(﹣∞,0)内单调递增,且f(﹣x)=f(x),若a=f(l123),b=f(2﹣1.2),c=f(12),则a,b,c的大小关系为()A.a>c>b B.b>c>a C.b>a>c D.a>b>c【解答】解:根据题意,函数y=f(x)满足f(﹣x)=f(x),则函数f(x)为偶函数,又由函数y=f(x)在区间(﹣∞,0)内单调递增,则f(x)在(0,+∞)上递减,a=f(l123)=f(log23),b=f(2﹣1.2),c=f(12)=f(2﹣1),又由2﹣1.2<2﹣1<1<log23,则b>c>a,故选:B.3.(2013·天津)设函数f(x)=e x+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0【解答】解:①由于y=e x及y=x﹣2关于x是单调递增函数,∴函数f(x)=e x+x﹣2在R上单调递增,分别作出y=e x,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g(3)=l3+ (3)2−3=12l3>0,g(b)=0,∴1<<3.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=e b+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选:A.题型四.利用(抽象)函数单调性解不等式1.已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是(﹣1,3).【解答】解:∵偶函数f(x)在[0,+∞)单调递减,f(2)=0,∴不等式f(x﹣1)>0等价为f(x﹣1)>f(2),即f(|x﹣1|)>f(2),∴|x﹣1|<2,解得﹣1<x<3,故答案为:(﹣1,3)2.已知函数op=−2+2−1,≤1|−1|,>1,若f(a2﹣4)>f(3a),则实数a的取值范围是()A.(﹣4,1)B.(﹣∞,﹣4)∪(1,+∞)C.(﹣1,4)D.(﹣∞,﹣1)∪(4,+∞)【解答】解:由分段函数的性质可知op=−2+2−1,≤1|−1|,>1,f(x)在R上单调递增,若f(a2﹣4)>f(3a),则a2﹣4>3a,解可得,a>4或a<﹣1.故选:D.3.(2012·全国)当0<≤12时,不等式4x<log a x恒成立,则实数a的取值范围是(22,1).【解答】解:当0≤x≤12时,函数y=4x的图象如下图所示:若不等式4x<log a x恒成立,则y=log a x的图象恒在y=4x的图象的上方(如图中虚线所示)∵y=log a x的图象与y=4x的图象交于(12,2)点时,a=故虚线所示的y=log a x的图象对应的底数a应满足22<a<1,故答案为:(22,1).4.(2017·全国3)设函数f(x)=+1,≤02,>0,则满足f(x)+f(x−12)>1的x的取值范围是(−14,+∞).【解答】解:若x≤0,则x−12≤−12,则f(x)+f(x−12)>1等价为x+1+x−12+1>1,即2x>−12,则x>−14,此时−14<x≤0,当x>0时,f(x)=2x>1,x−12>−12,当x−12>0即x>12时,满足f(x)+f(x−12)>1恒成立,当0≥x−12>−12,即12≥x>0时,f(x−12)=x−12+1=x+12>12,此时f(x)+f(x−12)>1恒成立,综上x>−14,故答案为:(−14,+∞).。

函数单调性讲解及常见类型(整理)

函数单调性讲解及常见类型(整理)

函数的单调性题型一 判断、讨论、证明函数的单调性1判断函数y=x-x 1在其定义域上的单调性。

2讨论并证明y=x+x 1在定义域上的单调性。

3定义在R 上的函数f (x )对任意不相等实数a ,b 总有()()ba b f a f -->0成立,则必有 A 、函数f (x )是先增加后减小B 、函数f (x )是先减小后增加C 、f (x )在R 上是增函数D 、f (x )在R 上是减函数4已知b x k x f ++=)12()(在实数R 是减函数,则k 的取值范围为( )5已知函数),0(,)(2+∞∈++=x c bx x x f 是单调函数,则实数b 的取值范围为( ) .0.≥b A 0.≤b B 0.>b C 0,<b D 6已知2)1(2)(2+--=x a x x f 在]4,(-∞上是减函数,求实数a 的取值范围。

题型二 抽象函数的单调性1、已知f(x)是定义在[-1,1]上的增函数,且f(x-2)<f(1-x), 求x 的取值范围.2 、f (x )是定义在(0,+∞)上的增函数,则不等式f (x )>f (8(x —2))的解集是A 、(2,716)B 、(—∞,716)C 、(2,+∞)D 、(2,716)题型四 用图形讨论函数单调性1函数y=|x —3|—|x+1|的单调递减区间是 。

2画出函数223.y x x =-++的图像,并指出函数的单调区间3画出函数y=|x|的图像,并判断其单调性。

4画出函数y=|x 2+2x-1|的图像,并指出其在R 上的单调性。

题型五 基本初等函数的单调性问题1.设函数243,[1,4]y x x x =-+∈,则()f x 的最小值和最大值为( )A.-1 ,3B.0 ,3C.-1,4D.-2,02.函数f (x )=—x 2+2(a —1)x+2在(—∞,4)上是增函数,则a 的范围是A 、a ≥5B 、a ≥3C 、a ≤3D 、a ≤—53.已知22(2)5y ax a x =+-+在区间(4,)+∞上是减函数,则a 的范围是( )A.25a ≤ B.25a ≥ C.25a ≥或0a = D.0a ≤3.若函数242--=x x y 的定义域为[]m ,0,值域为[]2,6--,则m 的取值范围是()A 、(]4,0B 、[]4,2C 、(]2,0D 、()4,24.函数32++=bx ax y 在(]1,-∞-上是增函数,在[)+∞-,1上是减函数,则( ) A 、00<>a b 且 B 、02<=a b C 、02>=a b D 、的符号不确定b a ,5.已知函数⎩⎨⎧<-≥+=0,40,4)(22x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 A (,1)(2,)-∞-⋃+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-⋃+∞7.已知函数(21)32f x x +=+,且()4f a =,则a =_____________8.函数]1,1[)20(32-<<++=在a ax x y 上的最大值是 ,最小值是 . 9.函数222(03)()6(20)x x x f x x x x ⎧-<≤=⎨+-≤≤⎩的值域为_______________________ 10.函数212+=x y 的值域为______________________. 11.已知函数2()23(0)f x ax ax b a =-+->在[1,3]上有最大值5和最小值2,则a 、b 的值是类型四 解答题1.已知函数y =(0)a <在区间(,1]-∞上有意义,求实数a 的取值范围.2.二次函数)(x f 满足x x f x f 2)()1(=-+,且1)0(=f .(1)求)(x f 的解析式;(2)在区间[]1,1-上,)(x f y =的图象恒在直线m x y +=2上方,试确定实数m 的取值范围.3.已知函数2,(1),()2,(11),2,(1).x x f x x x x ≤-⎧⎪=--<<⎨⎪-≥⎩4.已知函数2()(2)f x x a x b =+++满足2)1(-=-f ;(1)若方程()=2f x x 有唯一的解;求实数b a ,的值;(2)若函数()f x 在区间[]-22,上不是单调函数,求实数a 的取值范围5.已知二次函数()f x 的最小值为1,且(0)(2)3f f ==。

判断函数单调性的常用方法

判断函数单调性的常用方法

判断函数单调性的常用方法判断函数的单调性是数学中常见的一个问题。

在解决这个问题时,有一些常用的方法和技巧可以帮助我们确定函数的单调性。

下面将就这些方法和技巧进行详细介绍。

1.用导数判断函数的单调性:常数函数:常数函数不会随自变量的变化而变化,因此常数函数在定义域上是单调的。

一次函数:一次函数的导数为常数,若导数大于零,则函数单调递增;若导数小于零,则函数单调递减。

幂函数:幂函数的导数根据指数、底数的不同具有不同的形式,通过求导后的符号进行判断函数的单调性。

指数函数:指数函数的导数为指数函数本身的常数倍,若底数大于1且指数函数变量在定义域上递增时,函数单调递增;若底数小于1且指数函数变量在定义域上递减时,函数单调递增。

对数函数:对数函数的导数为自变量在底数为e的自然对数函数中的导数,根据求导后的符号进行判断函数的单调性。

2.利用函数的一阶和二阶导数进行判断:函数的一阶导数描述了函数图像的斜率,可以通过判断一阶导数的符号确定函数的单调性。

若一阶导数始终大于零,则函数单调递增;若一阶导数始终小于零,则函数单调递减。

函数的二阶导数描述了函数图像的曲率,若二阶导数始终大于零,则函数图像为凹函数,函数单调递增;若二阶导数始终小于零,则函数图像为凸函数,函数单调递减。

3.利用函数的性质进行判断:常用的函数性质包括函数的奇偶性、周期性、对称性等。

若函数具有奇函数的性质,则在定义域的相对称点上具有相反的函数值,可以通过判断奇函数在其中一区间内的正负性得出函数在该区间的单调性。

若函数具有周期性,则可以通过观察一个周期内的变化趋势来判断函数的单调性。

4.利用图像进行判断:通过观察函数图像可以直观地判断函数的单调性。

若函数图像始终上升,则函数单调递增;若函数图像始终下降,则函数单调递减。

这些是常用的判断函数单调性的方法和技巧。

在实际问题中,有时候需要结合多个方法和技巧来确定函数的单调性。

同时,还可以利用函数的单调性来解决一些实际问题,例如在优化问题中,我们可以通过判断目标函数的单调性来确定最优解的存在性和位置。

函数的单调性例题

函数的单调性例题

1.3.1函数的单调性题型一、利用函数的图象确定函数的单调区间 例1.作出下列函数的图象,并写出函数的单调区间 (1)12-=x y ; 2322++-=x x y ; (3)2)2(1-++=x x y ; 4969622++++-=x x x x y相应作业1:课本P32第3题. 题型二、用定义法证明函数的单调性用定义法证明函数的单调性步骤:取值 作差变形 定号 下结论①取值,即_____________________________;②作差变形,作差____________,变形手段有__________、_____、_____、_______等; ③定号,即____________________________________________________________;④下结论,即______________________________________________________;例2.用定义法证明下列函数的单调性(1)证明:1)(3+-=x x f 在()+∞∞-,上是减函数.▲定义法证明单调性的等价形式: 设[]b a x x ,21∈、,21x x ≠,那么[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔>--⇔>--在[]b a ,上是增函数;[])(0)()(0)()()(21212121x f x x x f x f x f x f x x ⇔<--⇔<--在[]b a ,上是减函数.(2)证明:x x x f -+=1)(2在其定义域内是减函数;(3)证明:21)(xx f =在()0,∞-上是增函数; 法一: 作差 法二:作商(4)已知函数)(x f y =在()+∞,0上为增函数,且)0(0)(><x x f ,试判断)(1)(x f x F =在()+∞,0上的单调性,并给出证明过程;▲方法技巧归纳——判断函数单调性的方法:1、直接法:熟悉的函数,如一次函数、二次函数、反比例函数等;如,练习册P272P31上5、12、图象法;3、定义法;4、运算性质法:①当0>a 时,函数)(x af 与)(x f 有相同的单调性; 当0<a 时,函数)(x af 与)(x f 有相反的单调性; ②当函数)(x f 恒不等于零时,)(x f 与)(1x f 单调性相反;③若0)(≥x f ,则)(x f 与)(x f 具有相同的单调性;④若)(x f 、)(x g 的单调性相同,则)()(x g x f +的单调性与之不变; ▲即:增+增=增 减+减=减⑤若)(x f 、)(x g 的单调性相反,则)()(x g x f -的单调性与)(x f 同.▲即:增-减=增 减-增=增注意:1可熟记一些基本的函数的单调性,一些较复杂的函数可化为基本函数的组合形式,再利用上述结论判断; 2)()(x g x f 与)()(x g x f 的单调性不能确定.相应作业2:1讨论函数1)(2-=x axx f 在()1,1-上的单调性0≠a ; ▲2务必记住“对勾”函数)0()(>+=k xkx x f 的单调区间见练习册P29探究之窗.探究1知识拓展——复合函数单调性▲难点一、复习回顾:复合函数的定义:如果函数)(t f y =的定义域为A,函数)(x g t =的定义域为D,值域为C,则当A C ⊆时,称函数))((x g f y =为f 与g 在D 上的复合函数,其中t 叫做中间变量,)(x g t =叫内层函数,)(x f y =叫外层函数;二、引理1 已知函数y=fgx.若t=gx 在区间a,b 上是增函数,其值域为c,d,又函数y=ft 在区间c,d 上是增函数,那么,原复合函数y=fgx 在区间a,b 上是增函数.引理2 已知函数y=fgx.若t=gx 在区间a,b 上是减函数,其值域为c,d,又函数y=ft 在区间c,d 上是减函数,那么,复合函数y=fgx 在区间a,b 上是增函数. 引理1的证明:▲重要结论1:复合法则规律可简记为“_____________________”四个字▲重要结论2:若一个函数是由多个简单函数复合而成的,则此复合函数的单调性由简单函数中减函数的个数决定:①若减函数有偶数个,则复合函数为增函数; ②若减函数有奇数个,则复合函数为减函数. 规律可简记为“_____________________”四个字题型三、求复合函数的单调区间 例3. 求下列函数的单调区间. (1)267x x y --=23212--=x x y ▲小结:1、注意:1求单调区间必先求定义域; (2)单调区间必须是定义域的子集;(3)写多个单调区间时,区间之间不能用“ ”并起来,应用“,”隔开. 2、判断复合函数单调性步骤: ①求函数的定义域;②将复合函数分解成基本初等函数:)(t f y =与)(x g t =; ③确定两个函数的单调性;④由复合法则“同増异减”得出复合函数单调性. 相应作业3:求下列函数的单调区间.(1)228x x y --= 23212--=x x y3xx y 412-=单调性的应用题型四、比较函数值的大小例4.已知函数)(x f y =在[)+∞,0上是减函数,试比较)43(f 与)1(2+-a a f 的大小.题型五、已知单调性,求参数范围 例5.已知函数2)(2)(2+--=x a x x x f (1)若)(x f 的减区间是(]4,∞-,求实数a 的值; (2)若)(x f 在(]4,∞-上单调递减,求实数a 的取值范围.例6.若函数⎩⎨⎧≤-+->-+-=0,)2(0,1)12()(2x x b x x b x b x f 在R 上为增函数,求实数b 的取值范围.题型六、利用单调性,求解抽象不等式例7.已知函数)(x f y =是()1,1-上的减函数,且)1()1(2->-a f a f ,求实数a 的取值范围.例8.已知)(x f 是定义在()+∞,0上的增函数,且)()()(y f x f yx f -=,且1)2(=f ,解不等式2)31()(≤--x f x f .相应作业4:已知)(x f 是定义在()+∞,0上的增函数,且)()()(y f x f xy f +=,且1)2(=f ,解不等式3)2()(≤-+x f x f .题型七、抽象函数单调性的判断——定义法 解决此类问题有两种方法:①“凑”,凑定义或凑已知条件,从而使用定义或已知条件得出结论; ②赋值法,给变量赋值要根据条件与结论的关系,有时可能要进行多次尝试.例9.已知函数)(x f 对任意实数x 、y 都有)()()(y f x f y x f +=+,且当0>x 时0)(>x f ,求证:)(x f 在R 上单调递增.例10.已知定义在()+∞,0上的函数)(x f 对任意x 、y ∈()+∞,0,恒有)()()(y f x f xy f +=,且当10<<x 时0)(>x f ,判断)(x f 在()+∞,0上单调性.相应作业5:定义在()+∞,0上的函数)(x f 对任意x 、y ∈()+∞,0,满足)()()(n f m f mn f +=,且当1>x 时0)(>x f .(1)求)1(f 的值; (2)求证:)()()(n f m f nmf -=; 3求证:)(x f 在()+∞,0上是增函数;4若1)2(=f ,解不等式2)2()2(>-+x f x f ;函数的最大小值1、函数的最大小值定义2、利用单调性求最值常用结论(1)若函数)(x f y =在闭区间[]b a ,上单调递增,则)(min a f y =,)(max b f y =; (2)若函数)(x f y =在闭区间[]b a ,上单调递减,则)(min b f y =,)(max a f y =; (3)若函数)(x f y =在开区间()b a ,上单调递增,则函数无最值,但值域为())(),(b f a f ; (4)若函数)(x f y =在闭区间[]b a ,上单调递增,在闭区间[]c b ,上单调递减,那么函数)(x f y =,[]c a x ,∈在b x =处有最大值,即)(max b f y =;(5)若函数)(x f y =在闭区间[]b a ,上单调递减,在闭区间[]c b ,上单调递增,那么函数)(x f y =,[]c a x ,∈在b x =处有最小值,即)(min b f y =.题型八、单调性法求函数最值值域 例11、1函数121)(-=x x f 在[]5,1上的最大值为________,最小值为________;(2)函数112++=x x y 在[]4,2上的最大值为________,最小值为________;(3)函数x x y 212--=的值域为________________;(4)函数1-+=x x y 的值域为________________;(5)函数212+--=x x y 的值域为________________;6函数x xy +=1的值域为________________;二次函数的区间最值的求法二次函数在给定区间[]n m ,上求最值,常见类型: (1)定轴定区间:对称轴与区间[]n m ,均是确定的;(2)动轴定区间: (3)定轴动区间: (4)动轴动区间: 1、定轴定区间可数形结合,较易解决,注意对称轴与区间位置关系; 例12.当22≤≤-x 时,求函数322--=x x y 的最值.相应作业6:求函数542++-=x x y 在[]5,1上的最值.2、动轴定区间例13.已知函数22)(2++=ax x x f ,求)(x f 在[]5,5-上的最值.▲动轴定区间问题一般解法:对对称轴在区间左侧、右侧、内部三种情况进行讨论,从而确定最值在区间端点处还是在顶点处取得.相应作业7:求函数12)(2--=ax x x f 在[]2,0上的最值.3、定轴动区间例14.已知函数22)(2+-=x x x f ,当[]1,+∈t t x 时,求)(x f 的最小值)(t g .相应作业8:已知函数34)(2-+-=x x x f ,当[]2,+∈m m x 时,求)(x f 的最大值)(m g . 4、动轴动区间解决方法:可将对称轴和区间之一看做不动,进行讨论.例15.求函数ax x y +-=2在[]a x ,1-∈上的最大值.相应作业9:求函数222--=ax x y 在[]1,a x -∈上的最值.。

(6)函数的单调性的证明以及典型题型

(6)函数的单调性的证明以及典型题型

函数单调性的证明一、定义法证明普通函数的单调性1、求证函数y=x ³+x 在R 上是增函数。

3、求证:函数x x f -=)(在定义域上是减函数.4、判断函数12)(-+=x x x f 在)0,(-∞上的单调性并加以证明.5、证明函数xx x f 1)(+=在)1,0(上是减函数。

6、求证:函数x x x f --=21)(在R 上是单调减函数.7、指出f(x)=2x ²+4x 的单调区间,并对减区间的情况给予证明。

8、求12)(2--=x x x f 的单调区间一、定义法证明带字母的函数的单调性1、 用定义证明:(1)函数f(x)=kx+b(k<0,k 、b 为常数)在R 上是减函数。

(2)函数xk x g =)((k<0,k 为常数)在)0,(-∞上是增函数。

2、 求证函数x a x x f +=)((a>0)在(0,a )上是减函数,在(a ,+∞)上是增函数。

3、 讨论1)(2-=x ax x f (-1<x<1,a ≠0)的单调性 4、 设函数(a >b>0),求b x a x x f ++=)(的单调区间,并证明f(x)在其单调区间上的单调性。

二、定义法证明抽象函数的单调性:1、已知函数f(x)的定义域为R ,满足f(-x)= 0)(1>x f ,且g(x)=f(x)+c(c 为常数),在区间[a,b]上是减函数,判断并证明g(x)在区间[-b,-a]上的单调性。

2、已知g(x)在[m,n]上的减函数,且a ≤g(x)≤b,f(x)是[a,b]上的增函数,求证f[g(x)]在[m,n]上也是减函数。

三、利用单调性求函数的值域:求下列函数的值域:1、 y=-+2x x -6 2、 y=+x 1-x3、 y=+3-x 2x +四、利用函数单调性比较大小1、 如果函数f(x)=x ²+bx+c,对于任意实数t 都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数单调性奇偶性方法和各种题型总结一、单调性总结:(一)判断函数单调性的基本方法Ⅰ、定义法:定义域判断函数单调性的步骤:取值、作差(或商)变形、定号、判断。

例1:已知函数f(x)=x3+x,判断f(x)在(-∞,+∞)上的单调性并证明Ⅱ、直接法(一次函数、二次函数、反比例函数的单调可直接说出):在公共区间内,增函数+增函数=增函数,减函数+减函数=减函数例2:判断函数y=-x+1+1/x在(0,+∞)内的单调性Ⅲ、图像法:说明:⑴单调区间是定义域的子集⑵定义x1、x2的任意性⑶代数:自变量与函数值同大或同小→单调增函数自变量与函数相对→单调减函数例3:y=|x2+2x-3|练习:(二)函数单调性的应用Ⅰ、利用函数单调性求连续函数的值域(最值) 根据增函数减函数的定义我们可得到如下结论:(1)若 f(x)在某定义域[a,b]上是增函数,则当x=a 时, f(x) 有最小值f(a),当 x=b 时, f(x)有最大值 f(b)。

(2)若 f(x)在某定义域[a,b]上是减函数,则当x=a 时, f(x) 有最大值f(a),当 x=b 时, f(x)有最小值 f(b)。

例1:求下列函数的值域 (1)y=x 2-6x+3, x ∈[-1,2] (2)y=-x 2+2x+2, x ∈[-1,4] 练习题:1.已知函数f(x)在区间[a,c]上单调减小,在区间[c,b]上单调增加,则f(x)在[a,b]上的最小值是 ( )2.数f(x)=4x 2-mx+5在区间[-2,+∞)上是增函数,则f(1)的取值范围是( )3、()有函数13+--=x x y存在、最大值、最小值都不,最小值、最大值,最小值、最大值,最小值、最大值D C B A 4-44-0044、](()()的值域为时,函数当1435,02+-=∈x x x f x()()][()()]()][5,5,323205,0f c D f f C f f B f f A 、、、、、⎢⎣⎡⎪⎭⎫⎝⎛⎢⎣⎡⎥⎦⎤⎪⎭⎫ ⎝⎛ 5、求函数y=-x-6+ 的值域x -1Ⅱ、利用函数单调性求单调区间1、()________..62是的单调区间函数-+=x x x f2、()的递增区间是函数245x x y --=](][][)[∞+∞∞、、、、、、、、11-2-2--2--D C B A3、函数的增区间是( )。

A .B .C .D .Ⅲ、利用函数单调性求未知数范围1. 函数f (x ) = ax 2+4(a +1)x -3在[2,+∞]上递减,则a 的取值范围是 2、函数f(x)=ax 2-(3a -1)x +a 2在[-1,+∞]上是增函数,则实数a 的取值范围是________.3.函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,则b 的取值范围是_________.4、在上是减函数,则a 的取值范围是( )。

A .B .C .D .5、函数,当时,是增函数,当时是减函数,则f(1)=_____________ Ⅳ、利用函数单调性解不等式若已知f(x)在[a,b]上是递增的,则有 f(x1)>f(x2) x1>x2 若已知f(x)在[a,b]上是递减的,则有 f(x1)>f(x2) x1<x21、(1)若f(x)在R 上是减函数,试比较f(2)与f(a 2-2a+4)的大小。

(2)若f(x)在R 上是减函数,试比较f(a 2)与f(-2a)的大小。

3、已知定义域为(-1,1)的奇函数y=f(x)又是减函数,且f(a-3)+f(9-a2)<0则a的取值范围是( )A.(22,3)B.(3,10)C.(22,4)D.(-2,3)2、已知f(x)在它的定义域[-17,+∞)上是增函数, f(3)=0,试解不等式f(x2-7x-5)<04、定义在]1f(xy=是减函数,且是奇函数,若-上的函数)1[,f-aaf,求实数a的范围。

-a)1)54((2>-+5、设是定义在上的增函数,,且,求满足不等式的x的取值范围.二、奇偶性总结:(一)函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:①、 定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立;例1:判断下列各函数是否具有奇偶性⑴、x x x f 2)(3+= ⑵、2432)(x x x f +=⑶、1)(23--=x x x x f ⑷、2)(x x f = []2,1-∈x⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。

.)(),()()()()()(,0,0)()()(,0,0)(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。

(二)关于函数按奇偶性的分类全体实函数可按奇偶性分为四类:①奇偶数、②偶函数、③既是奇函数也是偶函数、④非奇非偶函数。

(三)关于函数奇偶性的简单应用 1、利用奇偶性求函数值例1:已知8)(35-++=bx ax x x f 且10)2(=-f ,那么=)2(f练习题: 1、已知为奇函数,,则= .2、若)(x ϕ,g (x )都是奇函数,2)()()(++=x bg x a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5B .最大值-5C .最小值-1D .最大值-3()()()()()()().21,3213123=+++=--+-=f f f f f f x f y 则是奇函数,若、设函数2、利用奇偶性比较大小例2:已知偶函数)(x f 在()0,∞-上为减函数,比较)5(-f ,)1(f ,)3(f 的大小。

3.利用奇偶性求解析式例3:已知)(x f 为偶函数时当时当01,1)(,10<≤--=≤≤x x x f x ,求)(x f 的解 析式练习题:1、已知y=f(x)为奇函数,当x>0时,f(x) =(1-x)x,则当x<0时,f(x)的解析式为__________.2、已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______; g (x )的解析式是_________.3、已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.4、利用奇偶性讨论函数的单调性例4:若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间。

练习题1.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明.5、利用奇偶性判断函数的奇偶性例5:已知函数)0()(23≠++=a cx bx ax x f 是偶函数,判断cx bx ax x g ++=23)( 的奇偶性。

6、利用奇偶性求参数的值例6:定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)123()12(22+-<++a a f a a f ,则a 的取值范围是如何?练习题:1、设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围.2、设定义在[-3,3]上的偶函数f(x)在[0,3]上是单调递增,当f(a-1)<f(a)时,求a 的取值范围.7、利用图像解题例7(2004.上海理)设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则不等式()0<x f 的解是 .8.利用定义解题 例8.已知函数1().21x f x a =-+,若()f x 为奇函数,则a =________。

练习题:1、已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0 D .a =3,b =02、若y =(m -1)x 2+2mx +3是偶函数,则m =_________.3、若函数2()1x af x x bx +=++在[]1,1-上是奇函数,则()f x 的解析式为________.()().,23,1342==--++=b a b b a bx ax x f 上的奇函数,则是定义在、已知。

相关文档
最新文档