第6章过渡金属元素

合集下载

元素周期表中的过渡金属元素及其性质研究

元素周期表中的过渡金属元素及其性质研究
过渡金属元素在自然界中的存在和开采
地壳中过渡金属元素的种类和分布
地壳中过渡金属元素的开采难度和成本
地壳中过渡金属元素的应用领域和价值
地壳中过渡金属元素的丰度排名
过渡金属元素在自然界中的分布:主要存在于地壳中,如铁、铜、锌等
开采方法:根据元素性质和矿床类型选择合适的开采方法,如露天开采、地下开采等
镍的化合物:硫酸镍、氯化镍、硝酸镍等
Hale Waihona Puke 铜元素:原子序数29,位于元素周期表第四周期
铜的物理性质:红色金属,具有良好的导电性和导热性
铜的化学性质:在空气中稳定,不易氧化,但在高温下可与氧气反应生成氧化铜
铜的化合物:包括氧化铜(CuO)、硫酸铜(CuSO4)、氯化铜(CuCl2)等,具有不同的物理和化学性质
汇报人:
元素周期表中的过渡金属元素及其性质研究
目录
添加目录标题
过渡金属元素概述
过渡金属元素的物理性质
过渡金属元素的化学性质
常见过渡金属元素及其化合物
过渡金属元素在自然界中的存在和开采
添加章节标题
过渡金属元素概述
过渡金属元素位于周期表的第4、5、6周期
过渡金属元素包括铁、钴、镍、铜、锌、钼、钨、钽、铌、钌、铑、钯、银、金、铂、汞等
过渡金属元素在工业上广泛应用,如铁、铜、铝等
过渡金属元素在生物体内具有重要作用,如铁、锌等
过渡金属元素在环保领域也有广泛应用,如铬、锰等
过渡金属元素在化学实验中常用作催化剂,如镍、铂等
过渡金属元素的物理性质
过渡金属元素的原子结构:原子半径、电离能、电子亲和能等
电子排布:过渡金属元素的电子排布规律和特点
原子结构对物理性质的影响:如熔点、沸点、导电性等

过渡金属元素类型与应用

过渡金属元素类型与应用
过渡金属元素类型和应用
• 过渡元素是指长周期表中d区和ds区元素,在周期 表中包括IIIB族~IIB族。通常按同元素的性质相 近把过渡元素分成三个系列。

周期
IIIB IVB VB VIB VIIB
第一过渡系 Sc Ti V Cr Mn
VIIIቤተ መጻሕፍቲ ባይዱ Fe Co Ni
IB IIB Cu Zn
第二过渡系 Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
-0.44 -0.277
稀HCl 稀HCl H2SO4 等
等 (缓慢)
-0.257
稀H2SO4 HCl等
Cu
0.34
浓 H2SO4
Zn -0.7626 稀HCl H2SO4等
值同I其。I一I可B活第族周溶泼一是期于性过过迅元非减渡渡速素氧元弱氧系从素化化金左中,性属过到最渡与稀金除活右属水酸元C泼素作总u类置的型用外趋和换金应释,势用出E属放E,氢(出MS(氢气Mc2+、气。/2M+Y/M、)均L)增为a 能大负
(2)水合离子的颜色 • 过渡金属的水合离子、含氧酸根离子和配离子常
是有颜色的,与此相反,主族金属的相应离子是 无色的。 • 过渡元素的离子通常在d轨道上有未成对电子,这 些电子的基态和激发态的能量比较接近,一般只 要是可见光中的某些波长的光就可使电子激发, 这些离子大都具有颜色。
过渡金属元素类型和应用
过渡元素熔点、沸点的递变规律是自IIIB至VIB依次升 高,VIB族金属的熔点、沸点最高,VIIB族以后逐渐 降低,IIB族已是低熔点金属,汞的熔点(234.13K) 最低。VIB族的铬硬度过最渡金大属元(素类9型)和应。用
IVB~VIIB族元素的单质具有高熔、沸点、高硬度的原 因,主要是它们的原子半径较小,有效核电荷较大, 价电子层有较多的未成对d电子(铬有5个),这些d电 子也参与成键,因而增过渡强金属了元素金类型属和应的用 强度和晶格能。

过渡金属元素分解

过渡金属元素分解

其中:ΦA / V
Cr2O72 -/ Cr3+ MnO4- / Mn2+ FeO42- / Fe2+ NiO42- / Ni2+
1.33 1.49 1.84 1.75
(三)氧化态的稳定性
2.同一族
高稳氧 氧定化 化性性 态↗↘

CrO42-/Cr3+ MoO4-/M3+ WO42-/W3+

MnO4-/Mn2+ TcO4-/Tc+3 ReO4-/Re3+
低稳 氧定 化性 态

与ⅢA ~ ⅤA 族规律相反!
反映过渡金属元素 5d, 6d 电子参与成键倾向↑
原因:
(1)(n-1)d 电子电离能
n ↗, (n-1)d 电子电离倾向↘ (d 电子云发散)
(2)形成 d-p 键能力:
3d < 4d < 5d
稳定性: 氧化性:
CrO42- < MoO42- < WO42-
二、氧化态
(一)同一元素,多种氧化态
原因:(n-1)d 与 ns 轨道能量相近,部分(n-1)d 电子参与成键。
例:Mn 2 ~ +7 均出现,主要+2,+3,+4,+6,+7. Fe 2 ~ +6 均出现,主要+2,+3,+6.
(二)最高氧化态
ⅢB ~ ⅦB 族:最高氧化态 == 族数
例: Sc Cr Mn
24Cr
3d54s1
不是 3d44s2
41Nb 铌
4d45s1
不是 4d35s2
42Mo
4d55s1
不是 4d45s2

06有机过渡金属化合物讲义教材

06有机过渡金属化合物讲义教材
这类配合物都有夹心型结构,即过渡金属 原子夹在两个环烯配体之间,因而被称为 Sandwich compound(三明治化合物)。 其中最典型的是二茂铁和二苯铬。
一、二茂铁 1. 合成和性质 二茂铁在 1951 年首次纯属偶然地合成了出 来。当时是为了制备富瓦烯:
预期的方法是以FeCl3氧化环戊二烯格氏试 剂的方法:
Na[(C5H5)W(CO)3]+3CO
6.3.5 有机金属化合物命名原则 (1)若配体中的链或环上所有原子都键合于
一个中心原子,则在配体名称前加上词 头η,表示π键合形式。
(η3-C3H5)Co(CO)3 三羰基(η-烯丙基)合钴(I)
(η5-C5H5)Ni(NO) 亚硝酰(η-环戊二烯基)合镍(I)
(2)若链或环上只有一部分原子参加配位, 则在η前将这一部分原子的位标列出。
②在这类配合物中, 中心原子总是呈现较低 的氧化态(通常为0,有时也呈较低的正 氧化态或负氧化态)。 氧化态低使得有可能电子占满d-MO, 从而使M→L的电子转移成为可能,即 CO用pπ*空轨道接受过渡金属反馈的d 电子,形成π反馈键。
③大多数配合物都服从有效原子序数规则。
二、羰基化合物的制备
1. 直接合成法 Ni(s)+4CO(g) Ni(CO)4(l) Ni(CO)4是最早发现的羰基化合物,常温 下为液体。加热气化,进一步加热可分 解为Ni和CO。
(3)含碳配体的形式电荷根据与金属键合的 碳原子数来决定。 键合碳原子数为奇数时,形式电荷为-1; 键合碳原子数为偶数时,形式电荷为0。
(PPh3)2PtCl2中,Pt的氧化钛为:+II CH3Mn(CO)3中,Mn的氧化态为:+I Fe(CO)3(C4H4)中,Fe的氧化态为:0

化学教学:过渡金属元素

化学教学:过渡金属元素

配位化合物
6-3.2
配位化合物
配位化合物-混成轨域与几何形状
具有平面四边形及八面体形结构之错合物,有可 能具有几何异构物。
例如:二氯二氨铂,
具有顺式与反式两种异构物,如图:
例如:卤素离子、氰离子、硫氰离子 (SCN-)、 一氧化碳、氨和水等。
若配位子中有两个以上的原子具有孤对电子,可同时 和中心金属形成键结,则称为 多牙 配位子,
例如: 乙二胺( 化学式: H2N-CH2-CH2-NH2 ),
• 常以 en 表示, • 分子中两个氮原子皆具有一对孤对电子,可分别与中心金
6-3.1 常见过渡金属元素的性质
一.Fe
由鼓风炉炼铸而得的铁称为生铁,又称铸铁, 含有约2 ∼ 4.5%的碳,
质脆缺乏韧性及强度。 再经由一连串的热处理程序,可使其中的含碳
量减少,并使其结构重组,而形成所谓碳钢; 碳钢依其含碳量可分为:
低碳钢、中碳钢及高碳钢, 其机械性质不同,各有不同用途。如表: 炼铁产生的熔渣则可用来制造水泥。
动画:金属错合物
第二价称为配位数 (coordination number),
即中心金属与配位子间的键结数目。
例如:黄血盐 K4[Fe(CN)6], 中心为氧化数+2 的亚铁离子,其配位数为 6。
6-3.2
配位化合物
常见过渡金属离子的配位数
配位数多寡与中心金属的大小、电荷数与电子组 态有关,
一般最常见到之配位数为 6, 其次则为 4 配位和 2 配位。
为强调配位化合物中错离子的部分, 一般会以 [ ] 括号标记。
6-3.2
配位化合物
配位化合物的发现
配位化合物早在 1700 年代即被发现,但直至1890

元素周期表中的过渡金属和内过渡金属

元素周期表中的过渡金属和内过渡金属

其他化合物的性质
这些化合物具有独特的物理和化 学性质,如光学活性、磁有序性 和导电性等。
其他化合物的应用
在化学工业、材料科学和新能源 领域中,这些化合物具有广泛的 应用前景,如太阳能电池、磁性 材料和药物等。
06
过渡金属和内过渡金属的工业应用
在冶金工业中的应用
钢铁生产
过渡金属如铁、钴、镍等是钢铁生产中的重 要元素,可以提高钢材的强度、韧性和耐腐 蚀性。
总结词
包括铜、银、金等元素,具有稳定的价电子构型和良好的导电性。
详细描述
第一过渡系列元素位于周期表的第4至第12族,具有稳定的价电子构型,表现出良好的导电性和延展 性。这些元素在工业和日常生活中有广泛应用,如铜用于电线、管道和硬币制造,金则用于珠宝和投 资。
第二过渡系列
总结词
包括铁、钴、镍等元素,具有磁性和催化活性。
有色金属冶炼
铜、铝、锌等有色金属的冶炼过程中,过渡 金属作为杂质需要进行控制和去除。
在化学工业中的应用
催化剂
过渡金属化合物如铂、钯、铑等广泛应用于各种化学反应的催化,如加氢反应、氧化反 应等。
颜料与染料
某些过渡金属化合物具有特殊的颜色和稳定性,用于制造颜料和染料。
在其他领域的应用
磁性材料
过渡金属如铁、钴、镍等及其合金具有优异 的磁性能,用于制造磁性材料和器件。
硫化物和硒化物的性质
硫化物和硒化物的应用
在电子工业、光学材料和催化领域中 ,硫化物和硒化物具有重要应用,如 半导体材料、红外探测器和催化剂等 。
这些化合物具有不同的物理和化学性 质,如颜色、熔点、导电性和磁性等 。
其他化合物
其他化合物的种类
除了氧化物和硫化物/硒化物外, 过渡金属和内过渡金属还可以形 成多种其他类型的化合物,如卤 化物、络合物和氢化物等。

元素周期表中的过渡金属


医学应用
01
02
03
药物合成
过渡金属在药物合成中发 挥重要作用,如铂、钴、 镍等金属的配合物用于治 疗癌症的药物研发。
诊断试剂
某些过渡金属离子如铁、 铜、锌等参与生物体内的 代谢过程,可作为生物标 记物用于诊断疾病。
医疗器械
一些具有特殊物理和化学 性质的过渡金属及其合金 用于制造医疗器械,如手 术刀具、植入物等。
环境治理
污水处理
过渡金属化合物在污水处理中具有重要作用 ,能够有效去除水中的重金属离子和有害物 质,保障水质安全。
大气治理
利用过渡金属化合物去除大气中的有害气体 ,如二氧化硫、氮氧化物等,有助于改善空
气质量。
谢谢您的聆听
THANKS
元素周期表中的过渡金属
CONTENTS
• 过渡金属的概述 • 过渡金属的化学性质 • 过渡金属的物理性质 • 过渡金属的应用 • 过渡金属的发现与开采 • 过渡金属的未来发展
01
过渡金属的概述
定义与特性
定义
过渡金属是元素周期表中d区和ds区 的金属元素,它们具有未填满的d电 子壳层。
特性
过渡金属具有多种氧化态,可以形成 多种复杂的化合物,具有丰富的化学 性质和物理性质。
功能材料
过渡金属化合物在磁性、光学、电学 等方面具有优异性能,可用于信息存 储、光电器件、传感器等领域。
新能源开发
燃料电池催化剂
过渡金属(如铂、钯等)具有良好的催化性能,是燃料电池中重要的催化剂,有助于提 高燃料电池的效率和稳定性。
太阳能电池
过渡金属化合物在太阳能转换方面具有潜在应用价值,能够提高太阳能电池的光电转换 效率和稳定性。
详细描述
过渡金属具有多种氧化态,这是因为它们的d电子可以轻易地参与成键,形成不 同的价态。此外,由于d电子的存在,使得相邻氧化态间的电离能差较小,这使 得过渡金属在化学反应中容易发生氧化还原反应。

《过渡金属元素》课件


佩戴防护设备:如防护服、 手套、口罩等
遵守操作规程:严格按照 操作规程进行操作
定期进行安全培训:提高 员工安全意识和技能
建立应急处理机制:应对 突发安全事故
遵守法律法规:遵守国家 及行业相关法律法规
定期进行安全检查:及时 发现并消除安全隐患
过渡金属元素废弃物的分类和处理方法 资源化利用的技术和设备 资源化利用的经济效益和社会效益 资源化利用的法律法规和政策支持
氧化还原反应是 化学反应中常见 的反应类型
过渡金属元素在 氧化还原反应中 具有较高的活性
过渡金属元素在氧 化还原反应中能够 形成多种化合物
过渡金属元素在化学反应中具有催化作用 催化作用可以提高化学反应速率 催化作用可以降低化学反应的活化能 催化作用可以改变化学反应的方向和产物
PART FIVE
过渡金属元素在合金 材料中的作用:提高 合金的强度、硬度、 耐磨性等性能
有重要作用
过渡金属元素在自然界中主要以矿物和矿石的形式存在 常见的过渡金属矿物有铁、铜、镍、钴等 矿石是含有过渡金属元素的岩石,如铁矿石、铜矿石等 过渡金属元素在矿石中的含量和分布会影响其经济价值
过渡金属元素在自然界中主要 以矿物形式存在
提取方法:物理提取法、化学 提取法、生物提取法等
纯化方法:溶剂萃取法、离子 交换法、电化学法等
纯化程度:根据应用需求选择 合适的纯化程度
PART FOUR
配位键:过渡 金属元素与配 体形成的化学

作用:稳定过 渡金属元素的 电子结构,增 强其化学活性
应用:在化学 反应中,配位 键可以促进过 渡金属元素的
反应速率
例子:铁离子 与水形成配位 键,生成氢氧
化铁沉淀
过渡金属元素在 氧化还原反应中 起到重要作用

过渡金属Fe,Al,Cu

I.铁Fe一、铁的结构和性质1.铁是26号元素,位于第四周期第训I族,属于过渡元素。

原子结构示意图:主要化合价:+2, +32.铁在金属的分类中属于黑色金属,重金属,常见金属。

纯净的铁是光亮的银白色金属,密度为7.86g/cm 3,熔沸点高,有较好的导电、传热性,能被磁铁吸引,也能被磁化。

还原铁粉为黑色粉末。

3.铁是较活泼的金属元素,在金属活动性顺序表中排在氢的前面。

①跟非金属反应:点燃点燃△3Fe+2O2 == Fe3O42Fe+3Cl2 ==2FeCl3 Fe+S= FeSFe+I2= FeI2②跟水反应:3Fe+4H20==(高温)==Fe3O4+4H2炼铁料化学原理铁矿石、焦炭、石灰石、空气在高温下用还原剂从铁矿石里还原出来I①还原剂的生成炼钢生铁、空气(或纯氧、氧化铁)、生石灰、脱氧剂在高温下用氧化剂把生铁里过多的碳和其它氧化为气体或炉清除去I ______________________________________________________________________________________①氧化:2Fe+02fBi温 2FeOC+O2=CO2CO +C 同温2CO 2FeO氧化铁水里的Si、Mn、C等。

如 C+FeO②铁的还原亘ie+COTFe2O3+3CO )高2Fe+3CO2②造渣:生成的硅锰氧化物得铁水里的硫、磷跟造渣材料反应形成炉渣排出。

③炉渣的生成③脱氧,并调整Mn、Si含量CaCO3向温 CaO+CO22FeO+SiEL=E2Fe+SiO2③跟酸作用:Fe+2H+=Fe2++H t (遇冷浓硝酸、浓硫酸钝化;与氧化性酸反应2不产生H2,且氧化性酸过量时生成Fe3+)④与部分盐溶液反应:Fe+Cu2+=Fe2++Cu Fe+2Fe3+=3Fe2+4.炼铁和炼钢的比较1.过渡元素位于周期表中中部从niB〜ii B族十个纵行,分属于第四周期至第七周期。

过渡元素都是金属,又叫过渡金属。

过渡金属元素

过渡金属是具有部分充填d或f亚层电子的元素,包括从ⅢB到Ⅷ族的元素,以及Cu族和Zn族。这些元素性质丰富,如W的高熔点、Cr的最大硬度、Hg的常温液态、Au的优异延展性和Ag的良好导电性。其中,钛是一种重要的过渡金属,其在地壳中含量丰富,Байду номын сангаас要以TiO2和钛铁矿存在。钛具有高强度、轻比重、耐腐蚀等优秀性能,被广泛应用于航空、航天、化工等领域。钛的冶炼十分困难,因其高温下反应性强,易与氧、氮等元素结合。钛的重要化合物包括TiO2,它是制造钛白粉的重要原料,具有极高的白度。此外,钛还可以与其他元素形成稳定的化合物,如TiC、TiN等,这些化合物具有高硬度、高熔点等特性,在切削工具、航空材料等方面有重要应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

镧系和锕系称为内过渡元素(电子主要填充在更内层 的f轨道上)。
本教材中:过渡元素指d区和ds区,包括ⅢB~ⅧB 、ⅠB、ⅡB共10列。由于这些元素内层的d能级正在 填充,所以称为过渡元素。同周期过渡元素性质相近, 因此,把过渡元素分成三个系列。 第四周期的过渡元素,称为第一过渡系; 第五周期的过渡元素,称为第二过渡系; 第六周期的过渡元素,称为第三过渡系。
密度最大的是Os(22.6×103kg·m-3);
熔点最低的是Hg(234.13K,即-39.020C)。
2.水合离子的颜色(在晶体场的影响下,d轨道发生能级分裂) 过渡金属的水合离子、含氧酸根离子和配离子常是有颜色 的;主族金属的相应离子是无色的。 离子有颜色的原因较复杂,常解释为:这些离子的d轨道
3.易形成配合物 过渡元素有很强的形成配合物的倾向,不仅能形成简单 的配合物和螯合物,还可以形成多核配合物、羰基配合物等 。 主要原因有: 1、过渡元素的离子(原子)有能级相近的 9价电子轨道,包 括一个ns轨道,3个np轨道,5个(n-1)d轨道,这些能级相近 的轨道易形成一组杂化轨道,来接受配位体提供的孤对电子, 形成较稳定的配位键。 2、过渡元素的电负性比 p区元素小,半径比s区小,极化能力 强,比主族元素能形成较强的正电场,有较强的吸引配体的能 力,能将配体吸引在中心离子(原子)的周围,所以有很强形 成配合物的倾向。
2.多种氧化数 过渡元素有多种氧化态。因为它们除最外层的s电子可以 作为价电子外,次外层的d电子也可部分或全部作为价电子参 加成键,形成多种氧化态。 同一过渡系金属元素:氧化数从左到期右,随着核电荷的 增加,最高氧化数先是逐渐升高,经过ⅦB和ⅧB,随后氧化数 又逐渐变低,最后与ⅠB铜族元素的低氧化态衔接。 原因可能是:第一过渡系元素随着核电荷的增加,未配对 的d亚层电子数目也依次增加,所以最高氧化数先是逐渐升高; 当3d亚层电子数目达到5或超过5时,未配对的d亚层电子数目 又逐渐减少,同时核电荷又依次增加,而原子半径则逐渐减小, d亚层电子更难失去,因此最高氧化数逐渐降低。 在形成低氧化态(+1、+2、+3)化合物时,一般以离子 键相结合。它们在水溶液中,容易形成组成确定的水合离子。 当形成高氧化态(+4或+4以上)化合物时,则以极性共价键 相结合。
1.性质及应用 钛,银白色,是高熔点(1948K)、低密度 ( 4.5g cm-3)。纯钛较软,其合金硬度大(接近 钢) ,耐腐蚀(常温下,Ti不与无机酸反应,即使是 王水也不能溶解,在HCl、H2SO4、HNO3中均“钝 化”)。 钛及其合金有如下主要用途:
(4)由于钛的耐蚀性好、密度小,且表面与生物体 组织相容性好,并和生物体组织结合牢固,因此是 理想的植入材料,医疗上用ห้องสมุดไป่ตู้来制作人造骨骼。钛 人造骨骼能与骨骼肌肉生长在一起,与人体不排斥, 称为“生物金属” (5)钛合金还有形状记忆功能(Ti-Ni合金)、超导 功能 (Nb-Ti合金) 和储氢功能(Ti-Mn、Ti-Fe)等。 形状记忆合金可用于温度控制装置、管道连接及航 天技术等方面。
6.1 过度元素的通性
过渡元素原子的结构特点:随着核电荷的递增,电子依次 填充在次外层的d轨道上,最外层只有1~2个电子;其价电子 构型为: (n-1)d1~10 ns1~2 (例外 Pd 4d10 5s0 )。由于过渡元素原 子的结构特点,故有许多通性。 6.1.1 物理性质
过渡金属的单质:显示典型的金属性质,有金属光泽、延 展性、是热和电的良导体
有未成对电子,这些电子的基态和激发态的能量较接近,一般
只要是可见光中的某些波长的光就可使电子激发,当d电子由 基态跃迁到能量较高的激发态能级所需的能量在可见光范围内 时,就会吸收一定范围的可见光,从而呈现出互补色可见光的 颜色,而价电子层没有未成对d电子的离子大多是无色的。 如:
d0、 d10等就比较稳定,不易激发,这些离子一般无色,如
6.2 ⅣB~ⅥB族金属元素及其化合物
6.2.1 钛
钛的含量(0.63%)在地球中十分丰富。过渡金属中含量 仅次于Fe;总数第十位。
存在:金红石TiO2,钛铁矿 (FeTiO3)
四川攀枝花钒钛铁矿(FeTiO3)探明储量约15亿吨。 钛的应用较晚。首先它纯度不高时,表现为脆性。最主要 是Ti 的冶炼十分困难。
1.熔点、沸点及硬度 过渡金属:熔点、沸点高,硬度大,密度大,升华热大,金属 性强的特点 原因:较小的原子半径,有效核电荷较大,较高的价电子数, 金属键强
熔沸点高的金属主要集中在d区,尤其是ⅣB、ⅤB、ⅥB
、ⅦB族的金属。同一周期从左到右依次升高,在ⅥB( (n1)d5 ns1 )熔、沸点最高,ⅦB以后,熔、沸点逐渐降低,ⅡB 已是低熔点金属。Hg的熔点最低(234.13K,即-39.020C) 。 熔沸点最高的是W(熔点3653K、沸点6200K); 硬度最大的是Cr(莫氏硬度为9);
Sc3+、Ag+、Zn2+等。
6.1.2 化学性质 1.金属活泼性
①同一过渡系金属:活泼性从左到期右逐渐减弱(ⅡB除外)。 ⅢB是过渡元素中最活泼的金属。例如,Sc、Y、La在空气中 能迅速被氧化,与水反应放出H2 ,活泼性接近于碱土金属。 第一过渡系元素(Cu除外),在酸性溶液中,Eθ M+/M >0 (Cu除外),所以,这些金属能溶液于非氧化性稀酸,并能置换 出H2 。 同时, Eθ M+/M从左到右逐渐升高,表明金属的还原性减弱。 第二、三过渡系金属元素都有不活泼,与氧化性酸在加热时 才有可能发生反应。 ②同一族的过渡元素,除ⅢB外,其他各族元素活泼性都是自 上而下降低。 ⅣB: Ti + 2HCl = TiCl2 而Zr、Hf仅能溶液于王水及氢氟酸。 一般认为是由于同族元素自上而而下,原子半径增加不大,, 核电荷 数却增加较多,故对电子吸引力增强,所以第二、三过渡 系元素的活泼性急剧下降。
6.1 过度元素的通性
6.2 ⅣB~ⅥB族金属元素及其化合物
6.3 ⅦB,ⅧB族金属元素及其化合物 6.4 稀土金属及其应用
本章教学要求
1. 了解过渡元素的通性
2. 掌握铬的化合物、锰的化合物的性质
3. 了解稀土金属的应用
过渡元素(两种观点): ①周期表中d区元素(包括ⅢB~ⅧB)称为过渡元素。 ②周期表中d区元素和ds区元素(包括ⅢB~ⅧB、 ⅠB、ⅡB共10列)统称为过渡元素。
相关文档
最新文档