河北省东光县第二中学九年级数学下册28.2解直角三角形及其应用教案1(新版)新人教版【精品教案】

合集下载

人教版九年级下册28.2解直角三角形及其应用28.2解直角三角形教学设计

人教版九年级下册28.2解直角三角形及其应用28.2解直角三角形教学设计

人教版九年级下册28.2解直角三角形及其应用1. 知识点概述在九年级数学中,直角三角形是一个重要的知识点。

直角三角形的三条边中,有一条是直角边,另外两条是斜边。

根据直角三角形的定义可以引出勾股定理,即直角三角形的直角边被平分时,两个形成的直角三角形的面积之和等于原来直角三角形的面积。

直角三角形的解法,主要包括正弦、余弦、正切定理,以及各种简化公式。

直角三角形的应用范围广泛,既可以运用到实际场景中,也可以用于其他数学知识点的证明。

2.教学目标通过本节课的学习,让学生理解和掌握:1.直角三角形的定义,以及勾股定理的表达式和证明过程;2.正弦、余弦、正切定理的概念及其应用场景;3.课程设计的实际应用,培养学生的实际运用能力。

3.教学重难点本课的教学重点主要为:1.掌握直角三角形的定义和勾股定理表达式、证明过程;2.熟练掌握正弦、余弦、正切定理,能够熟练运用到实际问题中。

本课的教学难点主要在于:1.证明勾股定理的过程需要运用到平方、倍数等知识点;2.能够将正弦、余弦、正切定理运用到实际问题中。

4.1 教学内容本课程主要内容涵盖:1.直角三角形的定义;2.勾股定理之证明;3.正弦、余弦、正切定理的概念及其应用场景。

4.2 教学方法本课程采取互动教学的方式,通过讲授、练习、游戏等多种形式的互动,提高学生的学习积极性和课堂互动性。

4.3 思考题以下是三个用勾股定理解决的问题,请尝试并思考解决方法:问题1:一个三角形的两条边长分别为3、4,且夹角为90度,求第三条边长。

问题2:一个房子和树之间有一个湖,某人想测出湖的宽度,他呢利用何种工具和方法,能够在不跨过湖和房子、树之间的情况下,测出湖面宽度。

问题3:一个手表的表盘半径为3.5cm,计时者与表对面相距30cm,则计时者所能看到的表盘面积是多少?4.4 作业布置根据上课内容,完成以下作业:1.认真学习和掌握本节课的知识点,并背诵正弦、余弦、正切定理;2.完成作业册中的相关题目。

人教初中数学九年级下册《28-2 解直角三角形及其应用》(教学设计)

人教初中数学九年级下册《28-2 解直角三角形及其应用》(教学设计)

人教初中数学九年级下册《28-2 解直角三角形及其应用》(教学设计)一. 教材分析《28-2 解直角三角形及其应用》是人教初中数学九年级下册的一章内容。

这一章节主要介绍了解直角三角形的知识和方法,以及直角三角形在实际生活中的应用。

本章内容是学生在学习了三角函数和勾股定理的基础上进行的,是初中数学的重要内容之一。

二. 学情分析学生在学习本章内容时,已经具备了一定的数学基础,如算术、代数和几何知识。

但是,对于解直角三角形的实际应用,可能还比较陌生。

因此,在教学过程中,需要引导学生将理论知识与实际应用相结合,提高学生的应用能力。

三. 教学目标1.知识与技能:使学生掌握解直角三角形的方法,能够运用勾股定理和三角函数解决实际问题。

2.过程与方法:通过小组合作、探究学习,培养学生的团队协作能力和问题解决能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的创新意识和实践能力。

四. 教学重难点1.重点:解直角三角形的方法和技巧。

2.难点:如何将解直角三角形的知识应用到实际问题中。

五. 教学方法1.情境教学法:通过生活实例,引导学生理解直角三角形的应用。

2.小组合作学习:让学生在小组内进行讨论和实践,提高学生的团队协作能力。

3.探究学习法:引导学生主动探究解直角三角形的方法,培养学生的创新能力。

六. 教学准备1.教学素材:准备相关的生活实例和问题,以便进行情境教学。

2.教学工具:准备黑板、粉笔、多媒体设备等教学工具。

七. 教学过程1.导入(5分钟)通过一个实际问题,如测量旗杆的高度,引出直角三角形和解直角三角形的重要性。

让学生思考如何解决这个问题,激发学生的学习兴趣。

2.呈现(10分钟)讲解解直角三角形的基本方法,如使用勾股定理和三角函数。

通过示例,引导学生理解并掌握这些方法。

3.操练(10分钟)让学生进行一些解直角三角形的练习题,巩固所学知识。

教师可以给予学生一定的指导,帮助学生解决问题。

4.巩固(10分钟)通过一些实际问题,让学生运用解直角三角形的知识解决问题。

人教版九年级下册28.2解直角三角形(教案)

人教版九年级下册28.2解直角三角形(教案)
3.重点难点解析:在讲授过程中,我会特别强调正弦、余弦、正切函数的定义和应用这两个重点。对于难点部分,我会通过实际案例和图示来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与解直角三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用三角板和量角器测量并计算某个物体的高度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解解直角三角形的基本概念。解直角三角形是利用锐角三角函数来求解直角三角形中未知边或角的过程。它在工程测量、建筑设计等领域有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量一条斜边和其中一个锐角,如何求出直角三角形中的其他边长。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要测量高度或距离的情况?”(如测量旗杆高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
举例:在解决一个直角三角形的问题时,学生需要能够准确判断哪些角是锐角,哪些边是斜边,以及如何运用正弦、余弦、正切函数来计算未知量。
2.教学难点
-理解锐角三角函数的定义及其在直角三角形中的应用,对于初中生来说,这些概念较为抽象,难以理解。
-在实际问题中,学生往往难以确定应用哪个三角函数来解决问题,需要培养他们的问题分析能力。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

人教版数学九年级下册28 解直角三角形及其应用教案与反思

人教版数学九年级下册28  解直角三角形及其应用教案与反思

28.2 解直角三角形及其应用人非圣贤,孰能无过?过而能改,善莫大焉。

《左传》原创不容易,【关注】店铺,不迷路!28.2.1 解直角三角形(第1课时)教学目标一、基本目标【知识与技能】1.了解什么叫解直角三角形.2.掌握解直角三角形的根据.3.能由已知条件解直角三角形.【过程与方法】在探索解直角三角形的过程中,渗透数形结合思想.【情感态度与价值观】在探究活动中,培养学生的合作交流意识,让学生在学习中感受成功的喜悦,增强学习数学的信心.二、重难点目标【教学重点】解直角三角形的方法.【教学难点】会将求非直角三角形中的边角问题转化为解直角三角形问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P72~P73的内容,完成下面练习.【3min反馈】1.任何一个三角形都有六个元素,三条边、三个角,在直角三角形中,已知有一个角是直角,我们把利用已知的元素求出未知元素的过程,叫做解直角三角形.2.在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c.(1)两锐角互余,即∠A+∠B=90°;(2)三边满足勾股定理,即a2+b2=c2;(3)边与角关系sin A=cos B=ac,cos A=sin B=bc,tan A=ab,tan B=ba.3.Rt△ABC中,若∠C=90°,sin A=45,AB=10,那么BC=8,tan B=34.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】见教材P73例1.【例2】见教材P73例2.活动2 巩固练习(学生独学)1.在△ABC中,a、b、c分别是∠A、∠B、∠C的对边,如果a2+b2=c2,那么下列结论正确的是( A )A.c sin A=a B.b cos B=cC.a tan A=b D.c tan B=b2.在Rt△ABC中,∠C=90°,∠B=30°,BC=6,则AB的长为4 3.3.根据下列条件解直角三角形.(1)在Rt△ABC中,∠C=90°,b=4,c=8;(2)在Rt△ABC中,∠C=90°,∠A=60°,a=12.解:(1)a43,∠B=30°,∠A=60°.(2)∠B=30°,b=43,c=8 3.活动3 拓展延伸(学生对学)【例3】一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=30°,∠A=45°,AC=122,试求CD的长.【互动探索】过点B作BM⊥FD于点M,求出BM与CM的长度,在△EFD中求出∠EDF=60°,再解直角三角形即可.【解答】如题图,过点B作BM⊥FD于点M.在△ACB中,∵∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴∠BCM=∠CBA=45°,∴BM=BC sin45°=122×22=12,CM=BM=12.在△EFD中,∵∠F=90°,∠E=30°,∴∠EDF=60°∴MD=BMtan 60°=43,∴CD=CM-MD=12-4(3).【互动总结】(学生总结,老师点评)解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对练习!28.2.2应用举例第2课时利用仰角、俯角解直角三角形教学目标一、基本目标【知识与技能】1.能将直角三角形的知识与圆的知识结合起来解决问题.2.了解仰角、俯角等有关概念,会利用解直角三角形的知识解决有关仰角和俯角的实际问题.【过程与方法】通过探索用解直角三角形知识解决仰角、俯角等有关问题,经历将实际问题转化为数学问题的探究过程,提高应用数学知识解决际问题的能力.【情感态度与价值观】通过探索三角函数在实际问题中的应用,感受数学来源于生活又应用于生活以及勇于探索的创新精神.二、重难点目标【教学重点】利用解直角三角形解决有关仰角、俯角的实际问题.【教学难点】建立合适的三角形模型,解决实际问题.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P74~P75的内容,完成下面练习.【3min反馈】1.在进行测量时,从下往上看,视线与水平线的夹角叫做仰角;从上往下看,视线与水平线的夹角叫做俯角.2.如图所示,在建筑物AB的底部a米远的C处,测得建筑物的顶端点A的仰角为α,则建筑物AB的高可表示为a tanα米.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】2012年6月18日,“神舟”九号载人航天飞船与“天宫”一号目标飞行器成功实现交会对接.“神舟”九号与“天宫”一号的组合体在离地球表面343km的圆形轨道上运行,如图所示,当组合体运行到地球表面点P的正上方时,从中能直接看到的地球表面最远的点在什么位置?最远点与点P的距离是多少?(地球半径约为6400km,π取3.142,结果取整数)【温馨提示】详细分析与解答见教材P74例3.【例2】如图,热气球探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球与楼的水平距离为120m,这栋楼有多高(结果取整数)?【温馨提示】详细分析与解答见教材P75例4.活动2 巩固练习(学生独学)如图,为了测量河的宽度AB,测量人员在高21m的建筑物CD的顶端D处测得河岸B处的俯角为45°,测得河对岸A处的俯角为30°(A、B、C在同一条直线上),则河的宽度AB约是多少?(精确到0.1m,参考数据:2≈1.41,3≈1.73)解:由题易知,∠DAC=∠EDA=30°.∵在Rt△ACD中,CD=21m,∴AC=CDtan 30°=2133=213(m).∵在Rt△BCD中,∠DBC=45°,∴BC=CD=21m,∴AB=AC-BC=213-21≈15.3(m).即河的宽度AB约是15.3m.活动3 拓展延伸(学生对学)【例3】如图,某大楼顶部有一旗杆AB,甲、乙两人分别在相距6米的C、D 两处测得点B和点A的仰角分别是42°和65°,且C、D、E在一条直线上.如果DE=15米,求旗杆AB的长大约是多少米?(结果保留整数,参考数据:sin42°≈0.67,tan42°≈0.9,sin65°≈0.91,tan65°≈2.1)【互动探索】要求AB,先求出AE与BE→解直角三角形:Rt△ADE、Rt△BCE.【解答】在Rt△ADE中,∵∠ADE=65°,DE=15米,∴tan∠ADE=AE DE,即tan65°=AE15≈2.1,解得AE≈31.5米.在Rt△BCE中,∵∠BCE=42°,CE=CD+DE=6+15=21(米),∴tan∠BCE=BE CE,即tan42°=BE21≈0.9,解得BE≈18.9米.∴AB=AE-BE=31.5-18.9≈13(米).即旗杆AB的长大约是13米.【互动总结】(学生总结,老师点评)先分析图形,根据题意构造直角三角形,再解Rt△ADE、Rt△BCE,利用AB=AE-BE即可求出答案.环节3 课堂小结,当堂达标(学生总结,老师点评)练习设计请完成本课时对应练习!第3课时利用坡度、方向角解直角三角形教学目标一、基本目标【知识与技能】1.能运用解直角三角形解决航行问题.2.能运用解直角三角形解决斜坡问题.3.理解坡度i=坡面的铅直高度坡面的水平宽度=坡角的正切值.【过程与方法】1.通过探究从实际问题中建立数学模型的过程,发展学生的抽象概括能力,提高应用数学知识解决实际问题的能力.2.通过将实际问题中的数量关系转化为直角三角形中元素之间的关系,增强应用意识,体会数形结合思想的应用.【情感态度与价值观】在运用三角函数知识解决问题的过程中,认识数学具有抽象、严谨和应用广泛的特点,体会数学的应用价值.二、重难点目标【教学重点】用三角函数有关知识解决方向角、坡度、坡角等有关问题.【教学难点】准确分析问题并将实际问题转化成数学模型.教学过程环节1 自学提纲,生成问题【5min阅读】阅读教材P76~P77的内容,完成下面练习.【3min 反馈】(一)方向角1.方向角是以观察点为中心(方向角的顶点),以正北或正南为始边,旋转到观察目标的方向线所成的锐角,方向角也称象限角.2.如图,我们说点A 在O 的北偏东30°方向上,点B 在点O 的南偏西45°方向上,或者点B 在点O 的西南方向.(二)坡度、坡角1.坡度通常写成1∶m 的形式.坡面与水平面的夹角叫做坡角,记作α,有i =h l=tan α. 2.一斜坡的坡角为30°,则它的坡度为1∶ 3.(三)利用解直角三角形的知识解决实际问题的一般过程1.将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题,也就是建立适当的函数模型);2.根据条件的特点,适当选用锐角三角函数,运用解直角三角形的有关性质解直角三角形;3.得到数学问题的答案;4.得到实际问题的答案.环节2 合作探究,解决问题活动1 小组讨论(师生互学)(一)解直角三角形,解决航海问题【例1】如图,海中一小岛A ,该岛四周10海里内有暗礁,今有货轮由西向东航行,开始在A 岛南偏西55°的B 处,往东行驶20海里后到达该岛的南偏西25°的C 处,之后,货轮继续向东航行,你认为货轮向东航行的途中会有触礁的危险吗?【互动探索】(引发学生思考)构造直角三角形→解直角三角形求出AD的长并与10海里比较→得出结论.【解答】如题图,过点A作AD⊥BC交BC的延长线于点D.在Rt△ABD中,∵tan∠BAD=BD AD ,∴BD=AD·tan55°.在Rt△ACD中,∵tan∠CAD=CD AD ,∴CD=AD·tan25°.∵BD=BC+CD,∴AD·tan55°=20+AD·tan25°,∴AD=20tan 55°-tan 25°≈20.79(海里).而20.79海里>10海里,∴轮船继续向东行驶,不会遇到触礁危险.【互动总结】(学生总结,老师点评)解决本题的关键是将实际问题转化为直角三角形的问题,通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中解决.应先求出点A距BC的最近距离,若大于10海里则无危险,若小于或等于10海里则有危险.(二)解直角三角形,解决坡度、坡角问题【例2】如图,铁路路基的横断面是四边形ABCD,AD∥BC,路基顶宽BC=9.8m,路基高BE=5.8m,斜坡AB的坡度i=1∶1.6,斜坡CD的坡度i′=1∶2.5,求铁路路基下底宽AD的值(精确到0.1m)与斜坡的坡角α和β的值(精确到1°).【互动探索】(引发学生思考)将坡度i=1∶1.6和i′=1∶2.5分别转化为正切三角函数→求出AE、DF的长→由AD=AE+EF+DF求出AD的长→利用计算器求得坡角α和β的值.【解答】如题图,过点C作CF⊥AD于点F,则CF=BE,EF=BC,∠A=α,∠D=β.∵BE=5.8m,i=1∶1.6,i′=1∶2.5,∴AE=1.6×5.8=9.28(m),DF=2.5×5.8=14.5(m),∴AD=AE+EF+DF=9.28+9.8+14.5≈33.6(m).由tanα=i=1∶1.6,tanβ=i′=1∶2.5,得α≈32°,β≈22°.即铁路路基下底宽AB为33.6m,斜坡的坡角α和β分别为32°和22°.【互动总结】(学生总结,老师点评)利用坡度与坡角解决实际问题的关键是将坡度与坡角放入可解的直角三角形中,没有直角三角形一般要添加辅助线(垂线)构造直角三角形.活动2 巩固练习(学生独学)1.如图,防洪大坝的横断面是梯形,坝高AC为6米,背水坡AB的坡度i=1∶2,则斜坡AB的长为65米.2.“村村通”公路工程拉近了城乡距离,加速了我区农村经济建设步伐.如图所示,C村村民欲修建一条水泥公路,将C村与区级公路相连.在公路A处测得C村在北偏东60°方向,沿区级公路前进500m,在B处测得C村在北偏东30°方向.为节约资源,要求所修公路长度最短,画出符合条件的公路示意图,并求出公路长度.(结果保留整数)解:如图,过点C作CD⊥AB,垂足落在AB的延长线上,CD即为所修公路,CD的长度即为公路长度.在Rt△ACD中,根据题意,有∠CAD=30°.∵tan∠CAD=CD AD,∴AD=CDtan 30°=3C D.在Rt△CBD中,根据题意,有∠CBD=60°.∵tan∠CBD=CD BD,∴BD=CDtan 60°=33C D.又∵AD-BD=500m,∴3CD-33CD=500,解得CD≈433m.活动3 拓展延伸(学生对学)【例3】如图,小明于堤边A处垂钓,河堤AB的坡比为1∶3,坡长为3米,钓竿AC的倾斜角是60°,其长为6米,若钓竿AC与钓鱼线CD的夹角为60°,求浮漂D与河堤下端B之间的距离.【互动探索】将实际问题转化为几何问题→作辅助线,构造直角三角形→延长CA交DB延长线于点E,过点A作AF⊥EB→解直角三角形得AE长→得△CDE是等边三角形,DE=CE=AC+AE→求得BD长.【解答】如图,延长CA交DB延长线于点E,过点A作AF⊥EB,交EB于点F,则∠CED=60°.∵AB的坡比为1∶3,∴∠ABE=30°,∴∠BAE =90°.∵AB =3米,∴AE =AB tan ∠ABE =3×33=3(米), ∴BE =2AE =23米.∵∠C =∠CED =60°,∴△CDE 是等边三角形.∵AC =6米,∴DE =CE =AC +AE =(6+3)米,∴BD =DE -BE =6+3-23=(6-3)(米).即浮漂D 与河堤下端B 之间的距离为(6-3)米.【互动总结】(学生总结,老师点评)本题既考查了解直角三角形,也考查了等边三角形的性质,根据已知条件构造出直角三角形及等边三角形是关键.环节3 课堂小结,当堂达标(学生总结,老师点评)⎩⎪⎨⎪⎧ 坡度与坡角⎩⎨⎧ 坡度的概念→通常写成比的形式坡角的概念→坡度越大,坡面就越陡方向角:指正北、正南方向线与目标方向线所形 成的角练习设计请完成本课时对应练习!【素材积累】 海明威和他的“硬汉形象”美国作家海明威是一个极具进取精神的硬汉子。

九年级数学下册 28.2 解直角三角形及其应用教案 新人教版(2021-2022学年)

九年级数学下册 28.2 解直角三角形及其应用教案 新人教版(2021-2022学年)

28.2解直角三角形及其应用28.2.1解直角三角形知识与技能在理解解直角三角形的含义、直角三角形五个元素之间关系的基础上,会运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.过程与方法通过综合运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.情感、态度与价值观在探究学习的过程中,培养学生合作交流的意识,使学生认识到数与形相结合的意义与作用,体会到学好数学知识的作用,并提高学生将数学知识应用于实际的意识,从而体验“从实践中来,到实践中去”的辩证唯物主义思想,激发学生学习数学的兴趣.让学生在学习过程中感受到成功的喜悦,产生后继学习的激情,增强学好数学的信心.重点直角三角形的解法.难点灵活运用勾股定理、直角三角形的两锐角互余及锐角三角函数解直角三角形.一、复习回顾师:你还记得勾股定理的内容吗?学生叙述勾股定理的内容.师:直角三角形的两个锐角之间有什么关系呢?生:两锐角互余.师:直角三角形中,30°的角所对的直角边与斜边有什么关系?生:30°的角所对的直角边等于斜边的一半.二、共同探究,获取新知1.概念.师:由sin A=错误!未定义书签。

,你能得到哪些公式?生甲:a=c·sin A.生乙:c=错误!未定义书签。

.师:我们还学习了余弦函数和正切函数,也能得到这些式子的变形.我们知道,在直角三角形中有三个角、三条边共六个元素,能否从已知的元素求出未知的元素呢?教师板书:在直角三角形中,由已知的边角关系,求出未知的边与角,叫做解直角三角形.2.练习.教师多媒体课件出示:(1)如图(1)和(2),根据图中的数据解直角三角形.ﻬ(1) (2)师:图(1)中是已知一角和一条直角边解直角三角形的类型,你怎样解决这个问题呢?生1:根据cos60°=错误!,得到AB=错误!,然后把AC边的长和60°角的余弦值代入,求出AB 边的长,再用勾股定理求出BC边的长,∠B的度数根据直角三角形两锐角互余即可得到.生2:先用直角三角形两锐角互余得到∠B为30°,然后根据30°的角所对的直角边等于斜边的一半,求出AB的值,再由sin60°=错误!未定义书签。

人教版九年级数学下28.2解直角三角形(教案)

人教版九年级数学下28.2解直角三角形(教案)
其次,在新课讲授环节,我尝试以理论介绍、案例分析和重点难点解析的方式进行讲解。从学生的反馈来看,这种方式有助于他们理解解直角三角形的原理和方法。但同时,我也发现部分学生在特殊角的三角函数值记忆方面存在困难。在今后的教学中,我需要在这一部分多花一些时间,设计更多有趣的活动和记忆方法,帮助学生更好地掌握这些知识点。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了解直角三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形方法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《解直角三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过测量物体高度或距离的情况?”(如测量旗杆的高度)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索解直角三角形的奥秘。
人教版九年级数学下28.2解直角三角形(教案)
一、教学内容
人教版九年级数学下册第28.2节“解直角三角形”。本节课我们将学习以下内容:
1.直角三角形的定义及特点;
2.解直角三角形的方法ห้องสมุดไป่ตู้正弦、余弦和正切函数;
3.应用解直角三角形的方法解决实际问题;
4.掌握特殊角的三角函数值;
5.利用三角函数间的关系进行变形和计算。
五、教学反思
在今天的课程中,我们探讨了解直角三角形的相关知识。回顾整个教学过程,我觉得有几个方面值得反思。

【人教版】九年级数学下册:28.2.2 第1课时 解直角三角形的简单应用教案

28.2.2 应用举例第1课时解直角三角形的简单应用1.通过生活中的实际问题体会锐角三角函数在解题过程中的作用;(重点)2.能够把实际问题转化为数学问题,建立数学模型,并运用解直角三角形求解.(难点)一、情境导入为倡导“低碳生活”,人们常选择以自行车作为代步工具.图①所示的是一辆自行车的实物图,图②是这辆自行车的部分几何示意图,其中车架档AC与CD的长分别为45cm和60cm,且它们互相垂直,座杆CE的长为20cm.点A、C、E在同一条直线上,且∠CAB=75°.你能求出车架档AD的长吗?二、合作探究探究点:解直角三角形的简单应用【类型一】求河的宽度根据网上消息,益阳市为了改善市区交通状况,计划在康富路的北端修建通往资江北岸的新大桥.如图,新大桥的两端位于A、B 两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0.24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.解析:设AD =x m ,则AC =(x +82)m.在Rt △ABC 中,根据三角函数得到AB =2.5(x +82)m ,在Rt △ABD 中,根据三角函数得到AB =4x ,依此得到关于x 的方程,进一步即可求解.解:设AD =x m ,则AC =(x +82)m.在Rt △ABC 中,tan ∠BCA =AB AC,∴AB =AC ·tan ∠BCA =2.5(x +82).在Rt △ABD 中,tan ∠BDA =AB AD,∴AB =AD ·tan ∠BDA =4x ,∴2.5(x +82)=4x ,解得x =4103.∴AB =4x =4×4103≈546.7m. 答:AB 的长约为546.7m.方法总结:解题的关键在于构造出直角三角形,通过测量角的度数和测量边的长度,计算出所要求的物体的高度或长度.变式训练:见《学练优》本课时练习“课堂达标训练” 第3题【类型二】 求不可到达的两点的高度如图,放置在水平桌面上的台灯的灯臂AB长为30cm,灯罩BC长为20cm,底座厚度为2cm,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC与水平线所成的角为30°,此时灯罩顶端C到桌面的高度CE 是多少(结果精确到0.1cm,参考数据:3≈1.732)?解析:首先过点B作BF⊥CD于点F,作BG⊥AD于点G,进而求出FC的长,再求出BG的长,即可得出答案.解:过点B 作BF ⊥CD 于点F ,作BG ⊥AD 于点G ,∴四边形BFDG 是矩形,∴BG =FD .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin30°=20×12=10cm.在Rt △ABG 中,∵∠BAG =60°,∴BG =AB ·sin60°=30×32=153cm ,∴CE =CF +FD +DE =10+153+2=12+153≈38.0(cm).答:此时灯罩顶端C 到桌面的高度CE 约是38.0cm.方法总结:将实际问题抽象为数学问题,画出平面图形,构造出直角三角形转化为解直角三角形问题.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型三】 方案设计类问题小锋家有一块四边形形状的空地(如图③,四边形ABCD ),其中AD ∥BC ,BC =1.6m ,AD =5.5m ,CD =5.2m ,∠C =90°,∠A =53°.小锋的爸爸想买一辆长4.9m ,宽1.9m 的汽车停放在这块空地上,让小锋算算是否可行.小锋设计了两种方案,如图①和图②所示.(1)请你通过计算说明小锋的两种设计方案是否合理;(2)请你利用图③再设计一种有别于小锋的可行性方案,并说明理由(参考数据:sin53°=0.8,cos53°=0.6,tan53°=43).解析:(1)方案1,如图①所示,在Rt △AGE 中,依据正切函数求得AG 的长,进而求得DG 的长,然后与汽车的宽度比较即可;方案2,如图②所示,在Rt △ALH 中,依据正切函数求得AL 的长,进而求得DL 的长,然后与汽车的长度比较即可;(2)让汽车平行于AB 停放,如图③,在Rt △AMN 中,依据正弦函数求得AM 的长,进而求得DM 的长.在Rt △PDM 中,依据余弦函数求得PM 的长,然后与汽车的长度比较即可.解:(1)如图①,在Rt △AGE 中,∵∠A =53°,∴AG =EG tan ∠A =4.943m ≈3.68m ,∴DG =AD -AG =5.5-3.68=1.82m <1.9m ,故此方案不合理;如图②,在Rt △ALH 中,∵∠A =53°,LH =1.9m ,∴AL =LH tan53°=1.943≈1.43m ,∴DL =AD -AL =5.5-1.43=4.07m <4.9m ,故此方案不合理;(2)如图③,过DA 上一点M 作MN ⊥AB 于点N ,过CD 上一点P 作PQ ⊥AB 于点Q ,连PM ,在Rt △AMN 中,∵∠A =53°,MN =1.9m ,∴AM =MN sin53°=1.90.8≈2.4,∴DM =5.5-2.4=3.1m.在Rt △PDM 中,∵∠PMD =∠A =53°,DM =3.1m ,∴PM =DM cos53°=3.10.6≈5.1m >4.9m ,故此方案合理.方法总结:本题主要是利用三角函数解决实际问题,关键是把实际问题转化为解直角三角形的问题,利用三角函数解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.求河宽和物体的高度;2.其他应用类问题.本节课为了充分发挥学生的主观能动性,可引导学生通过小组讨论,大胆地发表意见,提高学生学习数学的兴趣.能够使学生自己构造实际问题中的直角三角形模型,并通过解直角三角形解决实际问题.。

新人教版九年级下册数学 28.2 解直角三角形及其应用参考课件(共30张PPT)


2.如图,沿AC方向开山修路,为了加快施工进度,要在小山的 另一边同时施工,从AC上的一点B取∠ABD=140°,BD=520m, ∠d=50°,那么开挖点E离D多远正好能A,C,E使成一直线,(精 确到0.1m)?
例5.如图,一般海轮位于灯塔P的北偏东65°方向,距离灯 塔80海里的A处,它沿正南方向航行一段时间后,到达位于 灯塔P的南偏东34°方向上的B处,这时,海轮所在的B处距 离灯塔P有多远(结果取整数)?
问题 要想使人平安地攀上斜靠在墙面上的梯子的顶 端,梯子与地面所成的角α,一般要满足50°≤α≤75°. 现有一个长6m的梯子.问
(1)使用这个梯子最高可以平安攀上多高的墙(精确到0.1m)
对于问题(1),当梯子与地面成的角α为75°时,梯子顶 端与地面的距离是使用这个梯子所以攀到的最大高度.
问题(1)可以归结为:在Rt△ABC中,己知∠A=75°,斜边 AB=6,求∠A的对边BC的长.
(1)坡度α和β; (2)坝顶宽AD和斜坡AB的长(精确到0.1m)
利用解直角三角形的知识解决实际问题的一般过程是: (1)将实际问题抽象为数学问题(画出平面图形,转化为解直角 三角形问题); (2)根据条件的特点,适中选用锐角三角函数等去解直角三角形; (3)得到数学问题的答案; (4)得到实际问题的答案.
例3 2022年6月18日,“神舟〞九号载人航天飞船与“天宫〞 一号目标飞行器成功实现交会对接.“神舟〞九号与“天宫〞一 号的组合体当在离地球外表343km的圆形轨道上运行.如图,当组 合体运行到地球外表上P点的正上方时,从中能直接看到的地球 外表最远的点在什么位置?最远点与P点的距离是多少?(地球半 径约为6 400 km,π取3.142,结果取整数)?
解 : 如图在RtAPC中

九年级数学下册第二十八章锐角三角函数28.2解直角三角形及其应用28.2.1解直角三角形教案新人教

九年级数学下册第二十八章锐角三角函数28.2 解直角三角形及其应用28.2.1 解直角三角形教案(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级数学下册第二十八章锐角三角函数28.2 解直角三角形及其应用28.2.1 解直角三角形教案(新版)新人教版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级数学下册第二十八章锐角三角函数28.2 解直角三角形及其应用28.2.1 解直角三角形教案(新版)新人教版的全部内容。

《解直角三角形》◆教材分析《解直角三角形》是在学习了勾股定理、锐角三角函数的基础上继续研究由直角三角形中的已知元素求出其余未知元素的问题。

一个直角三角形有三个角、三条边这六个元素,解直角三角形就是由已知元素求出未知元素的过程。

在直角三角形中除了一个直角外,只要知道两个元素(其中至少有一条边),就能求出其他元素.本节教材首先从比萨斜塔的倾斜程度这个实际问题入手,给学生创设问题情境,抽象出数学问题,从而引出解直角三角形的概念。

接着教材引导学生全面梳理直角三角形中边角之间的关系,归纳出解直角三角形的一般方法,并以例题的形式对如何解直角三角形进行示范.◆教学目标【知识与能力目标】1、理解解直角三角形的概念;2、理解直角三角形中边与边的关系,角与角的关系和边与角的关系,能运用直角三角形的两锐角互余、勾股定理及锐角三角函数解直角三角形。

【过程与方法目标】通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力;【情感态度价值观目标】在解直角三角形的过程中,渗透转化和数形结合的数学思想,促进数学思维的发展。

28.2.1 解直角三角形 课件(共16张PPT) 2024-2025学年数学人教版九年级下册

2
1
x x 52.
3
2
C
A
合作探究
15 2
15 2
x1
, x2
(舍去)
.
4
4
B
∴ AB的长为 15 2 .
4
C
A
典例精析
例1 在 Rt△ABC 中,∠C = 90°,a,b,c 分别是∠A,∠B,∠C 的对边,
则下列各式正确的是( C )
A. b = a·tanA
<
>
m
<
>
/m
已知 = , = ,则 的值为____.
课堂总结
勾股定理
依据
两锐角互余
锐角的三角函数
解直角三角形
解法:只要知道五个元素中的两
个元素(至少有一个是边),就
可以求出余下的三个未知元素
/m
随堂练习
2.如图,在 △ 中, = , = , = ,则 的值为( C
2)
@

A. <
><
m
>
/m


B. <
><
m
>
/m


C. <
><
m
>
/m


D. <
></m
m
>

3.在 △ 中, ∠ = ∘ , ∠ , ∠ , ∠ 所对的边分别为 , , ,
sin B , c
sin B sin 35
c
a
C
合作探究
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
28.2 解直角三角形及其应用



知识与能力:
使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两
个锐角互余及锐角三角函数解直角三角形.
方法与过程:
通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角
形,逐步培养学生分析问题、解决问题的能力.
情感、态度与价值观:
渗透数形结合的数学思想,培养学生良好的学习习惯.

教学 重点 直角三角形的解法
教学 难点 三角函数在解直角三角形中的灵活运用.
教学 关键 熟记直角三角形五个元素的关系
教学 方法 合作交流
教学 准备 多媒体
教 学 过 程
问题与情境 师生行为 设计意图
活动1 复习准备 检查学生的知识总结情况 1.在三角形中共有几个元素? 2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢? (1)边角之间关系 sinA=ca cosA=cb tanAba (2)三边之间关系a2 +b2 =c2 (勾股定理) (3)锐角之间关系∠A+∠B=90°. 教师提出问题 学生回答 让学生学
会总结知
识,
为本节做
好知识准

活动2 1引例: 茫茫大海中有一个小岛A,该岛四周16海里内有暗礁.今有货船由东向西航行,开始在距A岛30海里南偏东600的B处,货船继续向西航行。你认为货船继续向西航行途中会有触礁的危险吗? 2由上问中得到的直角三角形出发,分析已知“一角一边”“两边” “两角”等条件能否求出其他元素的讨”? 教师利用多媒体展示, 学生思考交流 体会数学
知识来源
于生活,激
发学生的
学习兴趣,
由此引入
对直角三
角形已知
元素求未
知元素的
探究
2

3、由上述问题的分析归纳得出解直角三角形的定义
3

由直角三角形中已知元素,求出所有未知元素的过程,叫做解直
角三角形
活动3 例题示范 例在Rt△ABC中, ∠B =35o,b=20,解这个三角形 教师点拨 学生思考,并写出解答过程 教师规范解答格式,及在解题中注意事项 让学生体
会解直角
三角形的
方法,提高
学生分析
问题解决
问题的能

活动4 巩固练习 1、在下列直角三角形中不能求解的是( ) A、已知一直角边一锐角 B、已知一斜边一锐角 C、已知两边 D、已知两角 2、Rt△ABC中,∠C=90度,a,b,c分别是∠A,∠B,∠C的对边. (1)已知∠B=45,c=6 ,解这个直角三角形 (2)在△ABC中,∠C为直角,AC=6,BAC的平分线AD=43,解此直角三角形。 (3)已知∠A-∠B=30,b+c=30,解这个直角三角形 (4)如图在△ABC中,∠C=90度, 补充练习(5)在四边形ABCD中,∠ A= 60°,AB⊥BC,AD⊥DC,AB=20cm,CD=10cm,求AD,BC的长(保留根号)? 教师展示问题,学生独立思考,并在练习本板演过程 全班交流 教师适当点拨 巩固所学
内容,提高
学生解决
问题能力
与速度,培
养良好的
思维习惯

活动5 学生总结, 梳理本节

A
B
C

的长求上的一点为ABDCBDC,ACDA.6,45,52sin

A

B
C

D
4

课堂小结 请你谈谈对本节学习内容的体会和感受。 教师总结 1、在遇到解直角三形的问题时,最好先画一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的。以得于分析解决问题 2、选取关系式时要尽量利用原始数据,以防止“累积错误” 3、解直角三角形的方法遵循“有斜用弦,无斜用切;宁乘勿除,教师补充 知识,使知
识更加条
理化、系统
化,
5
化斜为直”
活动6 课外作业 1、课本练习1题和2题 2、预习下一节内容,要求了解什么是仰角和俯角 补充作业: 3 如图,根据图中已知数据,求 △ABC其余各边的长,各角的度数和△ABC的面积. 教师布置作业 学生课后完成 达到知识
的灵活运

为下节课
的学习做
好知识准

板书设计
§ 解直角三角形

多媒体屏幕
例题过程

练习过程

教后记

C 300 B
A
45
0
4cm

A
B
C

相关文档
最新文档