第七讲 解方程与方程组

第七讲  解方程与方程组
第七讲  解方程与方程组

第七讲 解方程与方程组

。可见人们在很早以前就已经掌握了与方程有关的知识和方法。

相信同学们已经会解简单的一元一次方程。下面我们先对相关的概念做一个简要的复习。 我们将用等号“=”连接,表示相等关系的式子,叫做等式。而方程就是含有未知数的等式。等式有两个基本性质:

等式性质1:等式两边加上或减去一个数,结果仍相等。

如果a=b ,那么a c=b 。

等式性质2:等式两边乘上一个数,或除以一个不为0的数,结果仍相等。

如果a=b ,那么a ×c=b 。

如果a=b ,那么c a =c

b (

c ≠0). 利用等式的性质我们可以解一些简单的方程。首先我们来看一下一元一次方程。 所谓一元一次方程就是只含有一个未知数且未知数的最高次数是1的方程。

在解一元一次方程的时候,我们需要将含有未知数的项一起算,也就是合并同类项。有的时候,当含有未知数的项不在等式同一侧时,我们还需要将这样的项从等式的一侧移到另一侧,也就是所谓的移项。注意方程中的每一项都包括数值与符号两部分,移项的时候要改变符号。

例题1 解下列方程

(1)4χ+3=3χ+8 (2)15-3χ=19-4χ (3)12-3χ=7χ-18

【分析】移项的时候记得要变号哦。

练习1 (1)6+5χ=10+3χ (2)5-6χ=17-9χ (3)10-2χ=5χ-11

例题2 解下列方程:(1)5χ+3(19-χ)=65 (2)7χ-(3χ-2)=22 【分析】去括号的时候也要注意符号。

练习2 (1)16+2(χ-4)=3χ (2)18-(3χ-6)=χ

知识精讲

例题3 解下列方程

(1)253+χ=357-χ (2)3χ-5

1-χ=1 【分析】以第一个方程为例,等号左边的分母是2,要去掉它需要左右两边都乘2或2的倍数。而要消掉右边的分母需要左右两边都乘3或3的倍数,那么只需要都乘多少就可以了?

练习3 (1)213+χ=528-χ (2)413+χ+8

55-χ=1

通过前面的练习,相信同学们对于一元一次方程有了进一步认识,下面我们总结一下一元一次方程的一般解法:

(1)去分母(如果有分母):等号两边同时乘以各分母的最小公倍数;

(2)去括号(如果有括号):由内向外去括号;

(3)移项:把含有未知数的项移到等号的一边(通常是左边),已知数移到等号的另一边;

(4)合并同类项:把方程两边分别合并,化简成ax=b(a ≠0)的形式;

(5)系数化1:在方程两边同除以未知数系数a ,得到方程的解χ=a

b ; (6)把得到的解代回原方程检验

一元一次方程我们已经会解了,在解决实际问题的过程中我们还会遇到需要设两个未知数

的情形,也就是要解二元一次方程。所谓二元一次方程就是方程中含有两个未知数,

且未知数的次数是1.解决二元一次方程的关键就是将两个未知数变为一个未知数,也

会是所谓的消元。

加减消元法是比较常用的消元方法。该方法的步骤和要点可总结如下:

1、若有某个未知数,它前面的系数在两个方程中恰好相反或者相同,就可以通过把两个方

程相加或者相减的方法消去该未知数;如果没有上述特点,可以通过等式两边同乘以

一个数,将其凑出可以加减消元的形式;

2、解消元后得到的一元一次方程;

3、把得到的解代入原方程中,求出另一个未知数;

4、代回原方程检验

注意:最后方程的解要写成 x=a 的形式

y=b

例题4 解下列方程组;

Χ-2y=3

χ+2y=7

(1) 3χ+4y=29 (2) 2χ+5y=16

【分析】加减消元法掌握了吗?

练习4 解下列方程组: χ-3y=5 χ+3y=7

(1) (2)

2x+5y=32 2χ+7y=15

例题5 解下列方程:(1)412-y =1-83y - (2)212++x x =2

3 (3)2x +3χ-5=χ(χ+2)

【分析】熟练掌握一元一次方程的解法,向更高的难度进发吧!

例题6 解下列方程组:

9x+2y=20 5x+2y=16

(1) (2)

3x-5y=1 2x+3y=13

【分析】解二元一次方程组最基本的想法就是“消元”,想想看,对于这两个题目是消χ还是消y

更好做?

(1)χ-6=15 (2)3χ+5=17

2、求下列方程的解:(1)5χ+8=3χ+20 (2)6-5χ=8χ-20

3、求下列方程的解:(1)3χ+2(15-χ)=45 (2)9χ-2(2χ-2)=19

4、解方程:

47

3+

x

=

57

6-

x

5、解下列方程组:χ-4y=0 5χ+4y=33

(1)(2)

3χ+y=26 5χ-3y=19

齐次线性方程组的基础解系(PPT)_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解 系对于齐次线性方程组a11x1a12x2a1nxn0, a12x1a22x2a2nxn0, ax ax ax0. m22mnn m11 令a11a12 a21a22 , 1 2 am1 am2 a1n a2n ,,n amn 则上述方程组即为 x1 1 x2 2 xn n 0 (*) (其中 0 为零向量)。 将(*)的解视为 n 维向量,则所有解向量构成 K 中的一个向量组,记为 S。 n 命题 S 中的元素(解向量)的线性组合仍属于 S(仍是解)。 证明只需要证明 S 关于加法与数乘封闭。 设(k1,k2,,kn),(l1,l2,,ln)S,则k11k2 2 kn n 0 l1 1 l2 2 ln n 0 于是 (k1 l1) 1 (k2 l2) 2 (kn ln) n 0 故 (k1 l1,k2 l2, ,kn ln) S;又因为k K kk1 1 kk2 2 kkn n 0 所以(kk1,kk2, ,kkn) S。 证毕。 定义(线性方程组基础解系)齐次线性方程组(*)的一组解 1 / 7

向量1, 2, , s 如果满足如下条件: (1)1, 2, , s 线性无关;(2)方程组(*)的 任一解向量都可被1, 2, , s 线性表出,那么,就称1, 2, , s 是齐次线性方程组(*)的一个基础解系。 定理数域上的齐次线性方程组的基础解系中的向量个数等于变 元个数减去系数矩阵的秩。 证明记线性方程组为 x1 1 x2 2 xn n 0 其中a11a12 a21a22 , 1 2 am1 am2 a1n a2n , , n amn 设1, 2, , n 的秩为 r,无妨设1, 2, , n 为其极大线性无关部分组, 则r 1, r 2, , n 皆可被1, 2, , r 线性 表出,即存在 kij K(1 i n r,1 j r),使得r 1 k11 1 k1 2 2 k1r r r 2 k21 1 k22 2 k2r r n kn r1 1 kn r2 2 kn rr r, 即 ki1 1 ki2 2 kir r 1 r i 0, (i 1,2, n r)于是 S 中含 有向量1(k11,k12,,k1r,1,0,,0) 2 (k21,k22,,k2r,0,1,,0) n r(kn r1,kn r2, ,kn rr,0,0, ,1) 只需要证明1, 2, , n r 是解向量组的一个极大线性无关部分组即可。 易见,向量组1, 2, , n r 线性无关。 只需要再证明1, 2, , n r 能线性表出任意一个S 即

线性方程组的矩阵求解算法

线性方程组的矩阵求解算法 摘要 线性方程组的矩阵求解算法,只需在约当消元法的基础上,再对方程组的 增广矩阵的行最简形进行行(列)删除和增加行,交换行等运算即可得到方程组的解,并且这种方法既可求解有唯一解的方程组.因而算法简单,易于实现. 关键词 线性方程组;解向量;解法;约当消元法 1 矩阵求解算法 设有线性方程组m n A X b ?=,其增广矩阵())(1,m n A A b ?+=,算法的步骤如下: 第一步:利用约当消元法,把增广矩阵A 化为行最简形,设行最简形为()1m n B ?+.若()t i (),r A r =则方程组无解;否则设(),r A R =并执行以下步骤; 第二步:删除B 中的所有零行和每一行第一个非零元素(这个非零元素一定是1)所在的列,得到矩阵()1,r n r D ?-+并记录每行的第一个非零元所在的列标,放在一维数组()1,,t r L 中,如第i 行的第一个非零元在第j 列,则()t i j =; 第三步:构造矩阵() 1m n r D H F ?-+?? = ? ??,其中 ()()1100 001 0000 10n r n r F -?-+-?? ?- ? = ? ? -??L L L L L L L L 第四步:对矩阵H 中的行作交换运算:把H 中的第i 行(,1,1,i r r =-L 即从第r 行开始直到第一行)依次与其下一行交换,使之成为第()t i 行,交换运算结果后的矩阵记为G ,则G 中的前n r -个n 维列向量即为方程组的一个基础解系,最后一列向量即为方程组的一个特解; 第五步:写出方程组的通解. 2 算法证明 先证一个特殊情形,增广矩阵A 的行最简形矩阵B 的左上角为一r 阶的单位矩阵,即第i 行的第一个非零元的列标为i ,即()()1t i i i r =≤≤,所以设B 为

二元一次方程组(提高题)

第二讲:二元一次方程组及应用 知识点一:二元一次方程的概念及方程的解 例1、 指出下列方程那些是二元一次方程是____________. ⑴2x +5y =16 (2)2x +y +z =3 (3) x 1 +y =21 (4)x 2+2x +1=0 (5)2x +10xy =5 例2、 指出下列方程那些是二元一次方程组?并说明理由。 ① ?? ?=+=-7 232z y y x ② ???? ?-=-=+1241 x y y x ③ ?? ?=-=--5 12)4(3y x x x ④ ?? ?? ?= +=-21 32132y x y x 例3、(1)已知(a -2)x -by |a |-1 =5是关于x 、y 的二元一次方程,则a ______,b _____. (2)如果25mx y x -=+是关于x 、y 的二元一次方程,则m _____. 例4、二元一次方程3x +2y =15的正整数解为________________________. 举一反三: 1、若方程2x a +1+3=y 2b - 5是二元一次方程,则a = ,b = . 2、在下列四个方程组①???=-=+94210342y x y x ,②???==+297124xy y x ,③?????=+=-4 320 21y x y x ,④???=-=+045587y x y x 中,是二元 一次方程组的有 _____________. 3、若x =1,y =2是方程ax -y =3的解,则a 的值是 ( ) A .5 B .-5 C .2 D .1 4、若二元一次方程的一个解为? ? ?-==12 y x ,则此方程可以是 (只要求写一个) 5、已知:∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x °,y °,下列方程组中符合题意的是 A . ?? ?-==+30 180 y x y x B . ?? ?+==+30 180 y x y x C . ?? ?+==+30 90 y x y x D . ?? ?-==+30 90 y x y x 6、二元一次方程x+y=3的自然数解有_____________________. 知识点二:解二元一次方程组 例5、解二元一次方程组:?? ?=+=-1 3 y x y x (2)?? ?=+=-83120 34y x y x (3) 23 321 y x x y =-?? +=? 例6、(1)若|2a +3b -7|与(2a +5b -1)2 互为相反数,则a =______,b =______. (2)2x -3y =4x -y =5的解为_______________.

线性方程组解的几何意义

设有三元非齐次线性方程组 线性方程组解的几何意义 ???????=++=++=++,,,)1(22221111m m m m d z c y b x a d z c y b x a d z c y b x a 我们来讨论一下三元非齐次线性方程组解的几何意义.

2) 有唯一解这时方程组(1) 中的m 个方?? ???=+--=--=+,423, 32,123z y x y x z x 该方程组有唯一解.817,21,4 7??? ??--则方程组(1) 的解有以下三种情况: 1) 无解这时方程组(1) 中的m 个方程所表示的平面既不交于一点, 也不共线、共面. 程所表示的平面交于一点. 例如

其几何意义如图3 -11 所示. 2x-y=-3 3x+2z=-1 x-3y+2z=4 图3-11

交直线所确定.3) 有无穷多组解 这时又可分为两种情形:情形一自由变量, 基础解系中有两个向量,其一般解的形式为 γ=c 1η1+ c 2η2+ γ0(c 1, c 2为任意常数).这时方程组的所有解构成一个平面, 而这个平面是由过点γ0且分别以η1、η2为方向向量的两条相A 的秩=A 的秩= 1 .此时,有两个γ=c 1η1+ c 2η2+ γ0 称为平面的参数方程.

例如, 设保留方程组为 x + y + z = 3, 则可求得其通解为 . 11110101121???? ? ??+????? ??-+????? ??-=c c x

则过点P (1,1,1) 分别以(1,-1,0)T , (1,0,-1)T 为方向,1 10111:,0 11111:21--=-=--=--=-z y x L z y x L 则这两条相交直线L 1, L 2所确定的平面的方程即向量的两直线的方程分别为 为x + y + z = 3 . 如图3-12

求解线性方程组的直接解法

求解线性方程组的直接解法 5.2LU分解 ① Gauss消去法实现了LU分解 顺序消元结束时的上三角矩阵U和所用的乘数,严格下三角矩阵。 将下三角矩阵的对角元改成1,记为L,则有A=LU, 这事实是一般的,我们不难从消去的第k个元素时的矩阵k行及k列元素的 历史得到这一点.因为从消元的历史有 u kj=a kj-m k1u1j- m k2u2j -…- m k,k-1u k-1,j, j=k,k+1,…,n m ik=(a ik-m i1u1k- m i2u2k -…-m i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 于是a kj=m k1u1j+m k2u2j+…+m k,k-1u k-1,j+u kj, j=k,k+1,…,n a ik=m i1u1k+m i2u2k+…+m i,k-1u k-1,k+m ik u kk i=k+1,k+2,…,n 从前面两个式子我们可以直接计算L和U(见下段>.将矩阵分解为单位下 三角矩阵和上三角矩阵之积称为矩阵的LU分解.顺序消元实现了LU分 解,同时还求出了g, Lg=b的解. ②直接LU分解 上段我们得到(l ij=m ij> u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j, j=k,k+1,…,n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk i=k+1,k+2,…,n 2 诸元素对应乘积,只不过算L的元素时还要除以同列对角元.这一规律很 容易记住.可写成算法(L和U可存放于A>: for k=1:n-1 for j=k:n u kj=a kj-l k1u1j-l k2u2j -…- l k,k-1u k-1,j end for i=k+1:n l ik=(a ik-l i1u1k-l i2u2k -…-l i,k-1u k-1,k>/u kk end end 这一算法也叫Gauss消去法的紧凑格式,可一次算得L,U的元素,不需逐步 计算存储.

解二元一次方程组的技巧

龙源期刊网 https://www.360docs.net/doc/8d12222596.html, 解二元一次方程组的技巧 作者:陈卓 来源:《初中生世界·七年级》2016年第08期 解方程(组)的能力是初中生计算能力的重要体现之一.不同的方程(组)都有通用的方法,而解二元一次方程组的关键在于消元,化“二元”为“一元”,将“陌生”的二元一次方程组转化为熟悉的一元一次方程,从而求解.同学们在掌握代入消元、加减消元法的同时,还要注意 观察和分析方程组中各方程的结构特点,开拓新思路,采用一些特殊方法,简捷求解,从而提高和培养自己的创新能力,下面举例说明: 一、整体代入法 【分析】此题常规解法是先化简再加减消元,虽能达到目的,但是比较麻烦,观察发现方程①与方程②中有相同的代数式4x+6y,所以把方程②代入方程①中,从而解出x的值进而求出y的值,则快人一步! 简解:将方程②整体代入到方程①,得2x+3×2=4,所以x=-1,将x=-1代入②,得4×(-1)+6y=2,得y=1,所以原方程组的解为x=-1, y=1. 【点评】解方程组时,有时可根据题目的特点整体代入,从而达到简化运算的目的,当然不是所有的题目都能像本题一样直接整体代入,有时须通过仔细观察,抓住方程组的特点,先将它作一些处理,然后再整体代入. 二、整体加减法 例2 解方程组 【分析】若先去分母,再化简求解,则十分麻烦,观察发现两个方程中都含有、,分别将其看作一个整体,将方程①与方程②进行整体加减消元,则简单明快. 【分析】对于这样系数较大的方程组,采取常规的解法,烦琐难算且易错!观察发现方程组的左边未知数的系数为轮换对称式,分别将两个方程整体相加、减,可构造一个简单方程组,从而简化计算过程. 【分析】按常规方法是寻找系数x或y的最小公倍数,再消元,运算量大,观察发现两个方程的常数项相同,所以两式相减消去常数项,再代入消元可获巧解. 四、整体构造法

浅析线性方程组的解法及应用

目录 摘要 ........................................................................ I Abstract.................................................................... II 第一章绪论 (1) 1.1 引言 (1) 第二章行列式与线性方程组求解 (1) 2.1 标准形式的二元线性方程组 (1) 2.2 标准形式的三元线性方程组 (2) 2.3 克莱姆法则 (3) 2.3.1逆序数 (3) 2.3.2 克莱姆法则 (4) 第三章线性方程组的理论求解 (6) 3.1 高斯消元法 (6) 3.2 线性方程组解的情况 (7) 3.3 将非齐次方程组化为齐次方程组求解方法 (8) 第四章求解线性方程组的新方法 (9) 第五章线性方程组的应用 (11) 5.1 投入产出数学模型 (11) 5.2 齐次线性方程组在代数中的应用 (14) 第六章结论 (16) 参考文献 (17) 致谢 (18)

浅析线性方程组的解法及应用 学生:陈晓莉指导教师:余跃玉 摘要:线性方程组的求解方法在代数学中有着极其重要的作用.本文介绍了有关线性方程组的一些基本求解方法,由二元到三元的线性方程组,再到n姐线性方程组,其中详细介绍了克莱姆法则。然后是对于齐次方程组和非齐次线性方程组,介绍了线性方程组的理论解法,里面介绍了消元法、解的情况、将非线性化成线性方程组来求解。并且给出了相关的例题,可以加深对线性方程组求解的方法的认识。对于线性方程组还有什么解法,本文也将有探讨。介绍了这么多解线性方程组的求解,相信在今后解线性方程组会更加方便。最后还有关于线性方程组的应用,主要介绍了关于投入产出的数学模型,在经济分析与管理中会经常用到。 关键词:线性方程组; 高斯消元法;行列式

4微分方程的解及解的稳定性

第四讲 微分方程解的稳定性 上一讲,我们利用最大值原理讨论了新古典经济增长模型,得到了两个方程,一个是状态变量的转移方程,另一个是欧拉方程。这两个方程构成了包含状态变量和控制变量的二元一次方程组。 []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 这个方程组是一个非线性微分方程组,一般情况下,非线性方程组不存在解析解,即方程组的解不能用初等函数来表示。因此,他们的性质需要借助其他方法来了解。 微分方程:变量为导数的方程叫做微分方程。 常微分方程:只有一个自变量的微分方程叫做常微分方程。 偏微分方程:有两个或两个以上自变量的方程叫做偏微分方程。 微分方程的阶:微分方程中变量的导数最高阶叫做方程的阶。 线性方程:方程的形式是线性的。 例如,方程0)()()()(321=+++t x t y a t y a t y a 是一个二阶线性常微分方程。 又如,索洛-斯旺模型的基本方程是一个非线性方程: ())()()(t k t k s t k ?-=δα 再如,拉姆齐模型的动态是下列微分方程组的解: []δα--=-) ()()()()(1 t k t c t k t k t k []δραα--=-1 )() ()(t k t c t c 一、 一阶微分方程 一阶微分方程可以用下面的方程表示 ),(y x f dx dy = (1.1) 其中,函数R R R f →?:是连续可微函数。 最简单的微分方程是

)(x f dx dy = (1.2) 它的解可表示为不定积分: ?+=c dx x f y )( (1.3) 其中,?dx x f x F )()(=表示任意一个被被积函数,c 为任意常数。当然,我们也可以确定任意一个被积函数,例如,令??x dt t f dx x f x F 0)()()(==, 则(2.2)的不定 积分可表示为 ?+x c dt t f y 0)(= 这时,不定积分仍然代表无穷多条曲线,如果给出初始条件0)0(y y =, 则,上面微分方程的解就是 ?+x y dt t f y 00)(= (1.4) 二、 常见的一阶微分方程解法 1. 一阶线性微分方程 一阶线性微分方程的一般形式为 )()(x g y x p dx dy =+ (2.1) 边界条件(即初始条件)0)0(y y =。 为求解线性微分方程,在方程的两边同乘以?x dt t p 0)(ex p , 则方程的左边为 dx dt t p y d y dt t p x p dt t p dx dy x x x ??? ???= ?+???0 00)(exp )(exp )()(exp 所以 ??? ??=??? ?????x x dt t p x g dx dt t p y d 00)(exp )()(exp (2.2) 方程(2.2)的解为 ?? ????+? ?? ????? ??-=???c dt t p x g dt t p y x x x 000)(exp )()(exp (2.3) 2. 可分离变量的微分方程

习题选解

第六章 习题选解 6-1 对下列方程求出常数特解,并且画出方程经过()0,0x 的积分曲线的走向,从而判断各驻定解的稳定性;然后作变量替换,使非零驻定解对应于新的方程的零解。 1) +∞<<-∞>>+=02,0,0,x B A Bx Ax dt dx 2)()()0,310≥--=x x x x dt dx 解 1)方程可化为 )(x B A Bx dt dx +=,则其常数特解为 B A x x -==21,0,即为驻定解。 由于方程为分离变量方程(或迫努利方程),当B A x x - ≠≠,0时,分离变量得 Adt dx B A x x =? ????? ? ?+-11 方程的通解为 At Ce Bx A x =+ 利用初始条件()?? ? ? ?-≠≠=B A x x x x 000,00,得 00Bx A x C += ,故得原方程满足初始条件的解为 (0)(0≥??? ? ??++-= -t e B x A B A t x At ) (1) 由式(1)和方程右端的表达式,得出 当时,00>x 0>dt dx ,递增, )(t x 又 B e B x A B B x A At →??? ? ??+->+-00,时,+∞→)(t x , 即)1ln(1 0+= →B x A A t t 时,+∞→)(t x 。

当 ???????<-><+>-<>+<0 00,000 00 0 dt dx ,B A x , B x A dt dx ,B A x B x A x 时,有 ()+∞→- →t B A t x )( 所以解(1)的图像如图6-5所示。 图6-5 从解的图像可以看出: 解不稳定;解01=x B A x -=2稳定。 利用变换B A x y + =,可将原方程化为 22)()(By Ay B A y B B A y A dt dy +-=-+-= 所以原方程的驻定解B A x -=2对应于方程 2By Ay dt dy +-= 的零解。 0=y 2)由,求得常数解为 ()()031=--x x x 。 3,1,0321===x x x 因为()()()31,--=x x x x t f 0,0≥≥x 在全平面上连续可微,故对任意初始点,解唯一存在,当t 时有 (00,x t )

追赶法求解三对角线性方程组

追赶法求解三对角线性方程组 一 实验目的 利用编程方法实现追赶法求解三对角线性方程组。 二 实验内容 1、 学习和理解追赶法求解三对角线性方程组的原理及方法; 2、 利用MATLAB 编程实现追赶法; 3、 举例进行求解,并对结果进行分。 三 实验原理 设n 元线性方程组Ax=d 的系数矩阵A 为非奇异的三对角矩阵 11222=(1)(n 1)()()a c b a c A a n c b n a n ??????????--?????? ………… 这种方程组称为三对角线性方程组。显然,A 是上下半宽带都是1的带状矩阵。设A 的前n-1个顺序主子式都不为零,根据定理2.5的推论,A 有唯一的Crout 分解,并且是保留带宽的。 其中L 是下三角矩阵,U 是单位上三角矩阵。利用矩阵相乘法,可以1112212(1)1u(n 1)()()1l u m l u A LU l n m n l n ????????????????==?????--????????????……………

得到: 由上列各式可以得到L 和U 。 引入中间量y ,令 y Ux =,则有: 已知 L 和d ,可求得y 。 则可得到y 的求解表达式: 11/1 2,3,,()(1)*y()=()[()(1)]/y d l i n m i y i li i di y i di m i y i li ==-+=--… 1111111/1(2)(1)(1)u (1)(11)/(1)(1)(1)l a l u c u c l mi bi i n a i m i i l i i n ci li ui ui ci li l i a i b i ui =*===≤≤+=+++≤≤-=?=+=+-+Ax LUx Ly d Ly d ====1112222(1)(n 1)(n 1)()()(n)(n)l y d m l y d l n y d m n l n y d ?????????????????????????=??????---?????????????????? ……………

齐次线性方程组基础解系

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

七年级数学解二元一次方程组练习题

解二元一次方程组专题训练一、基础过关 1.用加、减法解方程组 436, 43 2. x y x y += ? ? -= ? ,若先求x的值,应先将两个方程组相_______;若先求y的 值,应先将两个方程组相________. 2.解方程组 231, 367. x y x y += ? ? -= ? 用加减法消去y,需要() A.①×2-② B.①×3-②×2 C.①×2+② D.①×3+②×2 3.已知两数之和是36,两数之差是12,则这两数之积是() A.266 B.288 C.-288 D.-124 4.已知x、y满足方程组 259, 2717 x y x y -+= ? ? -+= ? ,则x:y的值是() A.11:9 B.12:7 C.11:8 D.-11:8 5.已知x、y互为相反数,且(x+y+4)(x-y)=4,则x、y的值分别为() A. 2, 2 x y = ? ? =- ? B. 2, 2 x y =- ? ? = ? C. 1 , 2 1 2 x y ? = ?? ? ?=- ?? D. 1 , 2 1 2 x y ? =- ?? ? ?= ?? 6.已知a+2b=3-m且2a+b=-m+4,则a-b的值为() A.1 B.-1 C.0 D.m-1 7.若2 3 x5m+2n+2y3与- 3 4 x6y3m-2n-1的和是单项式,则m=_______,n=________. 8.用加减法解下列方程组: (1) 3216, 31; m n m n += ? ? -= ? (2) 234, 443; x y x y += ? ? -= ? (3) 523, 611; x y x y -= ? ? += ? (4) 35 7, 23 423 2. 35 x y x y ++ ? += ?? ? -- ?+= ?? 二、综合创新 9.已知关于x、y的方程组 352, 23 x y m x y m +=+ ? ? += ? 的解满足x+y=-10,求代数m2-2m+1的值.

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

追赶法解三对角方程组

《数值分析》课程设计追赶法解三对角方程组 院(系)名称信息工程学院 专业班级10普本信计 学号100111014 学生姓名刘银朋 指导教师张荣艳 2013 年05 月31日

数值分析课程设计评阅书 题目追赶法解三对角方程组 学生姓名刘银朋学号100111014 指导教师评语及成绩 指导教师签名: 年月日答辩评语及成绩 答辩教师签名: 年月日 教研室意见 总成绩: 教研室主任签名: 年月日

课程设计任务书 2012—2013学年第二学期 专业班级:10普本信息与计算科学学号:100111014 姓名:刘银朋 课程设计名称:数值分析Ⅰ、Ⅱ 设计题目:追赶法解三对角方程组 完成期限:自2013 年05月21 日至2013年05 月31日共10天 设计依据、要求及主要内容: 一、设计目的 理解追赶法,掌握追赶法的算法设计以及关于追赶法的分析和综合应用,能 够较熟练的应用Matlab软件编写求解追赶法的程序和应用Matlab软件数据库软 件. 二、设计内容 (1)认真挑选有代表性的三对角方程组. (2)认真梳理解三对角方程组的解题思路. (3)比较追赶法和高斯消去法的计算精度. 三、设计要求 1.先用Matlab数据库中的相应的函数对选定的方程,求出具有一定精度的解. 2.然后使用所用的方法编写Matlab程序求解. 3.对于使用多个方程解同意问题的,在界面上要设计成菜单的形式. 计划答辩时间:2013年06 月 5 日 工作任务鱼工作量要求: 查阅文献资料不少于3篇,课程设计报告1篇不少于3000字. 指导教师(签字):教研室主任(签字): 批准日期:2013 年05 月20 日

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

用适当的方法解二元一次方程组

选择适当的方法解二元一次方程组 教学目标: 1.会根据方程组的具体情况选择适合的消元法. 2.通过对具体的二元一次方程组的观察、分析,选择恰当的方法解二元一次方程组,培养学生的观察、分析能力. 3.通过学生比较两种解法的差别与联系,体会透过现象抓住事物本质的这一认识方法. 教学重点: 会根据方程组的具体情况选择合适的消元法. 教学难点: 在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想. 教学过程: 一、目标导学 1、解二元一次方程组的基本思想是什么? 2、消元的方法有哪些? 二、质疑自学 解下列方程组,并思考:什么情况下用代入法简单?什么情况下用加减法简单?

?-=? +=?25342x y x y ?+=? =?254x y x ?+=? +=?3286921x y x y ?-=? +=?332 34x y x y 总结规律: 代入法:当有一个未知数的系数为1或-1时 加减法:①当相同字母的未知数的系数相同时; ②当相同字母的未知数的系数相反时; ③当相同字母的未知数的系数不相同或相反时,如果同一个未知数的系数互为倍数 [设计意图] 既复习了旧知识,又引出了新课题,最后设置悬念,增强了学生的学习兴趣. 三、拓展拔高 问题1:下列方程组将如何求解?

分析:方程①及②中均含有2x + 3y。可用整体思想解。由①得2x+3y= 2代入②而求出y。 学生书写解题过程。 问题2: 分析: 本题含有相同的式子,可用换元法求解。 学生书写解题过程。 问题3: 学生分组讨论后解方程组,组代表演板。 问题4:

提示: 上述方程中两个未知数系数呈交叉形式,可作整体相加,整体相减而解出。 学生分组讨论后解方程组,组代表展示解题过程。 四、当堂检测 1、用适当的方法解二元一次方程组: ()()2x+y -2y=03 222x+y -5=7y ?? ??? ()2018x-2017y=404012017x-2018y=4030??? ()x y =3363x+y=-15????? 2、已知方程组

线性方程组解决实际问题项目

线性方程组解决实际问题项 目 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

项目名称应用线性方程组解决实际问题项目 【项目内容】营养食谱问题 高考前期一个饮食专家给即将踏入高考大门的学子准备了一份膳食计划,以此来帮助同学们提高和调节身体所摄入的大量营养,提供一定量的维生素C、钙和镁。其中用到3种食物,它们的质量用适当的单位计量。这些食品提供的营养以及食谱需要的营养如下表给出 【相关知识点】 1.线性方程组间的代数运算; 2.线性相关性之间的关系; 3.矩阵与增广矩阵之间的行最简化法; 4.其次线性方程组与非齐次线性方程组的解法; 5.向量组的线性组合以及线性相关性; 【模型假设与分析】

【解】设X1、X2、X3分别表示这三种食物的量。对每一种食物考虑一个向量,其分量依次表示每单位食物中营养成分维生素C、钙和镁的含量: 食物1:1= 食物2:2= 食物3:3=食物4:4= 需求: 【模型建立】 则X11、X22、X33、X44分别表示三种食物提供的营养成分,所以,需要的向量方程为 X11+X22+X33+X4 4 = 则有= 【模型求解】 利用矩阵与增广矩阵之间的行最简化法; = ~

则线性相关 R(A)=4=R(A,b)该线性方程组有唯一解。 【结论及分析】 解此方程组 得到: X1= X2= X3= X4=-5 因此食谱中应该包含个单位的食物1,个单位的食物2,个单位的食物3。个单位的食物4。 由此可得合理的膳食与线性方程组息息相关,由方程可知合理膳食的特解,即在一定的条件下,食物的摄入量是相对稳定的,过多或过少都不利于生理所需,唯有达到一个特解时,营养与体能的搭配才是最完美的。 【心得与体会】 通过生活中的这个小例子,我们小组总结以下发现,线性方程组在生活中的运用是普遍而广泛的,通过学习和查阅资料,让我们更真切的理解和体会到线性方程在身边的实用性,如果合理的运用,不仅对我们身体健康有所帮助,而且有益于我们全面的理解数学世界观,对我们人生有重大的指导和参考意义,线性方程组在科学研究等诸多方面有更广泛深入的应用。希望通过这次的实践和应用,努力将其联系到实际中,真正的做到领会到数学的真谛。【参考文献】 【1】刘振兴,浅谈线性代数在生活中的应用 【2】Loveyuehappy,浅析线性方程组的解法及应用 【3】

解二元一次方程组练习题(经典)

| 解二元一次方程组练习题1.(2013?梅州)解方程组. 2.(2013?淄博)解方程组. 【 3.(2013?邵阳)解方程组:. 4.(2013?遵义)解方程组. : 5.(2013?湘西州)解方程组:. 6.(2013?荆州)用代入消元法解方程组 . 】 7.(2013?汕头)解方程组.

8.(2012?湖州)解方程组. ! 9.(2012?广州)解方程组. 10.(2012?常德)解方程组: — 11.(2012?南京)解方程组. 12.(2012?厦门)解方程组:. 、 13.(2011?永州)解方程组:. 14.(2011?怀化)解方程组:. —

16.(2010?南京)解方程组:. · 17.(2010?丽水)解方程组: 18.(2010?广州)解方程组:. … 19.(2009?巴中)解方程组:. 20.(2008?天津)解方程组: ! 21.(2008?宿迁)解方程组:. 22.(2011?桂林)解二元一次方程组:.<

23.(2007?郴州)解方程组: 24.(2007?常德)解方程组:. ~ 25.(2005?宁德)解方程组: ` 26.(2011?岳阳)解方程组:. 27.(2005?苏州)解方程组:. ? 28.(2005?江西)解方程组: ,

29.(2013?自贡模拟)解二元一次方程组:. — 30.(2013?黄冈)解方程组:.

解二元一次方程组练习题 参考答案与试题解析 一.解答题(共30小题) 1.(2013?梅州)解方程组. - 考点:解二元一次方程组;解一元一次方程. 专题:计算题;压轴题. 分析:①+②得到方程3x=6,求出x的值,把x的值代入②得出一个关于y的方程,求出方程的解即可. 解答:> 解:, ①+②得:3x=6, 解得x=2, 将x=2代入②得:2﹣y=1, 解得:y=1. ∴原方程组的解为. 点评:本题考查了解一元一次方程和解二元一次方程组的应用,关键是把二元一次方程组转化成一元一次方程,题目比较好,难度适中. ? 2.(2013?淄博)解方程组. 考点:解二元一次方程组. 专题:计算题. 分析:^ 先用加减消元法求出y的值,再用代入消元法求出x的值即可. 解答: 解:, ①﹣2×②得,﹣7y=7,解得y=﹣1; 把y=﹣1代入②得,x+2×(﹣1)=﹣2,解得x=0, 故此方程组的解为:. 点评:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.

专题:解二元一次方程组(含答案)

专题:解二元一次方程组 ——学会选择最优的解法 ◆类型一 解未知数系数含有1或-1的方程组 1.已知a ,b 满足方程组? ????a -b =2,a +b =6,则3a +b 的值为( ) A.14 B.4 C.-4 D.-14 2.以方程组? ????y =-x +2①,y =x -1②的解为坐标的点(x ,y )在平面直角坐标系中的位置在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 3.若3x m +2n y 与-13 y m -n x 4是同类项,则m = ,n = W. 4.解方程组: (1)? ????x -y =0①,2x +y =6②; (2)(2017·桂林中考)? ????2x +y =3①,5x +y =9②. ◆类型二 解同一未知数系数互为倍数关系的方程组 5.二元一次方程组? ????2x +3y =7,2x -3y =1的解为( ) A.?????x =4,y =3 B.?????x =2,y =1 C.?????x =-4,y =3 D.? ????x =2,y =-1 6.解方程组: (1)?????5x +2y =25①,3x +4y =15②; (2)? ????8x +9y =73①,17x -3y =74②.

◆类型三 解两个方程中未知数系数成对称关系的方程组 7.若x ,y 满足方程组? ????x +3y =7,3x +y =5,则x -y 的值等于( ) A.-1 B.1 C.2 D.3 8.方程组? ????2x +3y =3,3x +2y =11的解为 W. 9.已知方程组? ????3x +y =1+3a ①,x +3y =1-a ②的解满足x +y =0,求a 的值. ◆类型四 含字母系数的方程组的运用 10.(2017·余干县校级期末)已知x ,y 满足方程组? ????x +m =4,y -5=m ,则无论m 取何值,x ,y 恒有关系式是( ) A.x +y =1 B.x +y =-1 C.x +y =9 D.x +y =-9 11.(2017·枣庄中考)已知?????x =2,y =-3是方程组?????ax +by =2,bx +ay =3 的解,则a 2-b 2= W. 12.已知方程组?????2x +y =-2,ax +by =-4和方程组? ????3x -y =12,bx +ay =-8的解相同,求(5a +b )2的值.

相关文档
最新文档