MW级风电叶片一体灌注合模工艺研究

MW级风电叶片一体灌注合模工艺研究
MW级风电叶片一体灌注合模工艺研究

MW级风电叶片一体灌注合模工艺研究

摘要:风电叶片主体材料在主模上铺敷后,将预成型剪切肋和预编织粘接角布层定位安放在壳体上,采取特定辅助体系进行一体灌注成型,去除辅助材料后即可进行一体胶接合模。结果表明:单片主模占用周期可压缩至20小时以内,树脂和结构胶用量减少,粘接角成型和剪切肋粘接质量提高。

关键词:粘接角剪切肋一体成型单片周期

随着能源危机的日益严重,风电以容量巨大、无污染、资源再生的特点,已成为近年来电力发展的方向。作为风机的一个关键部件,兆瓦级风电叶片的长度已达到40M以上,主体为轻质、高强的夹芯复合材料,叶型为剪切肋支承盒形结构,目前主流制造工艺为主模真空灌注预成型和合模胶接后固化。这种工艺又主要分为两种:(1) 主壳体真空灌注预成型→手糊成型粘接角→胶接前、后缘剪切肋→合模胶接后固化;(2)主壳体真空灌注预成型(前、后缘剪切肋预连接)→手糊成型粘接角→合模胶接后固化(先粘接剪切肋,再立即整体施胶合模)。

单片主模成型周期越短,相同时间产量越高,交期越短。因此,单片主模成型周期已成为企业竞争力的瓶颈。目前上述两种方案单片成型周期已经能压缩为28h和24h,第二种节省了剪切肋与在壳体上粘接固化时间,但叶片内残留了许多剪切肋连接块和定位块多余物。两种方案粘接角均为手糊成型,存在易形成空泡、需返工的先天缺陷。

风电叶片灌注树脂固化性能的影响

风电叶片灌注树脂固化性能的影响 刘魁1,杨孚标2,冯学斌1,雷志敏1,杜雷1,梁自禄1 (1.时代新材料科技股份有限公司,湖南株洲412007;2. 国防科学技术大学航天与材料工程学院,湖南长沙410073) 摘要:采用不同固化条件固化环氧浇铸体,对其进行玻璃化转变温度和静力学性能测试,研究不同固化条件对环氧固化物性能的影响。测试结果显示Tg存在最佳值。通过测试结果可知环氧树脂在40℃10h预固化后再经过70℃3h后固化测得的拉伸强度、弯曲强度和压缩强度分别较40℃10h固化提高了11.64%、14.72%和20.61%,可以达到更好的固化性能。通过研究环氧浇铸体拉伸和弯曲载荷-位移曲线,发现固化后的环氧树脂经过更高温度的后固化可以有效降低体系内的应力,获得更好更均匀的性能。 关键词:环氧树脂;固化工艺;力学性能;玻璃化转变温度 Study on the curing properties of wind blade epoxide resin LIU Kui1,YANG Fubiao2,FENG Xuebin1,LEI Zhimin1,DU Lei1,LIANG Zilu1 (1.Zhuzhou Times New Materials Science and Technology Co,Ltd,Zhuzhou 412007,China;2.National Univ. of Defense Technology ,College of Aerospace and Material Engineering , Changsha 410073,China) Abstract: Cured the epoxide resin castings under different processes, tested the static mechanical properties and glass transition temperatures to study the influence on epoxide resin casting properties by different curing processes. The test results show that the best value of Tg is existing. The tensile strength, flexural strength and compressive strength of the epoxide resin casting under the process of 40℃ 10h pre-curing and 70℃3h post-curing are increased by 11.64%, 14.72% and 20.61% respectively comparing with the one under the curing process of 40℃10h. Obviously, the former one has better properties. It is found that the internal stress of epoxide resin casting can be effective reduced by post-curing process of a higher temperature, and this process also bring us better and more homogeneous epoxide resin properties. Keywords:epoxide resin, curing process, mechanical property, glass transition temperature 1概述 随着风电叶片的快速发展,环氧树脂大量的应用于叶片的生产中,环氧树脂作为叶片成型的主要基体材料能提供良好的力学性能[1]。固化温度对固化物的性能具有重要影响[2],同一种树脂在不同固化条件下固化可能性能相差极大,因此需要寻求最佳固化制度[3]。固化不好的环氧树脂存在交联密度不均一、内应力大、质脆和抗冲击性差等缺点,在很大程度上限制了它在风电叶片上的应用。 固化反应属于化学反应,受固化温度影响很大,温度升高反应速度加快,但固化温度过高常使固化物性能下降,所以存在固化温度上限,必须选择合适的固化速度和固化物性能折中的温度作为合适的固化温度。按固化温度可以把固化剂分为四类:1)在室温下固化的固化剂;2)在室温至50℃固化的室温固化剂;3)在50℃-100℃的中温固化剂;4)在100℃以上的高温固化剂[4]。为了更好的保证环氧灌注树脂在叶片 作者简介:刘魁,男,硕士,高级工艺师,主要从事复合材料风力发电叶片的工艺研究

风电塔筒涂装工艺设计doc

项目 风电塔筒(不包含基础环)涂装工艺 Coating Process 公司

目录 概述 (3) 1.缩写和标准引用 (4) 1.1缩写 (4) 1.2引用标准 (4) 2.涂料配套方案 (6) 2.1 缩写 (6) 2.2 塔筒本体 (6) 2.3 塔筒顶法兰MF1面 (6) 2.4 其他法兰面 (7) 2.5法兰螺栓孔 (7)

2.6 法兰孔侧端面的说明和涂装示意图 (7) 2.7 门板和门框涂装说明 (8) 2.8 砂箱板、油槽板、钟摆涂装说明 (8) 2.9 法兰端面 (9) 2.10 筒体不锈钢和镀锌件 (9) 2.11 门铰链部位 (9) 2.12干膜厚度标准 (9) 2.13光泽度要求 (10) 2.14涂装注意事项 (10) 3.涂装前的表面处理 (11) 4.油漆施工 (13) 4.1组装后筒体的表面处理 (13) 4.2 油漆涂装 (13) 5.法兰底漆保护用工装 (25)

6.现场修补 (26) 7.综述 (28) 8.安全施工措施 (30) 概述 本文是根据的实际生产工艺流程,制订的风塔表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用 1.1缩写 DFT 干膜厚度 WFT 湿膜厚度 SSPC 钢结构涂装委员会 ISO 国际标准化组织 NACE 国家腐蚀工程师协会 1.2引用标准 ISO 12944 钢结构保护涂层 NACE NO5 高压淡水冲洗的清洁标准 ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级 ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评

锁紧盘传递扭矩有限元分析计算

锁紧盘传递扭矩有限元分析计算 【摘要】锁紧盘是风力发电机传递扭矩的重要装置,其可靠性直接影响到风力发电机的正常工作,本文的创新点体现在通过利用有限元分析技术,弥补了传统计算公式的不足,计算得出了锁紧盘传递的极限扭矩和锁紧盘装置各零部件的应力分布状态,对实际生产具有重要的指导意义。 【关键词】锁紧盘有限元非线性分析 1 引言 锁紧盘是广泛用于风力发电机机组主轴与齿轮箱联结的装置。它由高强度螺栓预紧时产生的轴向力,使内、外环之间的锥面间相互作用,从而产生径向力,抱紧行星架和主轴,从而传递扭矩。锁紧盘的联接属于过盈连接,由于风电设备对锁紧盘传递扭矩要求严格,必须准确计算出锁紧盘的极限扭矩,才能保证锁紧盘设计的可靠性。锁紧盘传递的最大扭矩传统计算方法有以下两种: (1)通过螺栓传递的轴向力计算锁紧盘传递扭矩,由于螺纹连接处与内、外环之间的摩擦系数不确定,各螺栓受力不均匀,计算结果准确性低,误差较大。 (2)根据实际过盈,减去各零件配合间隙计算传递扭矩,该方法忽略了外环变形,认为外环是刚体,计算结果存在误差。 本文的创新点在于,通过定义接触关系来建立锁紧盘各部件之间的位移协调变形关系,使得分析过程和实际情况相一致。 2 分析的前处理 分析模型选取装配之后的锁紧盘作为研究对象,此时内、外环之间存在过盈,通过定义接触使得内、外环直接实现力的传递,进而对行星架,主轴产生正压力。分析中接触类型选取带摩擦的接触,表1为前处理中定义的接触对。 表1前处理中的接触对边界条件的处理上,考虑到锁紧盘结构具有对称性,取1/4模型作为分析对象,对称面上施加对称约束,主轴内孔施加圆柱约束,径向存在位移。接触分析属于非线性分析,为了使计算收敛,设置初始迭代步数为10,最大迭代步数为300。 3 分析的后处理 计算完成通过迭代收敛曲线可见,经过多次迭代后非线性分析得到收敛。图1为外环的等效应力图,从图中可知外环最大应力为845MPa,其余大部分锥面的等效应力约为600MPa。图2为外环的变形,通过计算可知外环在装配完成后发生了膨胀,据现场实际测量锁紧盘变形趋势和计算相吻合。

风电叶片制造工艺现状及我国目前市场格局

风电叶片制造工艺现状及我国目前市场格局 目前国外风机叶片大量采用复合材料制造,并向大型化、低成本、高性能、轻量化、多翼型和柔性化方向发展。而国内的风机叶片起步晚,离高性能叶片的要求有一定的距离。目前国外大的风力机叶片厂家已积极抢滩中国,如LM、Vestas、Gamesa以及Suzlon等均已入驻天津,就地生产叶片,占据了很大的市场份额。国内的主要厂家如中复连众、保定惠腾等均有引进技术。国家对可再生清洁能源的支持,加快了风力发电的发展速度,也为我国的大型复合材料叶片开发提供了一个不可多得的发展机遇。面临着巨大的市场需求和强劲的国际竞争,我国大型复合材料叶片有着巨大的发展机遇与挑战。 风电叶片制造工艺发展现状 传统复合材料风力发电机叶片多采用手糊工艺制造。手糊工艺的主要特点在于以手工劳动为主,简便易行、成本低,但效率亦低、质量不稳定且工作环境差,多用于中小型叶片的成形。因此手糊工艺生产风机叶片的主要缺点是产品质量对工人的操作熟练程度及环境条件依赖性较大,生产效率低,而且产品质量均匀性波动较大,产品的动静平衡保证性差,废品较高。特别是对高性能的复杂气动外型和夹芯结构叶片,还往往需要黏接第二次加工,黏接工艺需要黏接平台或型架以确保黏接面的贴合,生产工艺更加复杂和困难。 叶片最新发展的成型方法是RTM,即树脂转移模塑成型法。将纤维预成型体置于模腔中,然后注入树脂,加温加压成形。RTM是目前世界上公认的低成本制造方法,发展迅速,应用广泛。应该指出的是RTM是该法的一个总称,其中可有多种分支。生产大型叶片多用的是VARTM和SCRIMP法。VARTM即真空辅助RTM一边抽真空一边注入树脂,此时只用单面模具,另一面用真空袋。SCRIMP即西曼复合材料熔塑成形法,为美国人西曼所发明,仅需单面模具且要求简单,另一面亦为真空袋,适用于制造大型复杂制件。TPI Composites公司已用该法制造了30m长的叶片。Vestas公司和Gamesa公司都采用了预充填的方法,该方法将预充填层切裁成合适的尺寸并放进上、下模段中,一个空心的翼梁也被分层覆盖在一个芯轴柄上。塑料薄膜被铺在三个模型之上,并利用真空法将多层纤维压缩在一起并挤走任何隐蔽的气泡。在真空状态时将模型加热到120 ℃,环氧树脂聚合物将变成黏度非常低的材料,空气释放有助于预充填层固紧在一块,几分钟后,升温使环氧树脂聚合物固化,固化之后,将塑料薄膜移走,将叶片部件黏合成一体。 随着叶片技术的发展,热塑材料得到了应用。LM Glasfibre公司用玻璃钢、碳纤维和热

风电叶片质检工序步骤

风电叶片质检工序步骤 质检员:做好工序检验,及时纠正工序差错,保证过程质量,减少返工、返修浪费;负责调查质量检验技术现状;参与质量分析、编制质量控制计划,设计质量控制卡,确定质量控制点;负责确认质量事故现象,参与调查质量事故,分析质量事故原因,编制质量事故报告;负责产品质量状态标识工作,严格控制不良品,确定质量问题、跟踪验证质量问题的解决情况 1、模具清理 叶片脱模后,用刀具清理模具上沾的真空膜以及残留的胶,或用吸胶毡擦拭模具上的粉层,擦拭干净后会用洁膜剂清理模具(通常只是边缘)。 2、脱模剂 模具清理好后,涂一层脱模剂,其固化需要等待一段时间方可铺层。脱模剂的作用在于在模具表面形成一个致密层,使得模具更加容易和叶片分离,达到脱模的效果。 3、部件 整只叶片一般可分为蒙皮、主梁、翻边角、叶跟、粘接角等各个部件,其中主梁、翻边角、叶跟、粘接角等用专用模具进行制作。等将各个部件制好后,在主模具上进行胶接组装在一起,合模后加压固化后制成一整只叶片。 4、主梁 主梁是在单独的模具上成型的,铺放主梁时需要工装对其进行精确定位,并保证经过打磨处理及表面清洁。主梁在切割车间转运到蒙皮车间后需要人工脱模,然后要剥离脱模后残余的一些附着物。最后用布擦拭表面。 5、腹板 PVC泡沫有较高的剪切模量,组成的结构有良好的刚度特性,主要增加截面刚度。上下两层纤维布,中间是泡沫板形成夹芯结构,铺放时需要保证各块PVC板材之间连接紧密。 6、玻璃纤维铺层制作 首先铺脱模布,然后是覆盖整个模具的大布,叶根区域铺设错层,主梁的错层与叶根错层镶嵌。主梁下面需要铺设连续毡,以便导流。主梁通过工装定位后,两旁的轻木和泡沫的位置就有了基准,芯材的位置正确之后,才能保证前缘的单向布铺设正确。此过程需要注意铺放位置正确,搭接尺寸足够。另外还需注意(抽真空时也要留意),叶根增强铺层有几十层,是最容易产生对结构强度影响比较大的褶皱的地方。 7、真空材料 纤维布铺设完成后,需要依次铺设脱模布、带孔隔离膜、导流网、导流管和螺旋管、溢流管、一层真空、吸胶毡、二层真空。脱模布和隔离膜主要起真空灌注工艺结束后更好地去除真空辅料的作用。导流网能更好地排除真空体系中残留的空气,并且能够使树脂均匀地渗透到所生产产品各部位,对灌注的效果和速度都有较大影响。在导流网上方布置有导流管,导流管通过进胶盘连通进胶管;在远离且低于导流管的位置有流管,流管连接抽气管,抽气管连接真空泵和压力表。在以上材料的上方盖至少一层真空袋。打两层真空袋是为了确保抽真空的效果。一层真空上方可放吸胶毡以加快抽真空。真空袋把整个产品密封起来,使得整个系统处于负压状态,以便达到真空灌注的工艺要求。 8、粘接角工装

风电叶片设计流程

叶片设计流程 一.空气动力设计 1.确定风轮的几何和空气动力设计参数 2.选择翼型 3.确定叶片的最佳形状 4.计算风轮叶片的功率特性 5.如果需要可以对设计进行修改并重复步骤4,以找到制造 工艺约束下的最佳风轮设计。 6.计算在所有可遇尖速比下的风轮特性 对于每个尖速比可采用上面步骤4所述的方法,确定每个叶素的空气动力状态,由此确定整个风轮的性能。 7.风力机叶片三维效应分析 8.非定常空气动力现象 9.风力机叶片的动态失速 10.叶片动态入流 二.风机载荷计算 作为风力机设计和认证的重要依据,用于风力机的静强度和疲劳强度分析。国际电工协会制定的IEC61400-1标准、德国船级社制定的GL 规范和丹麦制定的DS 472标准等对风力机的载荷进行了详细的规定。

2.1IEC61400-1 标准规定的载荷情况 2.2风机载荷计算 1计算模型 1)风模型 (1)正常风模型 (2)极端风模型 (3)三维湍流模型 2)风机模型 风机模型包括几何模型、空气动力学模型、传动系统动力学模型、控制系统闭环模型和运行状态监控模型等。 2风力机载荷特性 1)叶片上的载荷 (1)空气动力载荷 包括摆振方向的剪力Q yb和弯矩M xb、挥舞方向的剪力Q xb和弯矩M yb以及与变浆距力矩平衡的叶片俯仰力矩M zb。可根据叶片空气动力设计步骤4中求得的叶素上法向力系数Cn和切向力系数Ct, 通过积分求出作用在叶片上的空气动力载荷。 (2)重力载荷 作用在叶片上的重力载荷对叶片产生的摆振方向弯矩,随叶片方位角的变化呈周期变化,是叶片的主要疲劳载荷。 (3)惯性载荷

(4)操纵载荷 2)轮毂上的载荷 3)主轴上的载荷 4)机舱上的载荷 5)偏航系统上的载荷 6)塔架上的载荷 三.风力机气动弹性 当风力机在自然风条件下运行时,作用在风力机上的空气动力、惯性力和弹性力等交变载荷会使结构产生变形和振动,影响风力机的正常运行甚至导致风力机损坏。因此,在风力机的设计中必须考虑系统的稳定性和在外载作用下的动力响应,主要有①风力机气动弹性稳定性和动力响应②风力机机械传动系统的振动③风力机控制系统(包括偏航系统和变浆距系统等)的稳定性和动力响应④风力机系统的振动。 3.1风力机气动弹性现象 1.风力机叶片气动弹性稳定性问题 2.风力机系统振动和稳定性问题 3.2风力机气动弹性分析 目的是保证风力机在运行过程中不出现气动弹性不稳定。主要的方法是特征值法和能量法。特征值法是在求解弹性力学的基本方 程中,考虑作用在风力机叶片上的非定常空气动力,建立离散的描述风力机叶片气动弹性运动的微分方程。采用Floquet理论求解,最后 稳定性判别归结为状态转移矩阵的特征值计算。

锁紧盘(胀套)的选用

锁紧盘的选用顺序 1. 当轴的直径为设计第一要求,按设计选定的轴的直径(dw)在本产品目录中选择锁紧盘,并校核其对应的最大传递扭矩(Mt)是否能满足扭矩的需要。 反之,如果扭矩是第一要求,则从目录中根据合适的型号选择所需扭矩(Mt),然后再找出对应的轴直径(dw)。 II 根据选用的锁紧盘,校核轴和轴套的尺寸和强度。 轴套或空心轴的外径(d)与锁紧盘的内径相一致。轴套最小横断面可以安全地传递所规定的扭矩。 III 目录中所列的额定扭矩Mt与额定轴向载苛Pax值是按照锁紧盘所能传递的最大值列出的不含安全系数,校核时,应考虑起动和冲击载荷。 IV 传动扭矩值(Mt)与轴径(dw)之间的关系为线性函数关系,型号目录表中未列出所有对应轴径的额定扭矩,但可以用内插法求出某一轴径可传递的扭矩。 举例说明: 联结一根103mm的轴,要安装一个锁紧盘,其最大传递扭矩确定为12400Nm,选锁紧盘型号规格。 第一步:轴的直径近靠至100mm。、 第二步:在标准系列71型规格表中,找出轴径100mm对应锁紧盘型号为SD140-71,用插放法计算出103mm轴可传递最大扭矩为17600Nm与20100Nm间的19100Nm。 第三步:核实确定的锁紧盘的尺寸,并设计在图纸上。 第四步:找出规定的加工公差和适用的配合方式。 即:轴和轴套内孔的公差为H7/h6,轴套外径为f7。 第五步:选用锁紧盘,按下列型号订货:锁紧盘SD140-71。 注意事项: 为了保证目录表中所列的扭矩和轴向载荷值,设计图纸时,一定要注明锁紧螺钉按规定的拧紧力矩Ma 是非常重要的。 由于锁紧盘和螺钉只是静态受力,不必担心螺钉松驰。 安装与拆卸 锁紧盘在出厂前已做好安装准备,所以首次安装前不必再拆开; 1、拆掉运输中起保护作用的外圈中间隔板。 2、取任意三个锁紧螺钉形成一个等腰三角形,并将它们轻轻拧紧,直至内圈仍可转动为止,用力过猛拧紧会导致内圈产生产生塑性变形。 3、让锁紧盘在轴套上滑动,轴套外圈可加脂润滑。、 注意:轴装进轴套之前切记还要拧紧螺钉。 4、擦净轴及轴套内孔的油脂。 5、将轴插入轴套内孔的油脂。 6、使用测力板手拧紧全部锁紧螺钉。拧紧的方法是按顺序爱渐拧紧,每次只拧到额定力矩的1/4。 用力矩搬手检查拧紧力矩Ma是非常重要的。两个锁紧圈必须保持等距。 拆卸顺序

风力发电叶片制作工艺介绍

风力发电叶片制作工艺 介绍 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

风力发电叶片制作工艺介绍风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型发电机的叶片长44m,采用碳纤维代

【CN109968689A】一种用于预埋型风电叶片叶根的灌注系统及灌注成型工艺【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910338747.0 (22)申请日 2019.04.25 (71)申请人 株洲时代新材料科技股份有限公司 地址 412000 湖南省株洲市天元区海天路 18号 (72)发明人 郭志强 侯彬彬 蒋华 崔志刚  王运河 黄怀勇 葛凯  (74)专利代理机构 长沙朕扬知识产权代理事务 所(普通合伙) 43213 代理人 钱朝辉 (51)Int.Cl. B29C 70/36(2006.01) B29C 70/54(2006.01) (54)发明名称 一种用于预埋型风电叶片叶根的灌注系统 及灌注成型工艺 (57)摘要 本发明公开了一种用于预埋型风电叶片叶 根的灌注系统,包括铺设于叶根壳体内表面玻纤 布上的一层或多层导流网,所述导流网表面设有 真空袋膜,所述导流网与真空袋膜之间设有相交 且垂直布置的展向注胶欧姆管和弦向注胶欧姆 管,所述展向注胶欧姆管和弦向注胶欧姆管相交 处设有注胶口。本发明还相应提供一种风电叶片 叶根的灌注成型工艺。本发明的灌注系统采用呈 T型布置的展向注胶欧姆管和弦向注胶欧姆管, 仅需2根注胶管和1个注胶口,树脂有展向流动和 弦向的流动配合,保证叶根灌透,灌注过程只需 开管一次易于操作控制,解决了多根注胶管开关 时机不易控制,而出现包流导致浸润不良的问 题, 同时也降低了多个注胶口灌注漏气风险。权利要求书1页 说明书4页 附图2页CN 109968689 A 2019.07.05 C N 109968689 A

权 利 要 求 书1/1页CN 109968689 A 1.一种用于预埋型风电叶片叶根的灌注系统,其特征在于,包括铺设于叶根壳体内表面玻纤布(1)上的一层或多层导流网(2),所述导流网(2)表面设有真空袋膜,所述导流网(2)与真空袋膜之间设有相交且垂直布置的展向注胶欧姆管(3)和弦向注胶欧姆管(4),所述展向注胶欧姆管(3)和弦向注胶欧姆管(4)相交处设有注胶口(5)。 2.根据权利要求1所述的灌注系统,其特征在于,所述导流网(2)包括慢速导流网(21)和快速导流网(22),所述导流网(2)为两层,由下至上依次为慢速导流网(21)和快速导流网(22)。 3.根据权利要求2所述的灌注系统,其特征在于,所述慢速导流网(21)为160±10g/m2的编织型慢速导流网,所述快速导流网(22)为200±10g/m2的挤压型快速导流网。 4.根据权利要求2所述的灌注系统,其特征在于,所述慢速导流网(21)的展向起点与叶根部法兰盘(10)之间的距离d1为100±20mm,展向终点与叶根部法兰盘(10)之间的距离d2为1100±20mm,弦向与叶根部前后缘分型线之间的距离d3分别为50±20mm。 5.根据权利要求2所述的灌注系统,其特征在于,所述快速导流网(22)的展向起点与叶根部法兰盘(10)之间的距离h1为150±20mm,展向终点与叶根部法兰盘(10)之间的距离h2为1050±20mm,弦向与叶根部前后缘分型线之间的距离h3分别为100±20mm。 6.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述展向注胶欧姆管(3)的展向起点与叶根部法兰盘(10)之间的距离f1为200±20mm,展向终点与叶根部法兰盘(10)之间的距离f2为1050±20mm,弦向与大梁后缘边平齐。 7.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述弦向注胶欧姆管(4)的展向起点与叶根部法兰盘(10)之间的距离k1为200±20mm,弦向与叶根部前后缘分型线之间的距离k3分别为150±20mm。 8.根据权利要求1-5任一项所述的灌注系统,其特征在于,所述内表面玻纤布(1)表面、导流网(2)底部还设有脱模布和带孔隔离膜,所述脱模布设于内表面玻纤布(1)表面,所述带孔隔离膜设于脱模布表面。 9.根据权利要求1-5中任一项所述的灌注系统,其特征在于,所述展向注胶欧姆管(3)和弦向注胶欧姆管(4)下铺放有防压痕板。 10.一种风电叶片叶根的灌注成型工艺,其特征在于,包括以下步骤: (1)在成型模具上依次铺设叶根壳体外表面玻纤布(6)、预埋螺栓套(7)、内表面玻纤布 (1),再在内表面玻纤布(1)表面依次铺设脱模布与带孔隔离膜; (2)在带孔隔离膜表面铺设导流网(2); (3)在导流网(2)上布设展向注胶欧姆管(3)和弦向注胶欧姆管(4),并在展向注胶欧姆管(3)和弦向注胶欧姆管(4)相交处设置注胶口(5); (4)覆盖真空袋膜,制作真空系统; (5)利用真空灌注法从注胶口(5)灌注,固化成型,脱模即得到风电叶片叶根。 2

风电塔筒施工方案

风电场塔筒制作防腐 施 工 技 术 方 案 目录

1 综述.......................................................... .... ........... ................ .................... 2 涂层质量检查.................................................. ........ ... ............. ................... 2.1腐蚀环境及保护期............................................ ........ ......... ....... ................ 2.2涂层质量检查................................................. ........ .... ............ ................... 3 表面准备..................................................... ........ ................ .................... ... 3.1准备工艺........................................... ........ .......... ...... .............................. ... 3.2准备步骤、打砂清理和粗糙度要求.............................. ................... .......... 3.3涂装施工要求................................................. .............

风力发电塔筒防腐施工方案样本

风力发电塔筒防腐施工方案模板

*********风电场 塔筒防腐工程 施工方案 编制单位: 江苏三里港高空建筑防腐有限公司 编制: 周荣东 电话: 二O一七年一十月三十日 (一)、工程概况 1、项目概况 本工程为***************风电场风机防腐处理涂装工作, 要求风电塔

筒修复表面处理采用手工机械除锈, 局部锈蚀部位的表面处理、表面刷漆。塔筒外表面按C5-M环境设计执行, 干膜总厚度不低于320μm, 20 年内腐蚀深度不超过0.5mm, 富锌底漆Zn(R)中锌粉在干膜中的重量含量不低于80%。防腐涂料本公司选用海虹老人的产品。 2、设备概况 *********风电场位于****县东北部的和安镇境内, 地理坐标位于在N 20°31′~20°38′和E 110°19′~110°24′之间, 距离***县直线距离36km, 距离湛江市直线距离73km, 风场采用重庆海装生产的H87N-2.0MW 风电机组, 共25台。 单台塔筒主要技术参数 塔筒类型: 圆锥形钢制塔筒 塔筒高度: 77.261m 塔筒节数: 4节 塔筒立柱面积; 837.1435㎡ 塔筒各分节长度和重量技术参数见下表。 当前塔筒油漆方案

在机组巡视过程中发现机组塔筒局部表面出现点蚀、油漆脱落、腐蚀较为严重等现象。该风电场离海边不远, 空气湿度大, 含盐份大, 塔筒的钢构架在严酷的海洋大气腐蚀条件下, 腐蚀速度较快, 这对风机塔筒受力以及寿命有很大影响, 不能满足塔筒20年寿命的要求, 若不及时对腐蚀的塔筒做合适的防腐处理将会在以后的生产工作中存在重大安全隐患。江苏三里港高空建筑防腐有限公司周荣东 ( 二) 编制依据 1、编制简要 依据我公司已经过的国际质量管理体系( IS09001: ) 、国际环境管理体系( IS014001: 1996) 、职业健康安全管理体系( GB/T28001— ) 标准所发布的有关工程管理文件。参照国家相关施工及验收规范、质量验评标准、有关安全技术操作规程,结合现场条件和工程特点, 以及我公司多年的施工经验, 当前的施工技术力量和施工设备生产能力进行编制。江苏三里港高空建筑防腐有限公司周荣东 2、引用规范 应遵循的主要现行标准、规范,必须符合下列标准, 但不限于此: 508-1996《钢结构防腐涂装工艺标准》 SY/T0407-1997 《涂装前钢材表面处理规范》 YB/T9256-1996《钢结构、管道涂装技术规程》 GB /T 8 9 23-1988 《涂装前钢材表面锈蚀等级和除锈等级》 GBT 18839.3《涂覆涂料前钢材表面处理表面处理方法》手工和动力工具

风电增速机专用锁紧盘

风电增速机专用锁紧盘产品介绍及参数 风电增速机专用锁紧盘产品介绍 我公司根据国家新能源产业规划要求,大力发展清洁能源发电设备的国内自主开发。为风力发电增速机开发了专用锁紧盘,锁紧盘安装于齿轮箱输入轴套外圈上,通过其产生的抱紧力将处于齿轮箱输入轴轴套内部的主轴同齿轮箱空心轴套刚性地连结为一体。 该锁紧盘具有以下特点: 1.满足风机运行在风向及风力的不可控制性、随机性、瞬时风速可达70m/s以上;机组运行在强阵风、湍流风、瞬时冲击载荷大等恶劣环境;以及强阵风、湍流风、瞬时冲击等对锁紧盘额定传递扭矩,轴向力的冲击。 传递扭矩大于其他设备用锁紧盘。 2.无故障安全使用寿命不低于20年。 3.安装拆卸10次仍满足设计要求。 我公司通过技术创新,在理论计算、有限元分析、材质选用及加工工艺等方面作了大量研发工作,制定了最优的设计、工艺方案和自主研发了该类锁紧盘静载能力校核装置。通过对此类产品的超负荷动、静载试验,该产品已完全达到了设计要求,不但能满足超负荷的承载能力,而且在拆卸中自动松开。成功解决了超负荷承载能力、安装和拆卸的三大难题。 风电增速机专用锁紧盘产品图形及参数: 产品描述: 胀紧联结套(简称胀套)的主要用途是实现机件(齿轮、飞机、皮带轮等)与轴的联结,用以传递负荷。其 负荷的传递是通过胀套中高强度拉力螺栓的作用,使内环与轴之间和外环与轮毂之间产生具大抱紧力;当承受负荷时,靠胀套与机件的结合压力及相伴产生的摩擦力传递扭矩、轴向力或两者的复合载荷。 胀紧联结是一种新型传动联结方式。八十年代国际上先进工业国家、如德国、日本、美国等在重型载荷下的机械连接已广泛采用了这一新技术。它于一般过盈连接、无键连接相比,胀套连接具有许多独特的优点:

风力发电叶片制作工艺介绍

风力发电叶片制作工艺介绍 风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。 1碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。VestaWindSystem公司的V90型

3.0MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80型2.0MW发电机且为39m长的叶片质量相同。同样是34m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节

风电叶片真空灌注成型工艺

风电叶片真空灌注成型工艺 一、叶片成型 1.模具清理(QA check:工序的正确性;各工序涂抹到位。) 1.1 洁模剂 清洁模具表面,除油除污渍。 1.2 封孔剂 密封模具表面小气孔,防止在真空灌注过程中由于模具的漏气而造成产品气孔率大,影响产品质量。 1.3 脱模剂 在模具表面形成一层致密层,使模具更容易与产品分离,达到脱模的效果。 2.壳体外表面玻璃纤维铺层制作(QA check:铺放位置正确,搭接尺寸足够。) 铺覆两层玻璃纤维布,由于叶片形状特殊,纤维布不是整体的,某些部位会断开,这就需要两块纤维布之间进行搭接,搭接尺寸10—20cm。 3.预埋件铺放(QA check:预埋件定位准确;打磨到位;表面清洁。 3.1 主梁 主梁是在单独的模具上成型的,铺放主梁时需用工装对其进行精确定位,并保证经过打磨处理及表面清洁。 3.2 壳体泡沫芯材 PVC泡沫板有轻质高强的作用,上下两层纤维布,中间包覆泡沫板形成三明治结构,铺放时保证各快板材之间连接紧密。 3.3 根部预埋块 由于根部铺层太多、太厚,根部做二次成型,在单独的模具上成型,要保证经过打磨处理及表面清洁。 4.壳体内表面玻璃纤维铺层制作(QA check:铺放位置正确,搭接尺寸足够。) 内表面纤维布铺放时注意不要让铺好的预埋件错位,其余同外表面玻璃纤维铺层。 5.真空材料的铺放及布置(QA check:铺放位置正确。) 5.1 免打磨布 在合模过程中粘接部位需要打磨处理,提前在这些部位铺放免打磨布可以避免更多的工序,带来更好的工作环境。 5.2 脱模布 在树脂固化以后真空材料也会粘接在产品表面,不易撕除,表面经过特氟龙处理的脱模布可以更容易的去除真空材料,可以节省大量的人工并使产品表面不致被破坏。 5.3 导流网 真空灌注的时候,树脂在纤维布里的流动速度远低于在导流网上,这样可以更快的浸透更大面积的纤维布。

风电塔筒涂装工艺设计doc

项目 风电塔筒(不包含基础环) 涂装工艺 Coating Process 公司 1 Rev.1 2 3 Revision Date/ R Signature. /Approved 设计 DESIGNED 校对 CHECKED 审核 EXAMINED 批准 APPROVAL

目录 概述 (3) 1.缩写和标准引用 (4) 1.1缩写 (4) 1.2引用标准 (4) 2.涂料配套方案 (6) 2.1 缩写 (6) 2.2 塔筒本体 (6) 2.3 塔筒顶法兰MF1面 (6) 2.4 其他法兰面 (7) 2.5法兰螺栓孔 (7) 2.6 法兰孔内侧端面的说明和涂装示意图 (7) 2.7 门板和门框涂装说明 (8) 2.8 砂箱板、油槽板、钟摆涂装说明 (8)

2.9 法兰内端面 (9) 2.10 筒体内不锈钢和镀锌件 (9) 2.11 门铰链部位 (9) 2.12干膜厚度标准 (9) 2.13光泽度要求 (10) 2.14涂装注意事项 (10) 3.涂装前的表面处理 (11) 4.油漆施工 (13) 4.1组装后筒体的表面处理 (13) 4.2 油漆涂装 (13) 5.法兰底漆保护用工装 (25) 6.现场修补 (26) 7.综述 (28)

8.安全施工措施 (30) 概述 本文是根据有限公司的实际生产工艺流程,制订的风塔内表面和外表面油漆涂装的要求和施工指导。本指导仅适用于牌油漆的施工。

1.缩写和标准引用 1.1缩写 DFT 干膜厚度 WFT 湿膜厚度 SSPC 钢结构涂装委员会 ISO 国际标准化组织 NACE 国家腐蚀工程师协会 1.2引用标准 ISO 12944 钢结构保护涂层 NACE NO5 高压淡水冲洗的清洁标准 ISO 8501-1:1988 涂装钢材表面锈蚀等级和除锈等级 ISO 8502-3 表面清洁度测试评估-准备涂漆的钢材表面灰尘评 估-压敏胶带法 ISO 8503-2:1995 表面粗糙度比较样板抛(喷)丸、喷砂加工表面GB6484 铸钢丸 GB6485 铸钢砂 GB/T13312 钢铁件涂装前除油程度检验方法(验油试纸法)JB/Z350 高压无气喷涂典型工艺

风力发电机叶片工艺流程

风力发电机叶片制作工艺流程 传统能源资源的大量使用带来了许多的环境问题和社会问题,并且其存储量大大降低,因而风能作为一种清洁的可循环再生的能源,越来越受到世界各国的广泛关注。风力发电机叶片是接受风能的最主要部件,其良好的设计、可靠的质量和优越的性能是保证发电机组正常稳定运行的决定因素,其成本约为整个机组成本的15%-20%。根据“风机功价比法则”,风力发电机的功率与叶片长度的平方成正比,增加长度可以提高单机容量,但同时会造成发电机的体积和质量的增加,使其造价大幅度增加。并且,随着叶片的增大,刚度也成为主要问题。为了实现风力的大功率发电,既要减轻叶片的重量,又要满足强度与刚度要求,这就对叶片材料提出了很高的要求。 1 碳纤维在风力发电机叶片中的应用 叶片材料的发展经历了木制、铝合金的应用,进入了纤维复合材料时代。纤维材料比重轻,疲劳强度和机械性能好,能够承载恶劣环境条件和随机负荷,目前最普遍采用的是玻璃纤维增强聚酯(环氧)树脂。但随着大功率发电机组的发展,叶片长度不断增加,为了防止叶尖在极端风载下碰到塔架,就要求叶片具有更高的刚度。国外专家认为,玻璃纤维复合材料的性能已经趋于极限,不能满足大型叶片的要求,因此有效的办法是采用性能更佳的碳纤维复合材料。 1)提高叶片刚度,减轻叶片质量 碳纤维的密度比玻璃纤维小约30%,强度大40%,尤其是模量高3~8倍。大型叶片采用碳纤维增强可充分发挥其高弹轻质的优点。荷兰戴尔弗理工大学研究表明,一个旋转直径为120m的风机的叶片,由于梁的质量超过叶片总质量的一半,梁结构采用碳纤维,和采用全玻璃纤维的相比,质量可减轻40%左右;碳纤维复合材料叶片刚度是玻璃纤维复合材料叶片的2倍。据分析,采用碳纤维/玻璃纤维混杂增强方案,叶片可减轻20%~30%。Vesta Wind System 公司的V90型3.0 MW发电机的叶片长44m,采用碳纤维代替玻璃纤维的构件,叶片质量与该公司V80 型2.0MW发电机且为39m长的叶片质量相同。同样是34 m长的叶片,采用玻璃纤维增强聚脂树脂时质量为5800kg,采用玻璃纤维增强环氧树脂时质量为5200kg,而采用碳纤维增强环氧树脂时质量只有3800kg。其他的研究也表明,添加碳纤维所制得的风机叶片质量比采用玻璃纤维的轻约32%,而且成本下降约16%。 2)提高叶片抗疲劳性能 风机总是处在条件恶劣的环境中,并且24h处于工作状态。这就使材料易于受到损害。相关研究表明,碳纤维合成材料具有良好的抗疲劳特性,当与树脂材料混合时,则成为了风力机适应恶劣气候条件的最佳材料之一。 3)使风机的输出功率更平滑更均衡,提高风能利用效率 使用碳纤维后,叶片质量的降低和刚度的增加改善了叶片的空气动力学性能,减少对塔和轮轴的负载,从而使风机的输出功率更平滑更均衡,提高能量效率。同时,碳纤维叶片更薄,外形设计更有效,叶片更细长,也提高了能量的输出效率。 4)可制造低风速叶片 碳纤维的应用可以减少负载和增加叶片长度,从而制造适合于低风速地区的大直径风叶,使风能成本下降。 5)可制造自适应叶片 叶片装在发电机的轮轴上,叶片的角度可调。目前主动型调节风机的设计风速为13~15m/s(29~33英里/h),当风速超过时,则调节风叶斜度来分散超过的风力,防止对风机的损害。斜度控制系统对逐步改变的风速是有效的。但对狂风的反应太慢了,自适应的各向异性叶片可帮助斜度控制系统,在突然的、瞬间的和局部的风速改变时保持电流的稳定。自适应叶片充分利用了纤维增强材料的特性,能产生非对称性和各向异性的材料,采用弯曲/扭曲叶片设计,使叶片在强风中旋转时可减少瞬时负载。美国Sandia National Laboratories致力于自适应叶片研究,使1.5MW风机的发电成本降到4.9美分/(kW?h),价格可和燃料发电相比。 6)利用导电性能避免雷击

风机塔筒涂装施工工艺

. 风机塔筒涂装工艺 1.适用范围风机塔筒的本工艺措施适用于辉腾梁一期工程 FD70B-1500KW. 涂装 2.编制依据 风力发电机组塔筒制造技术协议及塔架施工图纸 2.12.2<<风力透平Protec MD涂装规范>>及相关技术标准GB8923-88. 3涂装工艺内容 3.1每段塔筒制造完毕后用喷砂除锈,再分三层喷漆防腐,其寿命不低于20年,寿命期内腐蚀深度不超过0.5mm. 3.2塔筒主体、门采用喷漆防腐;组装的平台应拆开分别防腐,其余可拆卸附件(梯子和梯子支撑、电缆筒、螺栓等)采用热镀锌。热镀锌处理后必须修整飞边、毛刺等。 3.3喷漆前采用干喷砂除锈,基体表面粗糙度40-80um,喷砂用压缩空气必须干燥,砂料必须有棱角,清洁,干燥,不允许有油污,可溶性盐的游离物和长石,粒度在0.5mm-2mm之间(GB9795-88);喷砂防锈表面达到:钢材表面无可见的油脂、污垢、氧化皮、铁锈和油漆涂层等附着物,任何残留的轻微色斑(GB8923-88),喷砂表面应尽快喷涂,间隔不超过12小时。

3.4筒体喷涂前的处理和油漆工艺严格按油漆厂家要求。 3.5筒体外表面喷涂层及干膜厚度要求: . . 50um 膜厚度:底漆:环氧富锌漆 180um 干膜厚度:中间漆:环氧漆 50um 干膜厚度:面漆:聚氨酯漆 外观:浅灰色 280um 油漆干膜总厚度:筒体内表面喷涂层及干膜厚度要求:干膜厚度:底漆:环氧富锌漆50um 中间漆:环氧漆干膜厚度:150m 外观:浅灰色 油漆干膜总厚度:200m 油漆表面分布均匀。 风塔基础段从法兰上表面以下600mm范围内防腐喷漆同塔筒一致。下部埋入混凝土,不作防腐处理。 风塔法兰对接触面及螺栓沉孔喷砂后,只喷环氧富锌底漆70um. 油漆品牌:式玛卡龙牌 牌号:底漆:环氧富锌漆102HS 中间漆:环氧漆410

相关文档
最新文档