“梁梁拼接全螺栓刚接”节点计算书1

“梁梁拼接全螺栓刚接”节点计算书1
“梁梁拼接全螺栓刚接”节点计算书1

“梁梁拼接全螺栓刚接”节点等强设计计

算书1

一. 节点基本资料

设计依据:《钢结构连接节点设计手册》(第二版)

节点类型为:梁梁拼接全螺栓刚接

梁截面:H-700*300*13*24,材料:Q235

左边梁截面:H-700*300*13*24,材料:Q235

腹板螺栓群:10.9级-M20

螺栓群并列布置:8行;行间距70mm;1列;

螺栓群列边距:45 mm,行边距45 mm

翼缘螺栓群:10.9级-M20

螺栓群缺行错列布置,首行为基行

布置为:基行3列;列间距70mm;共2行;行间距60mm;

螺栓群列边距:45 mm,行边距35 mm

腹板连接板:580 mm×188 mm,厚:10 mm

翼缘上部连接板:468 mm×300 mm,厚:14 mm

翼缘下部连接板:468 mm×130 mm,厚:8 mm

梁梁腹板间距为:a=8mm

节点前视图如下:

节点下视图如下:

二. 荷载信息

设计内力:组合工况内力设计值

组合工况1 0.0 115.4 152.3 否组合工况2 0.0 135.4 172.3 是

三. 验算结果一览

承担剪力(kN) 96.7 最大126 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大80 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大80 满足外排行间距(mm) 70 最大120 满足中排行间距(mm) 70 最大240 满足行间距(mm) 70 最小66 满足列边距(mm) 45 最小33 满足列边距(mm) 45 最大80 满足行边距(mm) 45 最小44 满足行边距(mm) 45 最大80 满足外排行间距(mm) 70 最大120 满足中排行间距(mm) 70 最大240 满足行间距(mm) 70 最小66 满足净截面剪应力比 0.766 1 满足净截面正应力比 0.000 1 满足净面积(cm^2) 80.8 最小61.9 满足承担剪力(kN) 121 最大140

满足列边距(mm) 45 最小44 满足列边距(mm) 45 最大64 满足外排列间距(mm) 70 最大96 满足中排列间距(mm) 70 最大192 满足列间距(mm) 70 最小66 满足行边距(mm) 35 最小33 满足行边距(mm) 35 最大64 满足外排行间距(mm) 60 最大96 满足中排行间距(mm) 60 最大192 满足行间斜距(mm) 76.2 最小66 满足净截面剪应力比 0.000 1 满足净截面正应力比 0.519 1 满足净面积(cm^2) 43.4 最小50.9

不满足净抵抗矩(cm^3) 3445 最小3993

不满足

四. 梁梁腹板螺栓群验算

1 螺栓群受力计算

控制工况:梁净截面承载力

梁腹板净截面抗剪承载力:V wn=[13×(700-2×24)-max(8×22,0+0)×13]×125=773.5kN 2 腹板螺栓群承载力计算

列向剪力:V=773.5 kN

螺栓采用:10.9级-M20

螺栓群并列布置:8行;行间距70mm;1列;

螺栓群列边距:45 mm,行边距45 mm

螺栓受剪面个数为2个

连接板材料类型为Q235

螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN

计算右上角边缘螺栓承受的力:

N v=773.5/8=96.688 kN

N h=0 kN

螺栓群对中心的坐标平方和:S=∑x^2+∑y^2=2.058e+005 mm^2

N mx=0 kN

N my=0 kN

N=[(|N mx|+|N h|)^2+(|N my|+|N v|)^2]^0.5=[(0+0)^2+(0+96.688)^2]^0.5=96.688 kN≤125.55,满足

3 腹板螺栓群构造检查

列边距为45,最小限值为33,满足!

列边距为45,最大限值为80,满足!

行边距为45,最小限值为44,满足!

行边距为45,最大限值为80,满足!

外排行间距为70,最大限值为120,满足!

中排行间距为70,最大限值为240,满足!

行间距为70,最小限值为66,满足!

4 腹板连接板计算

连接板剪力:V l=773.5 kN

采用一样的两块连接板

连接板截面宽度为:B l=580 mm

连接板截面厚度为:T l=10 mm

连接板材料抗剪强度为:f v=125 N/mm^2

连接板材料抗拉强度为:f=215 N/mm^2

连接板全面积:A=B l*T l*2=580×10×2×10^-2=116 cm^2

开洞总面积:A0=8×22×10×2×10^-2=35.2 cm^2

连接板净面积:A n=A-A0=116-35.2=80.8 cm^2

连接板净截面剪应力计算:

τ=V l×10^3/A n=773.5/80.8×10=95.7302 N/mm^2≤125,满足!

连接板截面正应力计算:

按《钢结构设计规范》5.1.1-2公式计算:

σ=(1-0.5n1/n)N/A n=(1-0.5×8/8)×0/80.8×10=0 N/mm^2≤215,满足!

按《钢结构设计规范》5.1.1-3公式计算:

σ=N/A=0/116×10=0 N/mm^2≤215,满足!

5 腹板连接板刚度计算

腹板的净面积为:

13×(700-2×24)/100-8×13×22/100=61.88cm^2

腹板连接板的净面积为:

(580-8×22)×10×2/100=80.8cm^2≥61.88,满足

五. 翼缘螺栓群验算

1 翼缘螺栓群受力计算

控制工况:梁净截面抗弯承载力

梁净截面抗弯承载力计算

翼缘螺栓:I fb=[4×2×22×24^3/12+4×2×22×24×(700-24)^2/4]×10^-4=48277 cm^4腹板螺栓:I wb=[8×13×22^3/12+13×20×2.058e+005]×10^-4=5895.1 cm^4

梁净截面:W n=(1.9392e+005-48277-5895.1)/0.5/700×10=3992.9 cm^3

净截面抗弯承载力:M n=W n*f=3992.9×205×10^-3=818.55 kN·m

翼缘净截面:M fn=M n=818.547kN·m

翼缘螺栓群承担轴向力:F f=M fn/(h-t f)/2=818.547/(700-24)/2×10^3=605.434 kN 2 翼缘螺栓群承载力计算

行向轴力:H=605.434 kN

螺栓采用:10.9级-M20

螺栓群缺行错列布置,首行为基行

布置为:基行3列;列间距70mm;共2行;行间距60mm;

螺栓群列边距:45 mm,行边距35 mm

螺栓受剪面个数为2个

连接板材料类型为Q345

螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN

轴向连接长度:l1=(3-1)×70=140 mm<15d0=330,取承载力折减系数为ξ=1.0

折减后螺栓抗剪承载力:N vt=139.5×1=139.5 kN

计算右上角边缘螺栓承受的力:

N v=0 kN

N h=605.43/5=121.09 kN

螺栓群对中心的坐标平方和:S=∑x^2+∑y^2=16750 mm^2

N mx=0 kN

N my=0 kN

N=[(|N mx|+|N h|)^2+(|N my|+|N v|)^2]^0.5=[(0+121.09)^2+(0+0)^2]^0.5=121.09 kN≤139.5,满足

3 翼缘螺栓群构造检查

列边距为45,最小限值为44,满足!

列边距为45,最大限值为64,满足!

外排列间距为70,最大限值为96,满足!

中排列间距为70,最大限值为192,满足!

列间距为70,最小限值为66,满足!

行边距为35,最小限值为33,满足!

行边距为35,最大限值为64,满足!

外排行间距为60,最大限值为96,满足!

中排行间距为60,最大限值为192,满足!

行间距为76.158,最小限值为66,满足!

4 翼缘连接板计算

连接板轴力:N l=605.434 kN

采用两种不同的连接板

连接板1截面宽度为:B l1=130 mm

连接板1截面厚度为:T l1=8 mm

连接板1有2块

连接板2截面宽度为:B l2=300 mm

连接板2截面厚度为:T l2=14 mm

连接板材料抗剪强度为:f v=125 N/mm^2

连接板材料抗拉强度为:f=215 N/mm^2

连接板全面积:A=B l1*T l1*2+B l2*T l2=(130×8×2+300×14)×10^-2=62.8 cm^2

开洞总面积:A0=2×22×(8+14)×2×10^-2=19.36 cm^2

连接板净面积:A n=A-A0=62.8-19.36=43.44 cm^2

连接板净截面剪应力:τ=0 N/mm^2≤125,满足!

连接板截面正应力计算:

按《钢结构设计规范》5.1.1-2公式计算:

σ=(1-0.5n1/n)N/A n=(1-0.5×2/5)×605.434/43.44×10=111.498 N/mm^2≤215,满足!

按《钢结构设计规范》5.1.1-3公式计算:

σ=N/A=605.434/62.8×10=96.4067 N/mm^2≤215,满足!

5 翼缘连接板刚度计算

单侧翼缘的净面积为:

300×24/100-2×2×22×24/100=50.88cm^2

单侧翼缘连接板的净面积为:

(300-2×2×22)×14/100+(130-2×22)×8×2/100=43.44cm^2<50.88,不满足

6 拼接连接板刚度验算

梁的毛截面惯性矩:I b0=193924cm^4

翼缘上的螺栓孔的惯性矩:

I bbf=2×2×2×[22×24^3/12+22×24×(700/2-24/2)^2]×10^-4=48276.9cm^4

腹板上的螺栓孔的惯性矩:

I bbw=8×13×22^3/12×10^-4+13×22×(245^2+175^2+105^2+35^2+35^2+105^2+175^2+245^2)×10^-4=5 895.11cm^4

梁的净惯性矩:

I b=193924-48276.9-5895.11=139752cm^4

梁的净截面抵抗矩:W b=139752/700×2×10=3992.91cm^3

翼缘上部连接板的毛惯性矩:

I pf1=2×[300×14^3/12+300×14×(700/2+14/2)^2]×10^-4=107071cm^4

翼缘上部连接板上的螺栓孔的惯性矩:

I pfb1=2×2×2×[22×14^3/12+22×14×(700/2+14/2)^2]×10^-4=31407.5cm^4

翼缘下部连接板的毛惯性矩:

I pf2=2×2×[130×8^3/12+130×8×(700/2-8/2-24)^2]×10^-4=43134.8cm^4

翼缘下部连接板上的螺栓孔的惯性矩:

I pfb2=2×2×2×[22×8^3/12+22×8×(700/2-8/2)^2]×10^-4=16856.8cm^4

腹板连接板的毛惯性矩:

I pw=2×10×580^3/12×10^-4=32518.7cm^4

腹板连接板上的螺栓孔的惯性矩:

I pbw=2×8×10×22^3/12×10^-4+2×10×22×(245^2+175^2+105^2+35^2+35^2+105^2+175^2+245^2)×10^-4=9069.4cm^4

连接板的净惯性矩:

I p=107071+43134.8+32518.7-31407.5

-16856.8-9069.4=125391cm^4

连接板的净截面抵抗矩:W p=125391/(700/2+14)×10=3444.8cm^3<3992.91,不满足

核心节点验算

8.3框架梁柱节点核芯区截面抗震验算 验算梁端弯矩b M ∑最大的柱子 :取一层B 柱 700b h mm =,665bo h mm = 《混规》11.6.2条:三级抗震,框架结构j V 应满足: 001jb b b s j c b b s M h a V H h h a η? ? '-= -? ?-'-?? ∑式中jb η为节点剪力增大系数,框架结构,三级抗震 可得 1.20jb η=;b M ∑为梁端弯矩。c H 为节点上柱和节点下柱反弯点之间的距离。 410.289413.86824.149b M kN m =+=?∑ 5.20.55 3.90.49 4.774770c H m mm =?+?==,'35s a mm =。 所以:31.20824.14910665351132 6.8665354770700j V kN ??-?? =-= ?--?? 《混规》11.6.3条:框架梁柱节点核芯区的受剪截面验算为: 1 (0.30)j j c c j j RE V f h b ηβγ≤ j h 为框架节点核芯区的截面高度, ,b b 为梁截面宽度,c b 为柱截面宽度,j b 为节点核芯区的截面高度;j η为梁对节点的约束影响系数, 1.50j η=。取柱截面高度600j h mm =;又300b b mm =,600c b mm =,/2b c b b >,故600j c b b mm == 21 1 (0.30)(0.30 1.5 1.014.3600)2725.41326.80.85 j c c j j j RE f h b kN V KN ηβγ= ?????=>=满足规范要求。 《混规》11.6.4条:框架梁柱节点的抗震受剪承载力需要满足下列公式: 1 (1.10.05)j bo s j j t j j j yv svj RE c b h a V f h b N f A b s ηηγ' -≤ ++ 式中B 柱二层柱底轴力选取为21695.860.50.514.3600=2574c N KN f A KN ==??和两者中的较小值,所以1695.86N KN =;svj A 为核心区有效验算宽度范围内同一截面验算方向箍筋各肢的全部截面面积;bo h 为框架梁的有效截面高度。

膨胀螺栓拉拔力计算

膨胀螺栓拉拔试验计算书 苏州承志装饰有限公司 二〇一一年五月

支座处膨胀螺栓拉拔力计算 1.1 干挂石材支座反力计算 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 支座反力图 根据支座受力,现采用4个M12膨胀螺栓。 单个支座的受荷面积为1500mm ×1000mm ,干挂石材自重取0.5 kN/m 2,室内风荷载为0.5 kN/m 2 支座反力为: 风荷载产生的拉力: N =0.5×1.5×1.0=0.75 kN 自重产生的剪力: V=0.5×1.5×1.0=0.75 KN 弯距:m kN 0.0900.120.75Ve M ?=?== 1.2. 镀锌M12膨胀螺栓拉拔力计算: N 拔=2β?(N/2+M/Z)/n 式中:N 拔:单个螺栓承载能力设计值;

N: 拉力设计值(N); M: 弯距设计值(N.mm); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; =2β?[N/8+(M/Z)/n] N 拔 =2×1.25×[(0.75×103/2+(0.090×106/100)/2] =1.594 kN 即单个M12膨胀螺栓抗拉承载能力设计值为1.594kN. 2.1 室内吊顶支座反力计算 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 计算简图(圆表示支座,数字为节点号)

根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为: 自重产生的拉力: N=1.163 kN 1.2. M8膨胀螺栓拉拔力计算: =2β?(N/2+M/Z)/n N 拔 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(N.mm); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; =2β?(M/Z)/n N 拔 =2×1.25×(1.163×103/2)/2 =0.727 kN 即单个M8膨胀螺栓抗拉承载能力设计值为0.727kN.

柱模板(设置对拉螺栓)计算书

柱模板(设置对拉螺栓)计算书计算依据: 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB 50009-2012 4、《钢结构设计标准》GB 50017-2017 5、《建筑结构可靠性设计统一标准》GB50068-2018 一、工程属性 二、荷载组合 新浇混凝土对模板的侧压力标准值G4k=min[0.22γc t0β1β2v1/2,γc H]=min[0.22×24×4×1×1×21/2,24×3.35]=min[29.87,80.4]=29.87kN/m2

S承=γ0×(1.3G4k+γL×1.5Q3k)=1×(1.3 × 29.868+ 0.9×1.5×2.000)=41.53kN/m2 正常使用极限状态设计值S正=G4k=29.868 kN/m2 三、面板验算 面板类型覆面竹胶合板面板厚度(mm) 15 面板抗弯强度设计值[f](N/mm2) 15.444 面板弹性模量E(N/mm2) 9350 柱长边小梁根数 4 柱短边小梁根数 4 柱箍间距l1(mm) 400 模板设计平面图 1、强度验算 最不利受力状态如下图,按三等跨连续梁验算

静载线荷载q1=γ0×1.3×bG4k=1×1.3×0.4×29.868=15.531kN/m 活载线荷载q2=γ0×γL×1.5×bQ3k=1×0.9×1.5×0.4×2=1.08kN/m M max=-0.1q1l2-0.117q2l2=-0.1×15.531×0.1672-0.117×1.08×0.1672=-0.047kN·m σ=M max/W=0.047×106/(1/6×400×152)=3.11N/mm2≤[f]=15.444N/mm2 满足要求! 2、挠度验算 作用线荷载q=bS正=0.4×29.868=11.947kN/m ν=0.677ql4/(100EI)=0.677×11.947×166.6674/(100×9350×(1/12×400×153))=0.059mm ≤[ν]=l/400=166.667/400=0.417mm 满足要求! 四、小梁验算

梁柱节点设计

大连世纪商园工程 设计计算书II ——梁柱构件抗震验算与设计 框架柱采用矩形钢管混凝土柱,框架梁为焊接H型钢。本节主要涉及《抗震规范》第5.1.6条、5.4.1条、5.4.2条、8.2.5条、8.2.8条、8.3.1条、8.3.2条和《矩形钢管混凝土结构技术规程》第4.4.3条、6.3.2条、6.3.3条、7.1.4条、7.1.5条、 7.1.6条规定的计算内容。 一、梁柱连接 1、框架梁计算1 选取框架梁H690×300×14×32,各项截面特性指标如下表: 钢材采用Q345钢(fy=345N/mm2)。 1)板件宽厚比 《抗震规范》第8.3.2条规定,超过12层的框架梁、柱板件应符合表8.3.2-2的规定。 翼缘:32mm厚,fy=325N/mm2 板件宽厚比=(300-14)/2/32=4.5 < 10√(235/325)=8.50 符合表8.3.2-2关于框架梁翼缘板件宽厚比的规定。 腹板:14mm厚,fy=345N/mm2 板件宽厚比=(690-2*32)/14=44.7 < 80√(235/345)=66 符合表8.3.2-2关于框架梁腹板板件宽厚比的规定。 2)梁柱节点 按照《抗震规范》第8.2.8条,钢结构构件连接应按地震组合内力进行弹性设计,并应进行极限承载力验算。 本工程框架梁与柱采用全熔透对接焊缝,同时在上下翼缘加楔形盖板进行加强,腹板用高强螺栓与柱连接,具体节点做法见节点图。

a )弹性抗弯强度 梁翼缘与柱子对接焊缝的抗拉强度,计算取盖板厚10mm ,宽按250mm 。 ()()e f f f e M fb t h t fA h t =-++ 6629530032(69032)/1029525010(69010)/10=???-+???+ 2379.7*kN m = 梁截面的屈服弯矩: 32956858.2/102023.2*y M kN m =?= 显然 e y M M >,满足弹性设计要求 根据《抗震规范》第8.2.4条,框架梁的上翼缘采用抗剪连接件与组合楼板连接时,可不验算地震作用下的整体稳定。本工程梁的上翼缘采用栓钉与现浇混凝土楼板连接,不再验算地震作用下的跨中整体稳定。梁端根据《高钢规》第8.5.4条设置隅撑后,下翼缘平面外的计算长度减小,也可以不作验算。 b )极限抗弯强度 P P y M W f = 26 1 [30032(69032)(690232)14]325/104 =??-+-???2498.7*kN m = 梁与柱的连接强度(考虑盖板250x10mm ) ) (t h f A h f A M u e b u Fb u ++= 30032470658=???+25010470(69010)???+ 3791.4*kN m = 1.2 1.22498.72998.41*b P M kN m >=?= 满足要求 c )腹板受剪 框架梁端部腹板采用切剖口熔透焊缝,扣除腹板靠近上下翼缘的切角高度35mm 和50mm 。腹板与柱翼缘熔透焊缝的承载力: 0.58w u f u V A f =30.5814(6902323550)470/102064.6kN =??-?--?= 腹板焊缝连接的抗剪承载力: 0.58u w w ay V h t f >30.5814(690232)345/10=??-??1753.7kN = 同时有(取最小梁跨6.05m):

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算 干挂石材支座反力计算 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 根据支座受力,现采用4个M12膨胀螺栓。 单个支座的受荷面积为1500mm×1000mm,干挂石材自重取kN/m2,室内风荷载 为kN/m2 支座反力为: 风荷载产生的拉力:N =××= kN 自重产生的剪力:V=××= KN 弯距:M=Ve=*=﹒m . 镀锌M12膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(); 上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取、6个时取、8个时取; N拔=2β?[N/8+(M/Z)/n] =2××[×103/2+×106/100)/2] = kN 即单个M12膨胀螺栓抗拉承载能力设计值为. 室内吊顶支座反力计算 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 计算简图(圆表示支座,数字为节点号) 根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为: 自重产生的拉力:N = kN . M8膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取、6个时取、8个时取; N拔=2β?(M/Z)/n =2×××103/2)/2 = kN

柱模板(有对拉螺栓)-1

柱模板(设置对拉螺栓)计算书 一、计算依据 1、《建筑施工模板安全技术规范》JGJ162-2008 2、《混凝土结构设计规范》GB50010-2010 3、《建筑结构荷载规范》GB50009-2012 4、《钢结构设计规范》GB50017-2003 5、《建筑施工临时支撑结构技术规范》JGJ300-2013

二、计算参数

(图1)模板设计平面图 (图2)模板设计立面图 三、荷载统计 新浇混凝土对模板的侧压力 F1=0.22γc t0β1β2V0.5=0.22×24×4×1.2×1.15×20.5=41.218kN/m2

F2=γc H=24×5000/1000=120kN/m2 标准值G4k=min[F1,F2]=41.218kN/m2 承载能力极限状态设计值 根据柱边的大小确定组合类型: 由于柱长边大于300mm,则: S=0.9max[1.2G4k+1.4Q3k, 1.35G4k+1.4×0.7Q3k] =0.9×max(1.2×41.218+1.4×2,1.35×41.218+1.4×0.7×2)=51.844kN/m2 正常使用极限状态设计值S k=G4k=41.218kN/m2 四、面板验算 根据规范规定面板可按简支跨计算,故可按简支跨一种情况进行计算,取b=1m 单位面板宽度为计算单元。 W=bh2/6=1000×152/6=37500mm3,I=bh3/12=1000×153/12=281250mm4 其中的h为面板厚度。 (图3)面板强度计算简图 1、强度验算 q=bS=1×51.844=51.844kN/m (图4)面板弯矩图(kN·m) M max=0.328kN·m σ=M max/W=0.328×106/37500=8.749N/mm2≤[f]=30N/mm2

给排水钢管道支架强度计算书

表1━各种型号规格管材支架安装选型及材料对照表

3-内筋嵌入式衬塑钢管支架的最大间距 附件:给排水钢管道支架强度计算书 一.每组支架承载说明: 按水管内盛满水,考虑水的重量,管道自重及保温重量,再按支架间距均分,得出附表之数据(为静载状态)。 二.膨胀螺栓在C13以上混凝土上允许的静荷载为: M10:拉力6860(N) M12:拉力10100(N) M16:拉力19020(N) M20:拉力28000(N) 三.丝杆允许静荷载: 1.普通螺纹牙外螺纹小径d1=d-1.08253P d:公称直径 p:螺距:M10为1.5mm;M12为1.75mm;M16为2mm;M20为2.5mm; 2.M10丝杆的小径为:d1=10-1.08253*1.5=8.00mm; M12丝杆的小径为:d1=12-1.08253*1.75=10.1mm

M14丝杆的小径为:d1=14-1.08253*2=11.8mm M16丝杆的小径为:d1=16-1.08253*2=13.8mm M20丝杆的小径为:d1=20-1.08253*2.5=17.3mm 3.取丝杆钢材的屈服极限为允许静载极限,其屈服极限为: бs=220至240Mpa 取бs=220Mpa=220N/mm2. 4.按丝杆最小截面积计算,丝杆允许拉力为:P=S×бs M10丝杆:P10=3.14×(8/2)2×220=11052N M12丝杆:P12=3.14×(10.1/2)2×220=17617N M14丝杆:P14=3.14×(11.8/2)2×220=24046N M16丝杆:P16=3.14×(13.8/2)2×220=32890N M20丝杆:P20=3.14×(17.3/2)2×220=51687N 10#槽钢:P#=1274×220=280280N 四.两管给排水钢管道支架受力分析: (一)DN80给排水钢管道支架强度校核: 1.按附表所示,每组支架承受静载为:99.35Kg=974N 考虑管内水的波动性,粘滞阻力,压力传递不均匀性对支架的综合影响,取综合系数K1=1.2; 考虑现场环境之震动及风动的影响,支架本身的不均匀性,取综合系数:K2=1.2 2.受力分析: 按附图支架详图,及图1~3中的受力分析: p=K1*K2*W/2=1.2*1.2*974/2=702N Fay=Fby=p=702N 3.膨胀螺栓,丝杆强度校核: a.M10膨胀螺栓所受的拉力为:702N,小于M10:6860N,为允许荷载的10% 故:强度满足要求.。 b. M10丝杆所受的拉力为702N,小于P10:11052N 为允许荷载的7% 故:强度满足要求. 4.L40角钢横担强度校核: 从图3中可以看出,最大弯距 Mmax= pa=702*0.15=105.3N·M 等截面的L40角钢最大正应力发生在Mmax截面的上下边缘处 最大正应力为:бmax=Mmax*Ymax /Iz

钢结构连接计算书(螺栓)

钢结构连接计算书 一、连接件类别: 普通螺栓。 二、普通螺栓连接计算: 1、普通螺栓受剪连接时,每个普通螺栓的承载力设计值,应取抗剪和承压承载力设计值中的较小者。 受剪承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; n v──受剪面数目,取 n v = 2.000; f v b──螺栓的抗剪强度设计值,取 f v b=125.000 N/mm2; 计算得:N v b = 2.000×3.1415×22.0002×125.000/4=95033.178 N; 承压承载力设计值应按下式计算: 式中 d──螺栓杆直径,取 d = 22.000 mm; ∑t──在同一受力方向的承压构件的较小总厚度,取∑t=12.000 mm; f c b──普通螺栓的抗压强度设计值,取 f c b=250.000 N/mm2; 计算得:N c b = 22.000×12.000×250.000=66000.000 N; 故: 普通螺栓的承载力设计值取 66000.000 N; 2、普通螺栓杆轴方向受拉连接时,每个普通螺栓的承载力设计值应按下式计算:

式中普通螺栓或锚栓在螺纹处的有效直径,取 de= 21.000 mm; f t b──普通螺栓的抗拉强度设计值,取 f t b=215.000 N/mm2; 计算得:N t b = 3.1415×21.0002×215.000 / 4 = 74467.527 N; 3、普通螺栓同时受剪和受拉连接时,每个普通螺栓同时承受剪力和杆轴方向拉力应符合下式要求: 式中 N v──普通螺栓所承受的剪力,取 N v= 23.000 kN =23.000×103 N; N t──普通螺栓所承受的拉力,取 N t= 35.000 kN =35.000×103 N; [(N v/N v b)2+(Nt/Nt b)2]1/2=[(23.000×103/95033.178)2+(35.000×103/74467.527)2]1/2= 0.529 ≤ 1; N v = 23000.000 N ≤ N c b = 66000.000 N; 所以,普通螺栓承载力验算满足要求!

梁柱节点

首先梁柱节点区是受力复杂应力集中,是钢筋交错纵横部位,是抗震优先保护区域。因此,梁柱钢筋的连接要避免在这个区域进行,钢筋的任何连接方式都是对整根钢筋的削弱。 所以规范规定,梁柱节点区域不允许钢筋接头。 另一个梁钢筋弯折问题,梁钢筋在柱子要满足锚固长度的要求,《11G101-1》里面对此讲的非常透彻。基本要掌握几个要点,平直段0.4Lae;弯折15d;加锚头; 0.5hc+5d 理解如下: 端支座:直锚满足Lae则要求锚长为大于0.5hc+5d; 不满足Lae时,要求平直段0.4Lae再弯折长15d;或者平直段0.4Lae再锚头;中间支座:下部钢筋锚长要求Lae以及0.5hc+5d 浅谈框架结构梁柱节点的施工 钢筋混凝土框架结构梁柱节点也称节点核芯区,是主体结构的重要组成部分。框架结构的震害大多发生在柱和梁柱节点核芯区,节点破坏主要是剪切破坏和钢筋锚固破坏,严重时会引起整个框架的倒毁。我国新、老规范均强调了“强节点”的设计要求,对节点的箍筋和砼强度做了比较严格的规定。但是,在工程实践中却往往对节点的施工重视不够,节点施工质量控制不严。下面谈谈节点施工的一些问题,探讨如何保证节点区的施工质量。 1、节点区的钢筋绑扎梁柱节点的钢筋主要应注意两点: 1.1箍筋的间距。 1.2纵筋的锚固。设计上一般是按照规范要求取节点区箍筋与箍筋加密区相同,包括箍筋的规格、直径和间距等;纵筋锚固也要求满足规范规定,包括伸入支座的直段及弯钩长度。实际施工中常常出现的问题是:节点区箍筋缺少绑扎、数量不足、间距不分,或者几个箍筋全堆在一起,或者空空的一长段没有箍筋;而纵筋则可能会因弯钩被烧短烧断导致锚固长度不够。究其原因,一方面是部分施工管理、监理人员素质较低,对节点区的重要性缺乏认识,质量意识比较淡薄;另一方面则是施工所采取的工艺流程限制,使得要做到节点区钢筋(尤其是箍筋)完全符合设计及规范要求十分困难,甚至是根本不可能。 工程实践中最常见的框架梁柱施工做法有两种:一种是将每层柱包括柱身、加密区和节点区的箍筋一次全部按要求绑扎好,然后装柱模板、在梁底下5~10㎝处留施工缝浇灌柱砼,柱侧模拆除后接着装柱头节点模板和梁底模

模板计算书范本

剪力墙计算书: 一、参数信息 1.基本参数 次楞(内龙骨)间距(mm):200;穿墙螺栓水平间距(mm):600;主楞(外龙骨)间距(mm):500;穿墙螺栓竖向间距(mm):500;对拉螺栓直径(mm):M14; 2.主楞信息 龙骨材料:钢楞;截面类型:圆钢管48×; 钢楞截面惯性矩I(cm4):;钢楞截面抵抗矩W(cm3):; 主楞肢数:2; 3.次楞信息 / 龙骨材料:木楞; 宽度(mm):;高度(mm):; 次楞肢数:2; 4.面板参数 面板类型:木胶合板;面板厚度(mm):; 面板弹性模量(N/mm2):; 面板抗弯强度设计值f (N/mm2):; c 面板抗剪强度设计值(N/mm2):; 5.木方和钢楞 (N/mm2):;方木弹性模量E(N/mm2):;方木抗弯强度设计值f c (N/mm2):; 方木抗剪强度设计值f t 】 钢楞弹性模量E(N/mm2):; 钢楞抗弯强度设计值f (N/mm2):; c

墙模板设计简图 二、墙模板荷载标准值计算 按《施工手册》,新浇混凝土作用于模板的最大侧压力,按下列公式计算,并取其中的较小值: 其中γ -- 混凝土的重力密度,取m3; t -- 新浇混凝土的初凝时间,可按现场实际值取,输入0时系统按200/(T+15)计算,得; T -- 混凝土的入模温度,取℃; V -- 混凝土的浇筑速度,取h; & H -- 模板计算高度,取; β -- 外加剂影响修正系数,取; 1 -- 混凝土坍落度影响修正系数,取。 β 2 根据以上两个公式计算的新浇筑混凝土对模板的最大侧压力F; 分别为 kN/m2、 kN/m2,取较小值 kN/m2作为本工程计算荷载。 计算中采用新浇混凝土侧压力标准值 F1=m2; 倾倒混凝土时产生的荷载标准值 F2= 2 kN/m2。

膨胀螺栓拉拔力计算

膨胀螺栓拉拔力计算 1.1 干挂石材支座反力计算 本工程主室内干挂石材支座采用镀锌M12膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求: 根据支座受力,现采用4个M12膨胀螺栓。 单个支座的受荷面积为1500mm×1000mm,干挂石材自重取0.5 kN/m2,室内风荷载为0.5 kN/m2 支座反力为: 风荷载产生的拉力: N =0.5×1.5×1.0=0.75 kN 自重产生的剪力: V=0.5×1.5×1.0=0.75 KN 弯距:M=Ve=0.75*0.12=0.09k N﹒m 1.2. 镀锌M12膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(N.mm); 上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; N拔=2β?[N/8+(M/Z)/n] =2×1.25×[(0.75×103/2+(0.090×106/100)/2] =1.594 kN 即单个M12膨胀螺栓抗拉承载能力设计值为1.594kN. 2.1 室内吊顶支座反力计算 本工程室内吊顶支座采用M8膨胀螺栓固定,选取支座反力最不利处进行计算,若此处满足,则所有相同位置采用此膨胀螺栓均能满足要求:

计算简图 (圆表示支座,数字为节点号) 根据支座受力,现采用4个M8膨胀螺栓。 根据计算软件3D3S的计算,最大支座反力为: 自重产生的拉力: N =1.163 kN 1.2. M8膨胀螺栓拉拔力计算: N拔=2β?(N/2+M/Z)/n 式中:N拔:单个螺栓承载能力设计值; N: 拉力设计值(N); M: 弯距设计值(N.mm); Z:上下两排螺栓中距(mm); n: 每排螺栓个数; β:承载能力调整系数,每处4个时取1.25、6个时取1.30、8个时取1.32; N拔=2β?(M/Z)/n =2×1.25×(1.163×103/2)/2 =0.727 kN 即单个M8膨胀螺栓抗拉承载能力设计值为0.727kN.

M10螺栓计算书

M10外六角螺栓计算书项目名称_____________日期_____________ 设计者_____________校对者_____________ 一、构件编号: LB-1 二、示意图 连接类型:普通螺栓计算形式:验算 三、依据规范 《钢结构设计规范》(GB 50017-2003) 《钢结构设计手册》(上册第二版) 《钢结构设计与计算》(包头钢铁设计研究院) 四、计算信息 1. 荷载信息剪力:V y = 1 2.00 kN; 2. 计算参数排列方式:均匀并列 螺栓列数:n c = 1; 螺栓行数:n r = 2; 螺栓行距:e r = 360mm; 螺栓列边距:e1 = 30mm; 螺栓行边距:e2 = 30mm; 螺栓数:n=2; 螺栓直径:d = 10mm; 螺栓孔径:d0 = 11.00mm; 有效直径:d e = 8.59mm; 板厚:t = 4mm; 受剪面数:n v = 1; 承压厚度:∑t = 4mm; 3. 材料信息钢材等级:Q235; 钢材强度:f = 215N/mm2; 螺栓等级:4.6级; C级; 抗拉强度:f t b = 170 N/mm2; 抗剪强度:f v b = 140N/mm2; 抗压强度:f c b = 305 N/mm2; 四、应力计算 根据《钢结构设计规范》(GB 50017-2003) ((N v/N v b)2+(N t/N t b)2)1/2≤ 1 (7.2.1-8) N v≤ N c b(7.2.1-9) 1. 单个螺栓受剪承载力设计N v b = n vπd2f v b/4 (7. 2.1-1) N c b= d∑tf c b(7.2.1-3) N v b = n vπd2f v b/4 =1×π×102×140×10-3/4= 11.00kN N c b= d∑tf c b= 10×4×305×10-3= 12.20kN 2. 单个螺栓受拉承载力设计N t b = πd e2f t b/4 (7.2.1-5) N t b = πd e2f t b/4 = π×8.592×170×10-3/4 = 9.85kN 3. 计算螺栓单个受力1)以螺栓群左下角点为原点的螺栓点位置坐标

膨胀螺栓抗拔力计算

创作编号:BG7531400019813488897SX 创作者:别如克* 膨胀螺栓如何计算 工程2008-07-24 21:25:08 阅读1185 评论 1 字号:大中小订阅 要对膨胀螺栓进行拉拔试验,可按下列公式 验算: N拔=[(N/2+M/Z)/n]*B≤N拔试/1.5 式中:N拔--单个膨胀螺栓承载能力设计值 N--拉力 M--弯矩 Z--上下两排螺栓中距 n--每排螺栓个数 B--调整系数,每处4个取1.25、6个取 1.30、8个取1.32

N拔试--单个膨胀螺栓拉拔试验结果一、建 筑概况 建筑物总高度约为120米,总宽度为150米,共26层,按8度抗震设计,基本风压w 0=0.35KN/M2,每个200×300埋件用4个 M12×110膨胀螺栓固定,膨胀螺栓基孔内加注环氧树脂。膨胀螺栓使用时应严格遵守有关工艺要 求。 二、荷载 ⑴作用在幕墙上的风荷载标准值按下式计 算: wk=βZ?μS?μZ?wO 式中:wk-作用在幕墙上的风荷载标准值 (KN/M2); βZ-考虑瞬时风压的阵风系数,取 2.25; μS-风荷载体型系数,取1.5; μZ-风压高度变化系数;

wO-基本风压,取0.35KN/M2。 故wk=βZ?μS?μZ?wO ⑵地震作用按下式计算 QE=βE?αmax?G 式中:QE??作用于幕墙平面外水平地震作 用(KN); G ??幕墙构件的重量(KN); αmax??水平地震影响系数最大值,8度抗 震设计取0.16; βE??动力放大系数,取3.0。 ⑶荷载分项系数和组合系数的确定 根据《建筑结构荷载规范》(GBJ9-87)及《玻璃幕墙工程技术规范》之精神,结合本工程的地区地理环境,建筑特点以及幕墙的受力情况,各分项系数和组合系数选择如下: 分项系数组合系数 重力荷载,γg取1.2

柱模板(设置对拉螺栓)设计计算书

柱模板(设置对拉螺栓)计算书 一、工程属性 二、荷载组合 4k c 012c min[0.22×24×4×1×1.15×2.51/2,24×2]=min[38.4,48]=38.4kN/m 2 承载能力极限状态设计值S 承=0.9max[1.2G 4k +1.4Q 3k ,1.35G 4k +1.4×0.7Q 3k ]=0.9max[1.2×38.4+1.4×2,1.35×38.4+1.4×0.7×2]=0.9max[48.88,53.8]=0.9×53.8=48.42kN/m 2 正常使用极限状态设计值S 正= G 4k =38.4 kN/m 2 三、面板验算

模板设计平面图 1、强度验算 最不利受力状态如下图,按四等跨连续梁验算 静载线荷载q1=0.9×1.35bG4k=0.9×1.35×0.6×38.4=27.99kN/m 活载线荷载q2=0.9×1.4×0.7bQ3k=0.9×1.4×0.7×0.6×2=1.06kN/m

M max=-0.107q1l2-0.121q2l2=-0.107×27.99×0.262-0.121×1.06×0.262=-0.21kN·m σ=M max/W=0.21×106/(1/6×600×152)=9.18N/mm2≤[f]=15N/mm2 满足要求! 2、挠度验算 作用线荷载q=bS正=0.6×38.4=23.04kN/m ν=0.632ql4/(100EI)=0.63×23.04×257.144/(100×10000×(1/12×600×153))= 0.38mm≤[ν]=l/400=257.14/400=0.64mm 满足要求! 四、小梁验算 小梁上作用线荷载q=bS承=0.26×48.42=12.45 kN/m

铝合金模板计算书(顶撑、背楞、螺栓、销钉)

铝合金模板配件受力计算书 主要参数:梁高h=1200mm ,b=200mm ,板厚:150mm 铝型材6061-T6的强度设计值F 为276N/mm2 钢材Q235的强度设计值F=215 N/mm2 销钉与螺栓的强度设计值F=420N/mm2 铝模自重为22kg/ m2 钢材弹性模量 25/101.2mm N E ?= Q420钢材抗剪 2/220mm KN fy = Q235钢材抗剪 2/125mm KN fy = 1.顶撑验算 顶撑采用Q235的钢材,外管采用 φ60×2.0mm 钢管,插管为 φ48×3.0mm 厚,插销为 φ14mm 。本工程的计算高度为2800(实际2770)mm ,钢管支撑中间无水平拉杆。计算独立支撑高度最大为2800时的允许荷载,考虑插管与套管之间因松动产生的偏心为半个钢管直径。 插管偏心值 e=D/2=48.3/2=24.3 因此钢支撑按两端铰接的轴心受压构件计算 长细比: i ul i 0 ==L λ 钢管支撑的使用长度l=2800 钢管支撑的计算长度 l l 0μ= 22.1299.112n 1=== ++μ 12 I I n ==18.51/9.32=1.99 8 .1656.202800 22.1i l ===?μλ

i 为回转半径 1.1.1 钢管受压稳定验算 根据《钢结构设计规范》得 285.0=? N A N 5.26838215438285.0f ][2=??=??=? 其中2A 为套管截面积 1.2钢管受压强度验算 插销直径 14,管壁厚3.0mm ,管壁的端承面承压强度设计值 2mm /325fce N = 两个插销孔的管壁受压面积 13214.32 140.32a 22d =???=?=πA 2mm 管壁承受容许荷载 N A N 42900132325fce ][=?=?= 1.1.3插销受剪验算。插销两处受剪。 插销截面积 220mm 7.15314.37=?=A 插销承受容许荷载 N N 384257.153125227.153fy ][=??=??= 根据验算,取三项验算的最小容许荷载,故钢支撑在高度2800时的容许荷载为26838.5N 1.4 最大构件的荷载验算 本工程最大梁断面为200×1200mm ,顶撑间距为1300mm 最大板厚为150mm ,板的顶撑间距为1300×1300mm 铝模板自重22kg/㎡ 施工荷载按200 kg/㎡

膨胀螺栓抗拔计算书

膨胀螺栓拉拔力计算 该工程基本设计参数;基本风压值o ω=0.35KN/㎡,干挂石材通过膨胀螺栓与建筑结构连接。最不利龙骨分隔宽度为B=1.0米,圆立柱连接点之间的竖向间距3.0米、横向间距0.8米,每个连接点膨胀螺栓个数为4个。相应的风压高度变化系数z μ=1.0(本工程的场地类别属于B 类,计算高度小于10米),按7度抗震设防设计。按照国家行业标准《建筑抗震设计规范》GB 50011—2010、《金属与石材幕墙工程技术规范》JBJ —2001、《建筑结构荷载规范》GB 50009—2012,针对本工程的实际情况,对膨胀螺栓的允用强度进行计算和校核。 一、设计荷载与作用 石材设计中按50年需要考虑荷载与作用有;风荷载、地震作用分别计算如下。 1、风荷载标准值 o z s z k w w ***μμβ= 式中: k w :为作用在幕墙上的风荷载标准值(KN/㎡) z β :为z 高度处瞬时风压的阵风系数 s μ :为风荷载体形系数 z μ :为风压高度变化系数 o ω :基本风压(KN/㎡)

k w =1.7x1.3x1.0x0.35=0.7735KN/㎡ 2、风荷载设计值 W=k w x q γ k w ;是风荷载标准值 q γ;是风荷载分项系数,q γ=1.4 W=0.7735x1.4=1.0829KN/㎡ 3、地震作用 垂直于幕墙水平分布的地震作用 G a q e ek **=max β 式中:ek q :垂直于幕墙的水平地震作用力 e β:动力放大系数 max a :地震影响系数,按七度抗震设计 G :单位面积自重荷载 ek q =5.0x0.12x0.71=0.428KN/㎡ 4、荷载效应组合 水平作用效应组合系数;风荷载w ψ=1.0 地震作用e ψ=0.5 二、膨胀螺栓拉拔力计算 膨胀螺栓石材每个连接点的在风荷载作用下的水平力为 N=W*w ψ*A+e ψ*ek q =1.0829x1.0x3+0.5x0.428 =3.2487+0.214

膨胀螺栓选型计算_20141027

机械式膨胀螺栓选型计算 本计算的主要依据为《JGJ 145-2004混凝土结构后锚固技术规程》,所采用的膨胀螺栓尺寸 及规格符应合《GB/T 22795-2008混凝土用膨胀锚栓型式与尺寸》,本计算中采用膨胀螺栓的称呼主要目的与习惯上的描述一致,在以下计算中可简称为膨胀螺栓或螺栓或锚栓。本计算中所适用的膨胀螺栓主要结构如下图所示。 一、主要参数 1.1主要输入条件 膨胀螺栓螺杆材质 SS304膨胀螺栓螺杆力学性能等级 70 膨胀螺栓螺杆名义直径Dia M14mm 螺栓计算直径D 14mm 膨胀螺栓名义长度L 130mm 螺栓计算面积As 153.9mm 2混凝土强度等级C40螺栓特殊长度L 478.0mm 混凝土的厚度 900 mm 混凝土的厚度900.00mm 膨胀螺栓连接板在混凝土结构表面上的位置及尺寸参数 单个连接板上膨胀螺栓的数量 单个连接板螺栓数量2连接板类型A 根据连接板与混凝土的位置不同,连接板的类型(具体见下简图) Use Metric Units Use English Units 一个螺栓 四个螺栓 1-A 1-B 1-D 2-A 2-B 2-C 2-D A B C D 两个螺栓 HELP ME ! 螺栓特殊长度输入

膨胀螺栓连接板的设计尺寸 B1457.2mm 457.2mm B2203.2mm 203.2mm a1111mm 111mm a2111mm 111 mm a3--mm mm a4--mm mm S1111mm 111mm S2--mm mm C1127mm 127mm C2127mm 127mm 地震荷载 恒荷载活荷载风荷载水平地震竖向地震 单个连接板设计荷载N (见右图)40040015001500250公斤力400.0400.01500.01500.0250.0公斤力 设计地震设防裂度 8 单个连接板设计荷载组合N d (见右图)3570公斤力设计拉力与锚固地面的夹角 α (o ) 45o 当前设计荷载组合是否已经包含地震荷载组合 Yes 检查数据是否完整YES 最终结果 YES 说明:以上荷载组合根据《GB 5009-2012建筑结构荷载规范》及《GB 50011-2010建筑抗震设计规范》相关条文规定,选取可能的最不利的荷载组合类型,分别按荷载组合数据计算。 根据以上各项荷载组合类别分别计算,产生最大效应时对应的组合是荷载组合五在本计算过程中产生最大荷载效应时,荷载组合具体类型如下: 1.2*(恒荷载+0.5*活荷载)+1.4*风荷载_Factor *风荷载+1.3*水平地震荷载说明: 本页面所显示所有数据为荷载计算是荷载 组合五的数据及计算结果。 单个螺栓的设计荷载组合值F SD 1785公斤力单个螺栓设计荷载-拉力设计值N SD,012.62KN 单个螺栓设计荷载-剪力设计值V SD,0 12.62 KN 4-A 4-B 4-D 第一种荷载组合 第二种荷载组合 第三种荷载组合 第四种荷载组合 第五种荷载组合第六种荷载组合 第七种荷载组合第八种荷载组合 清除所有计算数据 快速计算所有荷载组合 检查输入数据是否完整

梁柱节点计算书

梁柱节点计算书 一、参考规范 《GB 50017-2003 钢结构设计规范》 《GB 50009-2001 建筑结构荷载规范》 《CECS 102:2002 门式钢架轻型钢结构设计规程》 二、构件几何信息 1)梁柱几何尺寸 边柱采用Z360~900x250x8x10 边梁采用h600~900x200x6x8 2)高强螺栓信息 采用10.9级M24摩擦型高强度螺栓连接,构件接触面采用处理方法为喷砂,摩擦面抗滑移系数μ=0.5,每个高强螺栓的预拉力为P=155kN。 高强螺栓数量:15 最外排螺栓到翼缘边的距离ef:45.0mm 高强螺栓到腹板边的距离ew:50.0mm 第2排螺栓和第3排螺栓间距a:100.0mm 高强螺栓排列参数 第1排高强螺栓到螺栓群形心的距离x1:195mm 第2排高强螺栓到螺栓群形心的距离x2:295mm 第3排高强螺栓到螺栓群形心的距离x3:395mm 第4排高强螺栓到螺栓群形心的距离x4:495mm 3)端板尺寸信息 端板厚度t=20mm,宽度b=260mm 4)节点形式 端板平放 三、材料特性 材料牌号:Q345B 屈服强度f y:345.0 MPa 抗拉强度设计值f:310 MPa 抗剪强度设计值f:180 MPa 弹性模量E:2.06x105 MPa 四、内力设计值 N=-133.20kN,V=45.90kN,M=413.50kN?m 五、验算 1)高强螺栓群承载力验算 (A)高强螺栓承载力设计值 高强螺栓抗拉承载力设计值Ntb=0.8P=180.0kN 高强螺栓抗剪承载力设计值Nvb=0.9*nf*μP=0.9x1x0.5x225=101.3kN (B)高强螺栓群承载力验算

膨胀螺栓选型计算_20160606

机械式膨胀螺栓选型计算 本计算书的主要计算依据为《JGJ 145-2004混凝土结构后锚固技术规程》,所采用的荷载组合根据《GB 5009-2012建筑结构荷载规范》及《GB 50011-2010建筑抗震设计规范》,所采用的膨胀螺栓尺寸及规格符应合《GB/T 22795-2008混凝土用膨胀锚栓型式与尺寸》,本计算中采用膨胀螺栓的称呼主要是为了与习惯上的描述一致,在以下计算中可简称为膨胀螺栓或螺栓或锚栓。本计算中所适用的膨胀螺栓主要结构如下图所示。一、主要参数 1.1主要输入条件 膨胀螺栓螺杆材质 SS304 膨胀螺栓螺杆力学性能等级70A 螺杆计算小径D 1 13.84mm 膨胀螺栓螺杆名义直径Dia M16mm 螺杆计算直径D 16mm 膨胀螺栓名义长度L 150mm 螺杆计算面积A s 150.33mm 2混凝土强度等级C35混凝土的厚度 15.748 英寸混凝土的厚度C t 400 mm 膨胀螺栓连接板在混凝土结构表面上的位置及尺寸参数 单个连接板上膨胀螺栓的数量 单个连接板螺栓数量 2连接板类型C 根据连接板与混凝土的位置不同,连接板的类型(具体见下简图) 145150250 Use Metric Units 一个螺栓 四个螺栓 1-A 1-B 1-D 2-A 2-B 2-C 2-D A B C D 两个螺栓 HELP ME ! 螺栓特殊长度输入 检查混凝土厚度 螺栓特殊材质输入 1-C 1-E 2-E E

膨胀螺栓连接板的设计尺寸 a13英寸76.2mm a23英寸76.2mm a33英寸76.2mm a43英寸76.2mm B110英寸254mm B26英寸152.4mm S14英寸101.6mm S2--英寸mm C14英寸101.6mm 请输入螺栓至混凝土边距C1检查数据是否完整 YES C24英寸101.6mm 请输入螺栓至混凝土边距C2 C3--英寸700mm 无边界混凝土,假定5倍螺栓有效长度C4--英寸 700mm 无边界混凝土,假定5倍螺栓有效长度 1.2载荷数据输入 请注意以下载荷的方向,荷载为拉力时按正常数据输入。当载荷为压力时,当为压力时按负值输入。 地震荷载输入参数恒荷载活荷载风荷载 水平地震竖向地震单个连接板设计荷载N (见右图) 2.20 2.205000.004000.003000.00磅力 1.00 1.002267.961814.371360.78公斤力 设计地震设防裂度8所属地设计地震分组第一组单个连接板设计荷载组合N d (见右图) 3448公斤力 设计拉力与锚固地面的夹角 α (o ) 47o 当前页面显示的设计荷载组合是否已经包含地震荷载组合Yes 最终结果 YES 说明:以上荷载组合根据《GB 5009-2012建筑结构荷载规范》及《GB 50011-2010建筑抗震设计规范》相关条文规定,选取可能出现的最不利的荷载组合类型,分别按不两只荷载组合数据难处锚固是否安全。 根据以上各项荷载组合类别分别计算,产生最大效应时对应的组合是荷载 组合五 在本计算过程中产生最大荷载效应时,其荷载组合具体类型如下: 4-A 4-B 4-D 第一种荷载组合第二种荷载组合 第三种荷载组合 第四种荷载组合 第五种荷载组合第六种荷载组合第七种荷载组合第八种荷载组合 清除所有计算数据 快速计算所有荷载组合 检查输入数据是否完整 显示荷载组合 隐藏荷载组合4-C 4-E

相关文档
最新文档