铝合金A357切削加工有限元模拟(1)

铝合金A357切削加工有限元模拟(1)
铝合金A357切削加工有限元模拟(1)

铝合金A357切削加工有限元模拟

1铝合金A357切削加工有限元模型

金属切削加工有限元模拟,是一个非常复杂的过程。这是因为实际生产中,影响加工精度、表面质量的因素很多,诸如:刀具的儿何参数、装夹条件、切削参数、切削路径等。这些因素使模拟过程中相关技术的处理具有较高的难度。本文建立的金属正交切削加工热力耦合有限元模型是基于以下的假设条件:

(1)刀具是刚体且锋利,只考虑刀具的温度传导;

(2)忽略加工过程中,由于温度变化引起的金相组织及其它的化学变化;

(3)被加工对象的材料是各向同性的;

(4)不考虑刀具、工件的振动;

(5)由于刀具和工件的切削厚度方向上,切削工程中层厚不变,所以按平面应变来模拟;

1.1材料模型

1.1.1A357的Johnson-Cook 本构模型

材料本构模型用来描述材料的力学性质,表征材料变形过程中的动态响应。在材料微观组织结构一定的情况下,流动应力受到变形程度、变形速度、及变形温度等因素的影响非常显著。这些因素的任何变化都会引起流动应力较大的变动。因此材料本构模型一般表示为流动应力与应变、应变率、温度等变形参数之间的数学函数关系。建立材料本构模型,无论是在制定合理的加工工艺方面,还是在金属塑性变形理论的研究方面都是极其重要的。在以塑性有限元为代表的现代塑性加工力学中,材料的流动应力作为输入时的重要参数,其精确度也是提高理论分析可靠度的关键。在本课题研究中,材料本构模型是切削加工数值模拟的必要前提,是预测零件铣削加工变形的重要基础,只有建立了大变形情况下随应变率和温度变化的应力应变关系,才能够准确描述材料在切削加工过程的塑性变形规律,继而才能在确定的边界条件和切削载荷下预测零件的变形大小及趋势。

在切削过程中,工件在高温、大应变下发生弹塑性变形,被切削材料在刀具的作用下变成切屑时的时间很短,而且被切削层中各处的应变、应变速率和温度并不均匀分布且梯度变化很大。因此能反映出应变、应变速率、温度对材料的流动应力影响的本构方程,在切削仿真中极其关键。当前常用的塑性材料本构模型主要有:Bodner-Paton 、Follansbee-Kocks 、Johnson-Coo 、 Zerrilli-Armstrong 等模型,而只有Johnson-Cook 模型描述材料高应变速率下热粘塑性变形行为。Johnson —Cook 模型认为材料在高应变速率下表现为应变硬化、应变速率硬化和热软化效应,Johnson —Cook 模型如下所示:

01ln 1m n r m r T T A B c T T εσεε??????????-?? ?????=++- ????? ?-?????????

? 式中第一项描述了材料的应变强化效应,第二项反映了流动应力随对数应变速率增加的关系,第三项反映了流动应力随温度升高指数降低的关系。o ε?

、Tr 分别表示参考应变速率和参考温度,Tm 为材料熔点。式中A 、B 、n 、C 、m 、D 、k 是7 个待定参数;A 、B 、n 表征材

料应变强化项系数;C 表征材料应变速率强化项系数;m 表征材料热软化系数;t θ,m θ分别为常温材料熔点。

1.1.2材料失效准则

实现切屑从工件分离本文采用的是剪切失效模型。剪切失效模型是基于等效塑性应变在积分点的值,当损伤参数达到1时,单元即失效,失效参数定义如下:

0pl pl pl f εεωε---+∑?=

式中:ω为失效参数,0pl ε-为等效塑性应变初始值,pl ε-?为等效塑性应变增量,pl

f ε

-为失

效应变。失效应变0pl ε-设定以来于以下几个方面:依据塑性应变率,无量纲压应力与偏应力之比p/q(p 为压应力,q 为Mises 应力),温度,预定义域变量。这里采用Johnson —Cook 模型定义失效应变。

pl f ε-=12345exp 1ln 1pl o p d d d d d q εθε?-Λ??????? ????????? ?+++ ??? ????? ????? ???????

式中:1d —5d 为低于转变温度的条件下测得的实效常数。o ε?

为参考应变率, pl ε

?-为塑性应

变率。θΛ由下式确定: 0()/()1transition transiton melt transition transition melt melt for for for θθθθθθθθθθθ??--≤≤???

θ是当前温度,melt θ是熔点,transition θ是室温。

下图描述了材料在遭受破坏时的应力应变的特征。各向同性强化弹塑性材料的破坏有两种形式:屈服应力的软化和弹性的退化,图1.1中实线代表了材料已经破坏的应力应变的响应,而虚线是当破坏不存在的时候的应力应变响应。

图1.1累进损伤退化应力应变

图1.1中yo σ和0pl ε为材料开始损伤时的屈服应力和等效塑性应变。pl f ε是材料失效时即图中D=1时的等效塑性应变。材料失效时的等效塑性应变pl

f ε依赖于单元的特征长度,不能作为描述材料损伤演化的准则。相反,材料损伤演化的准则又等效塑性位移pl u 或者断裂耗散能量f G 决定。

当材料开始损伤破坏时,应力应变曲线已经不能准确的描述材料的行为。继续应用该应力应变曲线会导致应变集中,变化过于依赖建模时所画的网格,以致当网格变密后耗散能量反而降低。Hillerborg 能量失效法被提出用应力位移响应曲线来表征破坏过程减少了分析对网格的依赖性。利用脆性断裂概念定义一个使单元破坏的能量Gf 作为材料的参数。通过这种方法,损伤开始的软化效应是一种应力位移响应而不是应力应变响应。破坏能量有下式表示: 0f G pl pl f f pl pl u pl y y o L d du εεσεσ==?

? (2.12) 表达式中的pl u 为等效塑性位移,它描述了当损伤开始之后裂纹变化的屈服应力,在损伤开始之前pl u =0.在损伤开始之后pl u =L pl ε,L 为与积分点相关的单元特征长度,单元特征长度的定义基于单元的集合形状,平面单元长度为积分点区域面积的平方根,而立方体单元长度为积分点区域体积的立方根。基于有效塑性位移定义损伤演化用Linear 方法定义即如下图所示:

图错误!文档中没有指定样式的文字。.2线性损伤演化 pl pl pl pl f f L u d u u ε?==

该准则使有效塑性位移达到pl u =pl f u 时,材料的刚度完全丧失,模型的失效网格被自动删除,

也就是材料此时发生断裂,切屑开始形成错误!未找到引用源。。

1.1.3 A357与刀具材料参数

A357铝合金,密度ρ=2680Kg/m3,弹性模量E=79GP ,泊松比μ=0.33其他参数如下表 刀具使用的是硬质合金,密度ρ=15000Kg/m3,弹性模量E=210GP ,泊松比μ=0.22其其它参数如下表

表1.1 A357的化学成分

合金 AL

Si Mg Ti Mn Be Fe A357(%)

基体 6.5~7.0 0.55~0.60 0.1~0.2

0.1~0.2 0.04~0.07 ≤0.08 表1.2 A357热导率

θ,K 300

400 500 600 700 800 λ,W/(m.℃)

18 19 20 20.6 21.6 22.2 表1.3 A357比热容

θ,K

300 400 500 600 700 800 C ,J/(Kg K ) 253.0 259.0

265.2 271.6 278.1 285.4

表1.4 A357线膨胀系数

θ,K

300 400 500 600 700 800 α,10-6K 14.26 14.78 15.31 15.85 16.43 17.06

表1.5 A357 Johnson-Cook 模型材料参数

材料 A (Mpa )

B (Mpa ) n c m A357

370.4 1798.7 0.73315 0.0128 1.5282 表1.5 刀具材料参数

杨氏模量

泊松比(Mpa ) 线膨胀系数(m/m.℃) 比热(J/kg. ℃) 导热率(W/m.k) 8E+11 0.22 4.7E-6 200 4.6E1

1.2摩擦模型

金属切削过程中,刀具前刀面的摩擦状态非常复杂,通常把前刀面得摩擦区分为粘结区和滑动区,粘结区的摩擦状态与材料的临界剪应力有关,滑动区可近似认为摩擦系数为常值可以用下式来表示:

c n s min τμστ=(,) (2.14) 式中:c τ为接触面的滑动剪切应力;μ为摩擦系数;n σ为接触面上的压力;s τ为材料的临界屈服压力。

1.2.1质量放大

质量放大可以在不人为的提高加载速率的情况下缩短计算时间。对于含有率相关材料或率相关阻尼的问题,由于材料的应变率与加载速率成正比,所以不能以提高加载速率的方法来减少计算成本,只能用质量放大的方法。稳定时间增量的表达式如下:

e e d L t C ?=== 式中,e L 为特征单元长度,d C 为材料的膨胀波速,E 为材料的弹性模量,ρ为材料的泊松比。从式中可以看出将材料密度增加2

n 倍,则材料波速就会下降n 倍,从而将稳定时间增加量提高n 倍。当全局的稳定极限增加时,进行同样的分许所需要的增量步就会减少,所需的计算时间也会相应减少,这就是质量放大的目的。

本次模拟中E=79000000pa, ρ=2680kg/m3 e L =0.00001m 所以增量步时间要取5.8E-8 s 只有按这个数值计算才是准确的,所以一个计算事例会话费很多时间。

但是人为的提高加载速率和放大质量对模型具有相同的影响,即会提高模型的惯性力,使动态效果增加。因此无论是人为的增加加载速率还是用质量放大都是有一定的限度的,过

大的质量放大系数和过度提高加载速率都有可能导致错误的结果。在实际的模拟过程中,如何确定一个合理的放大系数或者一个合理的加载速率是非常重要的问题,这在很大程度上依赖于分析者的经验。由于切削仿真是一个比较复杂,单元量较大且是三维六面体单元,同时计算时间比较长,所以计算量比较大。在这里我们通过大量的对比分析,采用适当的质量放大系数,保证计算结果精确度的同时尽可能的加快计算速度。

2 abaqus商用仿真软件中限元模型建立

2.1建立部件

(本文采用的统一单位:N, Pa, m, s, K, J 软件版本:6.8-1)(K是华氏温度室温的20°C就是297K)

1.启动ABAQUS,选择主菜单中的Part选项,选择下拉菜单,单击Create,如图2-1-1 所示。

图2-1-1

2.创建未变形切屑模型。(就是切削下来的0.1mm的切削层)在弹出的对话框中,设定模型的名称为CHIP,在建模空间选项中选择2DPlanar.类型选择Deformable,基本特征选择Shell,近似尺寸选择。0.01。点击Continue进入绘制草图步骤。

图2-1-2

在随后出现的草图绘制模块中,按照图2-1-3所示的尺寸建立一个平面图;(图中100E-6m 就是你要求的初始分析的切削厚度0.1mm)去切削长度为2E-3m(如果建立15mm的模型就会很大对加工精度没有太大作用反而影响计算时间)

图2-1-3

点击Done完成上面的未变形切削模型的绘制。

3.创建分离线(就是刀具切削时未变形切屑和坯料连接的部分即割断部分尺寸非常小)。用同样的方法打开创建零部件对话框,给零件起一个名称为JOINT, 在建模空间选项中选择2DPlanar.类型选择Deformable,基本特征选择Shell,近似尺寸选择0.01。点击Continue 进入绘制草图步骤。绘制一个矩形线框,长度为0.002,宽度为5E-6。为了以后的装配方便将矩形右下角的顶点设置在原点位置,点击Done完成上面的未变形切削模型的绘制。

4.创建工件的几何模型。(就是把坯料切下来以后剩下的毛坯)用同样的方法打开创建零部件对话框,给零件起一个名称为WORK_PIECE, 在建模空间选项中选择2DPlanar.类型选择Deformable,基本特征选择Shell,近似尺寸选择0.01。点击Continue进入绘制草图步骤。绘制一个矩形线框,长度为0.002,宽度为6E-4。为了以后的装配方便将矩形右下角的顶点设置在原点位置,点击Done完成上面的未变形切削模型的绘制。

(以上创建的未变形切屑模型、分离线和工件的几何模型通过一定的关系连接起来就是一个完整的毛坯定义,也可以用其他的定义方式,不过这样的定义比较详细计算精度也高一些)

5.创建刀具模型。按照以上方法再次创建一个名为CULTER的2D平面可变模型,近似尺寸选择0.01。进入草绘绘制模板中,按照图2-1-4所示尺寸绘制,(刀具模型重要的就是前角后角大小和它与坯料作用的部分所以模型中值体现出您设置的的角度而并没有按照4X4X4画出,那样的话模型就会很大,浪费计算时间而且不会对计算精度有任何提高)绘制完后点击Done完成上面的未变形切削模型的绘制。

有限元分析与应用详细例题

《有限元分析与应用》详细例题 试题1:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比 较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 一.问题描述及数学建模 无限长的刚性地基上的三角形大坝受齐顶的水压作用可看作一个平面问题,简化为平面三角形受力问题,把无限长的地基看着平面三角形的底边受固定支座约束的作用,受力面的受力简化为受均布载荷的作用。 二.建模及计算过程 1. 分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算 下面简述三节点常应变单元有限元建模过程(其他类型的建模过程类似): 1.1进入ANSYS 【开始】→【程序】→ANSYS 10.0→ANSYS Product Launcher →change the working directory →Job Name: shiti1→Run 1.2设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK 1.3选择单元类型 单元是三节点常应变单元,可以用4节点退化表示。 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 42 →OK (back to Element Types window)→Options… →select K3: Plane Strain→OK→Close (the Element Type window) 1.4定义材料参数

有限元分析及应用大课后复习

有限元分析及应用作业报告

目录 有限元分析及应用作业报告....................................... I 目录 ........................................................ II 试题1 . (1) 一、问题描述 (1) 二、几何建模与分析 (2) 三、第1问的有限元建模及计算结果 (2) 四、第2问的有限元建模及计算结果 (7) 五、第3问的有限元建模及计算结果 (13) 六、总结和建议 (16) 试题5 (17) 一、问题的描述 (17) 二、几何建模与分析 (18) 三、有限元建模及计算结果分析 (18) 四、总结和建议 (26) 试题6 (27) 一、问题的描述 (27) 二、几何建模与分析 (27) 三、有限元建模及计算结果分析 (27) 五、总结和建议 (35)

试题1 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 图1-1模型示意图及划分方案

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数:按以上假设大坝材料为钢,设定:ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 → OK 4)生成几何模型: a. 生成特征点:ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS→依次输入三个点的坐标:

有限元分析试题(同济)

同济大学本科课程期终考试统一命题纸A卷 2007—2008学年第二学期 一.是非题(认为该题正确,在括号中打√;该题错误,在括号中打×。)(每小题2分) (1)用加权余量法求解微分方程,其权函数V和场函数u的选择没有任何限制。()(2)四结点四边形等参单元的位移插值函数是坐标x、y的一次函数。()(3)在三角形单元中,其面积坐标的值与三结点三角形单元的结点形函数值相等。()(4)二维弹性力学问题的有限元法求解,其收敛准则要求试探位移函数C1连续。()(5)有限元位移法求得的应力结果通常比应变结果精度低。()(6)等参单元中Jacobi行列式的值不能等于零。()(7)在位移型有限元中,单元交界面上的应力是严格满足平衡条件的。()(8)四边形单元的Jacobi行列式是常数。()(9)利用高斯点的应力进行应力精度的改善时,可以采用与位移插值函数不同结点的形函数进行应力插值。()(10)一维变带宽存储通常比二维等带宽存储更节省存储量。()二.单项选择题(共20分,每小题2分) 1 在加权余量法中,若简单地利用近似解的试探函数序列作为权函数,这类方法称为 ________________。 (A)配点法(B)子域法(C)伽辽金法 2 等参变换是指单元坐标变换和函数插值采用______的结点和______的插值函数。 (A)不相同,不相同(B)相同,相同(C)相同,不相同(D)不相同,相同 3 有限元位移模式中,广义坐标的个数应与___________相等。 (A)单元结点个数(B)单元结点自由度数(C)场变量个数 4 采用位移元计算得到应力近似解与精确解相比较,一般___________。 (A)近似解总小于精确解(B)近似解总大于精确解(C)近似解在精确解上下震荡(D)没有规律 5 如果出现在泛函中场函数的最高阶导数是m阶,单元的完备性是指试探函数必须至少 是______完全多项式。 (A)m-1次(B)m次(C)2m-1次 6 与高斯消去法相比,高斯约当消去法将系数矩阵化成了_________形式,因此,不用进 行回代计算。 (A)上三角矩阵(B)下三角矩阵(C)对角矩阵 7 对称荷载在对称面上引起的________________分量为零。 (A)对称应力(B)反对称应力(C)对称位移(D)反对称位移 8 对分析物体划分好单元后,__________会对刚度矩阵的半带宽产生影响。 (A)单元编号(B)单元组集次序(C)结点编号 9 n个积分点的高斯积分的精度可达到______阶。 (A)n-1 (B)n(C)2n-1 (D)2n 10 引入位移边界条件是为了消除有限元整体刚度矩阵K的__________。 (A)对称性(B)稀疏性(C)奇异性 三.简答题(共20分,每题5分)

有限元仿真技术的发展及其应用

有限元仿真技术的发展及其应用 许荣昌 孙会朝(技术研发中心) 摘 要:介绍了目前常用的大型有限元分析软件的现状与发展,对其各自的优势进行了分析,简述了有限元软件在冶金生产过程中的主要应用领域及其发展趋势,对仿真技术在莱钢的应用进行了展望。 关键词:有限元仿真 冶金生产 发展趋势 0 前言 自主创新,方法先行,创新方法是自主创新的根本之源,同时,随着市场竞争的日益激烈,冶金企业的产品设计、工艺优化也由经验试错型向精益研发方向发展,而有限元仿真技术正是这种重要的创新方法。近年来随着计算机运行速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的应用,比如,有限元分析在冶金、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域正在发挥着重要的作用,主要表现在以下几个方面:增加产品和工程的可靠性;在产品的设计阶段发现潜在的问题;经过分析计算,采用优化设计方案,降低原材料成本;缩短产品研发时间;模拟试验方案,减少试验次数,从而减少试验成本。与传统设计相比,利用仿真技术,可以变经验设计为科学设计、变实测手段为仿真手段、变规范标准为分析标准、变传统分析技术为现代的计算机仿真分析技术,从而提高产品质量、缩短新产品开发周期、降低产品整体成本、增强产品系统可靠性,也就是增强创新能力、应变能力和竞争力(如图1、2) 。 图1 传统创新产品(工艺优化)设计过程为大循环 作者简介:许荣昌(1971-),男,1994年毕业于武汉钢铁学院钢铁冶金专业,博士,高级工程师。主要从事钢铁工艺技术研究工 作。 图2 现代CA E 创新产品(工艺优化)设计过程为小循环 1 主要有限元分析软件简介 目前,根据市场需求相继出现了各种类型的应用软件,其中NASTRAN 、ADI N A 、ANSYS 、 ABAQUS 、MARC 、MAGSOFT 、COS MOS 等功能强大的CAE 软件应用广泛,为实际工程中解决复杂的理论计算提供了非常有力的工具。但是,各种软件均有各自的优势,其应用领域也不尽相同。本文将就有限元的应用范围及当今国际国内C AE 软件的发展趋势做具体的阐述,并对与冶金企业生产过程密切相关的主要有限元软件ANSYS 、AB AQUS 、MARC 的应用领域进行分析。 M SC So ft w are 公司创建于1963年,总部设在美国洛杉矶,M SC M arc 是M SC Soft w are 公司于1999年收购的MARC 公司的产品。MARC 公司始创于1967年,是全球首家非线性有限元软件公司。经过三十余年的发展,MARC 软件得到学术界和工业界的大力推崇和广泛应用,建立了它在全球非线性有限元软件行业的领导者地位。随着M arc 软件功能的不断扩展,软件的应用领域也从开发初期的核电行业迅速扩展到航空、航天、汽车、造船、铁 道、石油化工、能源、电子元件、机械制造、材料工程、土木建筑、医疗器材、冶金工艺和家用电器等,成为许多知名公司和研究机构研发新产品和新技术的重要工具。在航空业M SC N astran 软件被美国联邦航空管理局(F AA )认证为领取飞行器适 13

基于ansys的切削加工受力分析

1绪论 金属切削是机械制造行业中的一类重要的加工手段。美国和日本每年花费在切削加工方面的费用分别高达1000 亿美元和10000亿日元。中国目前拥有各类金属切削机床超过300 万台, 各类高速钢刀具年产量达 3.9 亿件, 每年用于制造刀具的硬质合金超过5000吨。可见切削加工仍然是目前国际上加工制造精密金属零件的主要办法。19世纪中期, 人们开始对金属切削过程的研究, 到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理, 对其研究一直是国内外研究的重点和难点。过去通常采用实验法, 它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。本文利用材料变形的弹塑性理论, 建立工件材料的模型,借助大型商业有限元软件ANSYS, 通过输入材料性能参数、建立有限元模型、施加约束及载荷、计算, 对正交金属切削的受力情况进行了分析。以前角10°、后角8°的YT 类硬质合金刀具切削45号钢为实例进行计算。切削厚度为 2 mm时形成带状切屑。提取不同阶段应力场分布云图, 分析了切削区应力的变化过程。这种方法比传统实验法快捷、有效, 为金属切削过程的研究开辟了一条新的道路。 2设计要求 根据有限元分析理论,根据ANSYS的求解步骤,建立切削加工的三维模型。对该模型进行网格划分并施加约束边界条件,最后进行求解得出应力分布云图,并以此云图分析得出结论。 3金属切削简介[3] 金属切削过程,从实质讲,就是产生切屑和形成已加工表面的过程。产生切屑和形成已加王表面是金属切削时密切相关的两个方面。 3.1切削方式 切削时,当工件材料一定,所产生切屑的形态和形成已加工表面的特性,在很大程度上决定于切削方式。切削方式是由刀具切削刃和工件间的运动所决定,可分为:直角切削、斜角切削和普通切削三种方式。 3.2切屑的基本形态 金属切削时,由于工件材料、刀具几何形状和切削用量不同,会出现各种不同形态的切屑。但从变形观点出发,可归纳为四种基本形态。 1.带状切屑切屑呈连续状、与前刀面接触的底层光滑、背面呈毛葺状。

板料成形中有限元模拟技术的应用

板料成形中有限元模拟技术的应用 衡 猛 周建忠 (江苏大学机械工程学院,江苏镇江212013) 摘要:使用传统的靠经验和反复修模试模的方法研发模具,不仅难以掌握板料成形的真实过 程,而且会造成人、财、物、时的浪费。将有限元技术引入冲压成形模拟中是解决这一问题行之有效的方法,对板料冲压成形模拟进行了讨论,并重点介绍了Dynaform 软件的应用。 关键词:有限元模拟;Dynaform ;板料成形;汽车覆盖件模具 汽车工业是国民经济的重要产业之一,而覆盖件的研发周期长是阻碍新车型尽快推向市场的重要瓶颈。目前覆盖件及模具的设计制造工艺、先进装备及CAD/CAM 的应用已取得了重要进展,缩短了设计制造周期、提高了产品的质量、减轻了劳动强度,但CAE 的发展略显滞后。从模具开发的整个过程来看,设计初期的模具工艺结构、冲压工艺参数的合理选择,能有效地减少调试修模工作量,缩短了开发周期,降低模具成本。因而,推广应用CAE 技术,研究板料冲压的仿真成形是摆在覆盖件及模具行业 收稿日期:2003-10-23 第一作者简介:衡猛,男,1979年生,硕士研究生。 面前的重要课题。 1 板料冲压成形模拟的发展[1~4] 板料成形数值模拟研究始于20世纪60年代,之前人们主要用试验分析的方法了解塑性成形的性能,为设计提供依据。在20世纪70年代中期到80年代中期,主要是建立一些简单的有限元分析模型和应用,包括二维平面问题和轴对称问题,这阶段大多采用薄膜单元。20世纪80年代中后期开始三维板料成形分析研究,各种板壳单元被应用于成形分析。1973年,Kabayashi 采用刚塑性有限元法模拟了板料冲压成形过程。1976年,Weifi 用弹塑性有限元法模拟圆形板料在半球形凸模作用下的胀形和 最终,以该零件凹模为例,根据LOM 原型翻制的硅胶模、砂型以及熔射并补强后的凹模(表面硬度50~55HRC )如图15~17所示 。 图15 硅胶模—凹模 图16 砂型— 凹模 图17 带不锈钢壳层的硬模—凹模 3 结束语 采用与快速原型相结合的等离子熔射快速制造金属硬模新技术,成功地在短时间内制造出表面具有高耐磨性、高硬度的不锈钢模具。实践证明,该技术在制模周期、成本、模具精度和模具寿命几个关联因素中找到了一个很好的结合点,能满足当前汽车工业车型变化极快,换型时间短的需要。 后续试冲压结果表明,冲压成形有限元模拟对于冲压模具设计有良好的指导作用,采用LOM 制作原型有良好的复型性。参考文献: [1] 张海鸥.金属模具快速制造技术,电加工与模具,2002(2):6~9[2] 王伊卿,朱东波,卢秉恒.电弧喷涂制造汽车覆盖件模具,模具 工业,2001(9):41~44 [3] 徐达,宋玉华,张人佶,等.基于快速成形技术的汽车覆盖件金 属模具制造.清华大学学报(自然科学版),2000,40(5):1~5 设计?研究 《电加工与模具》2004年第2期

铝合金的牌号、状态和性能解析

1铝的基本特性与应用范围 铝是元素周期表中第三周期主族元素,原子序数为13,原子量为26.9815。 铝具有一系列比其他有色金属、钢铁、塑料和木材等更优良的特性,如密度小,仅为2.7 g / cm3,约为铜或钢的1/3;良好的耐蚀性和耐候性;良好的塑性和加工性能;良好的导热性和导电性;良好的耐低温性能,对光热电波的反射率高、表面性能好;无磁性;基本无毒;有吸音性;耐酸性好;抗核辐射性能好;弹性系数小;良好的力学性能;优良的铸造性能和焊接性能;良好的抗撞击性。此外,铝材的高温性能、成型性能、切削加工性、铆接性以及表面处理性能等也比较好。因此,铝材在航天、航海、航空、汽车、交通运输、桥梁、建筑、电子电气、能源动力、冶金化工、农业排灌、机械制造、包装防腐、电器家具、日用文体等各个领域都获得了十分广泛的应用,下表列出了铝的基本特性及主要应用领域。 铝的基本特性及主要应用领域

3 变形铝合金分类、牌号和状态表示法 3. 1变形铝合金的分类 变形铝合金的分类方法很多,目前,世界上绝大部分国家通常按以下三种方法进行分类。 ⑴按合金状态图及热处理特点分为可热处理强化铝合金和不可热处理强化铝合金两大类。不可热处理强化铝合金(如:纯铝、Al-Mn、Al-Mg、Al-Si系合金)和可热处理强化铝合金(如:Al-Mg-Si、Al-Cu、Al-Zn-Mg 系合金)。 ⑵按合金性能和用途可分为:工业纯铝、光辉铝合金、切削铝合金、耐热铝合金、低强度铝合金、中强度铝合金、高强度铝合金(硬铝)、超高强度铝合金(超硬铝)、锻造铝合金及特殊铝合金等。 ⑶按合金中所含主要元素成分可分为:工业纯铝(1×××系),Al-Cu合金(2×××系),Al-Mn合金(3×××系),Al-Si合金(4×××系),AL-Mg合金(5×××系),Al-Mg-Si合金(6×××系),Al-Zn-Mg合金(7×××系),Al-其它元素合金(8×××系)及备用合金组(9×××系)。 这三种分类方法各有特点,有时相互交叉,相互补充。在工业生产中,大多数国家按第三种方法,即按合金中所含主要元素成分的4位数码法分类。这种分类方法能较本质的反映合金的基本性能,也便于编码、记忆和计算机管理。我国目前也采用4位数码法分类。 3. 2中国变形铝合金的牌号表示法 根据GB/T16474 —1996“变形铝及铝合金牌号表示方法”,凡化学成分与变形铝及铝合金国际牌号注册协议组织(简称国际牌号注册组织)命名的合金相同的所有合金,其牌号直接采用国际四位数字体系牌号,

铝合金加工参数

铝合金加工参数 由于在加工过程中发现工件刀纹不致影响表面质量,查找了一些资料,作了一些摘要: 1.由于铝合金强度和硬度相对较低,塑性较小,对刀具磨损小,且热导率较高,使切削温度较低,所以铝合金的切削加工性较好,属于易加工材料,切削速度较高,适于高速切削.但铝合金熔点较低,温度升高后塑性增大,在高温高压作用下,切削界面摩擦力很大。容易粘刀;特别是退火状态的铝合金,不易获得低的表面粗糙度。 2.与钢材和黄铜相比,铝合金的特点,一是材质软,刚性差,二是弹性模量低,这两个因素显著影响了铝合金的切削加工性。因此,在加工铝合金工件时,必须充分地夹紧和支撑工件,并保持刀具锋利;否则,工件往往会有离开切削刀具的倾向。有时工件的表面出现不规则的槽痕和光亮的挤压斑,一种可能是由于刀具对工件的压力不正常引发的,还有一种可能是由于夹持不牢固而引起振颤时,刀具在工件的表面作间隙式的磨蹭,发生挤压现象和粉状切削;然后,当间隙或弹性消失时,刀具就咬人工件的表面,啃出槽痕。 3.为了获得光洁的工件表面,尽可能采用粗切削和精切削的组合,因为各种合格的工件毛坯总会有一些氧化层,致使刀具受到相当程度的磨损。如果最后切削工序采用抛光过的锋利刀具进行精细切削,就能达到以上要求。 4.通常把铝合金的切削性分为两类:1类是指工业纯铝和硬度小于80HB的退火状态铝合金;2类是指淬火时效状态的变形铝合金。而铝合金的切削加工工艺参数与此类别有关。 高速钢刀具和硬质合金刀具的典型切削参数 操作工具 材料 切削 类别 切削速度 (m/min) 副后 角(°) 纵向前 角(°) 进给量 (mm/r) 切削深度 (mm) 冷却剂 粗车高速 钢 1 2 200-400 100-250 9-12 8-10 30-40 20-30 ≤1 0.2-0.5 3-15 3-15 无 无 硬质 合金 1 2 600-1200 200-400 7-10 7-10 20-30 10-20 0.3-0.6 0.25-0.6 3-15 3-15 无 无 精车高速 钢 1 2 400-900 200-500 8-10 7-9 40-50 30-40 0.05-0.3 0.03-0.25 0.3-2.5 0.3-2.5 乳液或 切削油 硬质 合金 1 2 ≤2400 250-700 8-10 7-9 20-30 10-20 ≤0.15 0.05-0.1 0.3-2.5 0.3-2.5 乳液或 切削油

北京科技大学有限元试题及答案

一 判断题(20分) (×)1. 节点的位置依赖于形态,而并不依赖于载荷的位置 (√)2. 对于高压电线的铁塔那样的框架结构的模型化处理使用梁单元 (×)3. 不能把梁单元、壳单元和实体单元混合在一起作成模型 (√)4. 四边形的平面单元尽可能作成接近正方形形状的单元 (×)5. 平面应变单元也好,平面应力单元也好,如果以单位厚来作模型化 处理的话会得到一样的答案 (×)6. 用有限元法不可以对运动的物体的结构进行静力分析 (√)7. 一般应力变化大的地方单元尺寸要划的小才好 (×)8. 所谓全约束只要将位移自由度约束住,而不必约束转动自由度 (√)9. 同一载荷作用下的结构,所给材料的弹性模量越大则变形值越小 (√)10一维变带宽存储通常比二维等带宽存储更节省存储量。 二、填空(20分) 1.平面应力问题与薄板弯曲问题的弹性体几何形状都是 薄板 ,但前者受力特点是: 平行于板面且沿厚度均布载荷作用 ,变形发生在板面内; 后者受力特点是: 垂直于板面 的力的作用,板将变成有弯有扭的曲面。 2.平面应力问题与平面应变问题都具有三个独立的应力分量: σx ,σy ,τxy ,三个独立的应变分量:εx ,εy ,γxy ,但对应的弹性体几何形状前者为 薄板 ,后者为 长柱体 。3.位移模式需反映 刚体位移 ,反映 常变形 ,满足 单元边界上位移连续 。 4.单元刚度矩阵的特点有:对称性 , 奇异性 ,还可按节点分块。 5.轴对称问题单元形状为:三角形或四边形截面的空间环形单元 ,由于轴对称的特性,任意一点变形只发生在子午面上,因此可以作为 二 维问题处理。 6.等参数单元指的是:描述位移和描述坐标采用相同的形函数形式。等参数单元优点是:可以采用高阶次位移模式,能够模拟复杂几何边界,方便单元刚度矩阵和等效节点载荷的积分运算。 7.有限单元法首先求出的解是 节点位移 ,单元应力可由它求得,其计算公式为 {}{} [][]e D B σδ=。(用符号表示即可) 8.一个空间块体单元的节点有 3 个节点位移: u ,v ,w 9.变形体基本变量有位移应变应力 基本方程 平衡方程 物理方程 几何方程 10.实现有限元分析标准化和规范化的载体就是单元

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

ABAQUS金属切削实例

CAE联盟论坛精品讲座系列【二】 ABAQUS金属切削实例 主讲人:fuyun123CAE联盟论坛—ABAQUS版主 背景介绍: 切削过程是一个很复杂的工艺过程,它不但涉及到弹性力学、塑性力学、断裂力学,还有热力学、摩擦学等。同时切削质量受到刀具形状、切屑流动、温度分布、热流和刀具磨损等影响,切削表面的残余应力和残余应变严重影响了工件的精度和疲劳寿命。利用传统的解析方法,很难对切削机理进行定量的分析和研究。计算机技术的飞速发展使得利用有限元仿真方法来研究切削加工过程以及各种参数之间的关系成为可能。近年来,有限元方法在切削工艺中的应用表明,切削工艺和切屑形成的有限元模拟对了解切削机理,提高切削质量是很有帮助的。这种有限元仿真方法适合于分析弹塑性大变形问题,包括分析与温度相关的材料性能参数和很大的应变速率问题。ABAQUS作为有限元的通用软件,在处理这种高度非线性问题上体现了它独到的优势,目前国际上对切削问题的研究大都采用此软件,因此,下面针对ABAQUS的切削做一个入门的例子,希望初学者能够尽快入门,当然要把切削做好,不单单是一个例子能够解决问题的,随着深入的研究,你会发现有很多因素影响切削的仿真的顺利进行,这个需要自己去不断探索,在此本人权当抛砖引玉,希望各位切削的大神们能够积极探讨起来,让我们在切削仿真的探索上更加精确,更加完善。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 切削参数:切削速度300m/min,切削厚度0.1mm,切削宽度1mm 尺寸参数:本例作为入门例子,为了简化问题,假定刀具为解析刚体,因为在切削过程中,一般我们更注重工件最终的切削质量,如应力场,温度场等,尤其是残余应力场,而如果是要进行刀具磨损或者涂层刀具失效的分析的话,那就要考虑建立刀具为变形体来进行分析了。工件就假定为一个长方形,刀具设置前角10°,后角6°,具体尺寸见INP文件。 下面将切削过程按照ABAQUS的模块分别进行叙述,并对注意的问题作出相应的解释。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 建模:建模过程其实没有什么好注意的,对于复杂的模型,我一般用其他三维软件导入进来,注意导入的时候尽量将格式转化为IGES格式,同时要把一些不必要的东西去掉,比如一些尖角,圆角之类的,如果不是分析那个部位的应力集中的话就没必要导入它,如果导入,还要进行一些细化,大大降低了计算的效率。我一般做的是二维切削,模型相对比较简单,所以一般都是直接在ABAQUS中进行建模。由于此处为刚体,要在part里面建立刚体参考点,而且注意不要在装配模块建立参考点,因为有时候ABAQUS找不到装配模块相应的参考点。 1、工件

有限元分析及应用例子FEM14

第9章受内外压筒体的有限元建模与应力变形分析(Project 2) 计算分析模型如图9-1 所示, 习题文件名: cylinder。 X (a) σO=100N/mm2 σI =200N/mm2 γ =7.85g/cm3 μ =0.3 E =210000N/mm2 (b) 图9-1 计算分析模型 9.1进入ANSYS 程序→ANSYSED 6.1ed →Interactive →change the working directory into yours→input Initial jobname: cylinder→Run 9.2 设置计算类型 ANSYS Main Menu: Preferences…→select Structural →OK 9.3 选择单元类型 ANSYS Main Menu: Preprocessor → Element Type →Add/Edit/Delete… → Add… →select Solid Quad 4node 42 →Apply →select Solid Brick 8node 45 → OK → Close (the Element

Types window) 9.4定义材料参数 ANSYS Main Menu: Preprocessor →Material Props →Materials Models →Structural→Lineal →Elastic→Isotropic…→input EX:2.1e5, PRXY:0.3→ OK 关闭材料定义窗口 9.5构造筒体模型 ?生成模型截平面 ANSYS Main Menu: Preprocessor →Modeling→Create →Keypoints →In Active CS… →按次序输入横截平面的十个特征点和旋转对称轴上两点坐标(十个特征点:(300,0,0), (480,0,0), (480,100,0), (400,100,0), (400,700,0), (480,700,0), (480,800,0), (300,800,0), (300,650,0), (300,150,0),对称轴上两点:(0,0,0), (0,800,0))(每次输入完毕,用Apply结束,0可以不输入) →Cancel (back to Create window) →-Areas- Arbitrary → Through KPs →依次连接截面边线上的十个特征点(注意在选完第10点后结束,不要再选第1点)→ OK ?对平面进行网格划分 ANSYS Main Menu: Preprocessor →Meshing→Mesh Tool →(Size Controls) Globl: Set →input SIZE (element edge length): 50 →OK (back to MeshTool window)→Mesh → Pick All (in Picking Menu) → Close( the MeshTool window) ?用旋转法生成筒体模型 ANSYS Main Menu: Preprocessor →Modeling→Operate →Extrude→Elem Ext Opts→select TYPE:SOLID 45→Element sizing options for extrusion No. Elem divs: 1→OK (back to Extrude window)→Areas →About Axis →Pick All(in Picking Menu)→OK→Pick the two keypoints (11,12) of the Symmetrical Axis → OK→input ARC: 90; NSEG: 3→ OK 9.6 模型加位移约束 ANSYS Main Menu: Solution→Define Loads →Apply→Structural→Displacement ?两截面分别加Z, X方向的约束 ANSYS Utility Menu: Select → Entities…→Nodes → By Location →select X coordinates →input 0→ OK (back to Displacement window)→On Nodes → Pick All(in Picking Menu) → select Lab2:UX →OK →ANSYS Utility Menu: Select → Everything ANSYS Utility Menu: Select → Entities…→ Nodes → By Location →select Z coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) → select Lab2:UZ →OK →ANSYS Utility Menu: Select →Everything ?底面加Y方向的约束 ANSYS Utility Menu: Select → Entities… → Nodes → By Location →select Y coordinates →input 0→ OK (back to Displacement window)→On Nodes →Pick All(in Picking Menu) →

lhz有限元分析及应用-课程试卷

有限元分析与应用试题 1.有限元求解问题的主要思路是什么?并做简要介绍。 ● 将连续系统分割成有限个分区或单元(离散化) 离散化 将直杆划分成n 个有限段,有限段之间通过一个铰接点连接。两段之间的连接点称为节点,每个有限段称为单元。第i 个单元的长度为L i ,包含第i ,i+1个节点。 ● 用标准方法对每个单元提出一个近似解(单元分析) 单元分析 用单元节点位移表示单元内部位移-第i 个单元中的位移用所包含的结点位移来表示。 线性插值所得到的 第i 结点的位移 第i 结点的坐标 第i 个单元的 应变 ) ()(1i i i i i x x L u u u x u --+=+i u i x i i i i L u u dx du -== +1εi i i i i L u u E E )(1-= =+εσ

应力 内力 将所有单元按标准方法组合成一个与原有系统近似的系统(整体分析) 首先把外载荷集中到节点上: 把第i 单元和第i+1单元重量的一半,集中到第i+1结点上 建立结点的力平衡方程:对于第i+1结点,由力的平衡方程可得 (i=1,n-1) i i i i i L u u EA A N ) (1-= =+σ2 ) (11+++= -i i i i L L q N N ) (2 )()(11121++++++=---i i i i i i i i L L q L u u EA L u u EA

令 对于第n+1个结点,第n 个单元的内力与第n+1个结点上的外载荷平衡, 再加上约束条件 因此可以得到n+1个方程构成的方程组,可解出n+1个结点的位移。 有限元方法的基本思想和原理是“简单”而“朴素”的,在发展初期,许多学术权威对该方法的学术价值有所鄙视,国际著名刊物Journal of Applied Mechanics 许多年来拒绝刊登有关有限元方法的文章,其理由是没有新的科学实质。 现在完全不同了,由于有限元方法在科学研究和工程分析中的地位, 1 += i i i L L λ22 1)11(2)1(i i i i i i i L EA q u u u λλλ+=-++-++1()2 n n n n n n EA u u qL N A L σ+-== = EA qL u u n n n 221= +-+0 1=u

《有限元分析及应用》配书盘说明

《有限元分析及应用》配书盘 曾攀 (清华大学机械工程系) 说明 该配书盘针对《有限元分析及应用》一书中有关有限元分析的自主程序开发、与ANSYS平台的衔接、基于ANSYS的有限元建模、基于MARC的有限元建模的章节,提供相应的电子材料及文档,以便在进行实际编程和应用国际著名商业软件进行建模和分析时参考。电子文档材料包括三大部分:(1)有限元分析源程序(f,c,ANSYS衔接);(2) 四类问题有限元分析的操作指南(ANSYS,MARC);(3) ANSYS一般性帮助文件。具体的文件目录和清单如下。 在目录/有限元分析源程序(f,c,ANSYS衔接)/中有以下内容 (1) 使用说明文件 自主程序开发使用说明(fortran,C,ANSYS平台衔接).pdf (2 ) 在子目录/fortran源程序及与ANSYS衔接(FEM2D)/中有以下文件 源程序文件: FEM2D.FOR 程序需读入的数据文件: BASIC.IN(模型的基本信息文件,需手工生成) NODE_ANSYS.IN (节点信息文件,可由ANSYS前处理导出,或手工生成) ELEMENT_ANSYS.IN(单元信息文件,可由ANSYS前处理导出,或手工生成)程序输出的数据文件: DATA.OUT (一般结果文件) FOR_POST.DAT(专供ANSYS进行后处理的结果数据文件) 与ANSYS后处理衔接的接口程序: USER_POST.LOG(在ANSYS中进行后处理的命令流文件) (3 ) 在子目录/c源程序及与ANSYS衔接(JIEKOU)/中有以下文件 源程序文件: JIEKOU.CPP 程序需读入的数据文件: NODE_ANSYS.IN(从ANSYS前处理导出的节点信息文件) ELEMENT_ANSYS.IN(从ANSYS前处理导出的单元信息文件) INPUT.DAT(包含除网格划分信息之外的所有前处理信息) 程序输出的数据文件:

中南大学有限元分析及应用(2008研)考试试卷

中南大学考试试卷(试卷共2页) 2007 -- 2008学年下学期时间110分钟有限元分析及应用课程 36 学时 2 学分 专业年级: 07级研究生总分100分考试形式:大型作业注:此页不作答题纸,请将答案写在答题纸上A4 一.简答题(共40分,每题10分) 1.简述非节点载荷移置的缘由及遵循的原则(p49)?写出集中力移置的普遍公式(p50)。 2.任何一个有限元分析问题都是空间问题,什么情况下可以简化为平面问题(p84)、轴对称问题(p128)? 3.简述有限元几何模型(关键点、线、面、体)、网格模型(节点、单元)、有限元模型层次关系(p204)及所包含的主要内容,并说明约束的意义(p265)? 4.写出3节点平面三角形单元(p90)、8节点六面体单元(p168)的广义位移函数,并说明单元位移模式选取的原则(p32)? 二.综合题(20分) 1.对于如图所示结构模型,若以角速度W绕中心轴线旋转,求其在惯性力的作用下的 最大应力与变形。(1)概述该分析模型的简化方法及理由(p363)?(2)说明约束的施加方法及理由(p369)?(3)用图表示简化后的物理分析模型 三计算与软件操作题(本题共40分)

据提取等关键命令 点应力、形变、位移数束与载荷、求解以及节成、单元生成、施加约要求:简明概述节点生及位移。 号节点)的应力、应变(即软件,求形心,用对于图出刚度矩阵 细节不要描述,直接写注意:单元刚度的求解;)的应变、应力、位移,(手工计算求板形心点,按有限元的解题步骤对于图求解下列问题: 构离散,节点三角形单元进行结。用泊松比的拉力,弹性模量承受。左端固定,右端角点,板厚,宽已知矩形薄板,长5P ANSYS 22)2(50100P 12)1(33.0,102E N 5001010020011--=?====u Pa cm t cm w cm l 图2-1 矩形薄板2单元结构离散方式 图2-2 矩形薄板4单元结构离散方式 X X Y Y P

相关文档
最新文档