平面向量中三点共线定理的扩展及其应用

平面向量中三点共线定理的扩展及其应用
平面向量中三点共线定理的扩展及其应用

平面向量中三点共线定理的扩展及其应用

广东省云浮市邓发纪念中学 杨再华

一、问题的提出及证明。

1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是:

.OA xOB yOC =+

(O 为平面内任意一点)

,其中1x y +=。 那么1x y +<、1x y +>时分别有什么结证?并给予证明。 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下:

设 OA xOB yOC =+

且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点

设 1

OA OA λ= (λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1

O A m O B n O

C =+ 且1m n += 则

OA mOB nOC λ=+

m n OA OB OC λ

λ

?=+ m

x λ

∴=

、n

y λ

=

1

m n

x y λ

λ

++=

=

(1)1λ> 则 1x y +< 则

1

11OA OA OA λ

=<

∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1

01x y λ

+=<<,此时OA 与1OA 反向

A 与O 在直线BC 的同侧(如图[2]) 图[2]

B C

A 1

O

A O

A

1

B

C

A

图[1]

(3)1o λ<<,则1x y +>

此时 11

1OA OA OA λ=>

∴ A 与O 在直线BC 的异侧(如图[3])

图[3]

2、如图[4]过O 作直线 平行AB ,

延长BO 、AO 、将AB 的O 侧区

域划分为6个部分,并设OP xOA yOB =+

,

则点P 落在各区域时,x 、y 满足的条件是:

(Ⅰ)区:0001x y x y ??<+??>??<+??

(Ⅳ)区:0011x y x y >??

010

x y x y

>??-<+

(证明略)

二、用扩展定理解高考题。

(1)[2006年湖南(文)10] 如图[5] OM AB ,点P 在由射线OM ,线段OB 及AB

的延长线围成的阴影区域内(不含边界),且OP xOA yOB =+

,则实数对(x 、y )可以是……( ) A.(14,34) B.(23-,23) C.(14-,34) D.(15-,7

5)

解:根据向量加法的平等四边形法则及扩展定理,则 0x <,且1O x y <+<,则选C

(2)[2006年湖南(理)15] 如图[5]OM AB ,点P 在由射线OM ,线段OB 及AB

的延长线围成的阴影区域内(不含边界)运动,且OP xOA yOB =+

,则x 的取值

范围是 。当1

2

x =-时,y 的取值范围是 。

解:根据向量加法的平行四边形法则及扩展定理,则有:

0x <,且当12x =-,有:1O x y <+<,即113

1222O y y <-+

答案为:0x <,(12,32) A B C A 1

O A

B

O Ⅲ Ⅳ

Ⅰ Ⅱ M

B A

O

P

图[4]

图[5]

平面向量的概念、运算及平面向量基本定理

05—平面向量的概念、运算及平面向量基本定理 突破点(一)平面向量的有关概念 知识点:向量、零向量、单位向量、平行向量、相等向量、相反向量 考点 平面向量的有关概念 [典例]⑴设a , b 都是非零向量,下列四个条件中,使 向=而成立的充分条件是( ) A . a =- b B . a // b C . a = 2b D . a // b 且 |a|= |b| ⑵设a o 为单位向量,下列命题中:①若 a 为平面内的某个向量,贝U a = |a| a o ;②若a 与a o 平行,则 a = |a|a o ;③若a 与a o 平行且|a|= 1,则a = a o .假命题的个数是( ) A . o B . 1 C . 2 D . 3 [解析]⑴因为向量合的方向与向量a 相同,向量£的方向与向量b 相同,且£,所以向量a 与 |a| |b| |a| |b| 向量b 方向相同,故可排除选项 A , B , D.当a = 2b 时,a =警=b ,故a = 2b 是耳=g 成立的充分条件. |a| |2b| |b| |a| |b| (2)向量是既有大小又有方向的量, a 与|a|a o 的模相同,但方向不一定相同,故①是假命题;若 a 与a o 平行,则a 与a o 的方向有两种情况:一是同向,二是反向,反向时 a =- |a|a o ,故②③也是假命题.综上 所述,假命题的个数是 3. [答案](1)C (2)D _ _[易错提醒」_____________ _____________ 厂7i)两个向量不能比较大小,只可以判断它们是否相等,但它们的模可以比较大小 […(2)大小与方向是向量的两个要素?j 分别是向量的代数特征与几何特征; (3)向量可以自由平移,任意一组平行向量都可以移到同一直线上. 突破点(二)平面向量的线性运算 1. 向量的线性运算: 加法、减法、数乘 2. 平面向量共线定理: 向量b 与a(a ^ o )共线的充 要条件是有且只有一个实数 人使得b = 1 [答案](1)D ⑵1 —…_[方法技巧丄—――――_—_ _―_—_ _―_……_ _―_…_ _―_…_ _―_…_ _―_…「 i 1.平面向量的线性运算技巧: ⑴不含图形的情况:可直接运用相应运算法则求解. ⑵含图形的情况:将它们转化到 ] 三角形或平行四边形中,充分利用相等向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示岀来求解. 2?利用平面向量的线性运算求参数的一般思路: (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四 边形法则或三角形法贝U 进行转化丄转化为要求的向量形式._ _ (3) 比较,观察可知所求.__________ 考点二 平面向量共线定理的应用 [例2Lu 设两个非零向J a 和b 不共鈿 平面向量的线性运算 …uuur …"uLu r 考点一 ~~uuur ----- u uur [例 1] (1)在厶 ABC 中,AB = c , AC = b.若点 D 满足 BD = 2 DC 12 5 2 A.3b + 3C B.gC — 3b 2 1 2 1 C.gb — 3c D.gb + 3C uuuu 1 uuur ⑵在△ ABC 中,N 是AC 边上一点且 AN = NC , P 是BN 上一点, 数m 的值是 ______________ . uuur umr [解析](1)由题可知BC = AC - uuur + BD = c + 2 1 —c)= 3b + §c,故选 D. uuuu 1 uuur (2)如图,因为AN = 2 NC ,所以 uuur 2 uuuu m AB + 3 AN ?因为B ,P ,N 三点共线, ―uuur ,贝U AD =( ) UULT uuur 2 uuur 若 AP = m AB + 9 AC ,则实 2 uuir 2 uuir uur uuur uuur uuur UULT AB = b — c , '^BD = 2 DC ,「.BD = 3 BC = 3(b — c),则 AD = AB uuuu 1 uuur AN = 3 AC ,所以 2 所以m +3= 1,则 UULT uuur 2 uuur AP = m AB + 9 AC = 1 m = 3.

平面向量基本定理练习题

平面向量基本定理及坐标表示强化训练 姓名__________ 一、选择题 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是 ( ) A .e 1=(0,0), e 2 =(1,-2) ; B .e 1=(-1,2),e 2 =(5,7); C .e 1=(3,5),e 2 =(6,10); D .e 1=(2,-3) ,e 2 =)4 3,2 1(- 2. 若AB =3a, CD =-5a ,且||||AD BC = ,则四边形ABCD 是 ( ) A .平行四边形 B .菱形 C .等腰梯形 D .不等腰梯形 3. 在△ABC 中,已知D 是AB 边上一点,若AD → =2DB →, CD → =1 3 CA →+λCB → ,则λ 等于() A. 23 B. 13 C. 13- D. 2 3- 4.已知向量a 、b ,且AB =a +2b ,BC = -5a +6b ,CD =7a -2b ,则一定共线的三点是 ( ) A .A 、B 、D B .A 、B 、C C .B 、C 、D D .A 、C 、D 5.如果e 1、 e 2是平面α内两个不共线的向量,那么在下列各说法中错误的有 ( )①λe 1+μe 2(λ, μ∈R)可以表示平面α内的所有向量; ②对于平面α中的任一向量a ,使a =λe 1+μe 2的λ, μ有无数多对; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数k ,使λ2e 1+μ2e 2=k (λ1e 1+μ1e 2); ④若实数λ, μ使λe 1+μe 2=0,则λ=μ=0. A .①② B .②③ C .③④ D .仅② 6.过△ABC 的重心任作一直线分别交AB 、AC 于点D 、E ,若AD =x AB ,AE =y AC ,xy ≠0,则11 x y +的值 为 ( ) A .4 B .3 C .2 D .1 7.若向量a =(1,1),b =(1,-1) ,c =(-2,4) ,则c = ( ) A .-a +3b B .3a -b C .a -3b D .-3a +b 二、填空题 8.作用于原点的两力F 1 =(1,1) ,F 2 =(2,3) ,为使得它们平衡,需加力F 3= ; 9.若A (2,3),B (x , 4),C (3,y ),且AB =2AC ,则x = ,y = ; 10.已知A (2,3),B (1,4)且12 AB =(sin α,cos β), α,β∈(-2π,2π),则α+β= * 11.已知a =(1,2) ,b =(-3,2),若k a +b 与a -3b 平行,则实数k 的值为

平面向量中三点共线定理探究

平面向量中“三点共线向量定理”探究 三点共线定理在教材中没有作为定理使用,但在各级考试中却应用广泛,笔者尝试通过 聚焦结论,优化思路,多维度揭示定理的价值所在. () 0.a b b a b a b λλ≠=r r r r r r r r 向量共线定理:对平面内的任意两个向量 、 , // 的充要条件是:存在唯一的 实数 ,使由该定理可以得到平面内三点共线定理: ()121212+= OA OB OP OP OA OB R λλλλλλ=+∈u u u r u u u r u u u r u u u r u u u r u u u r 三点共线定理:已知平面内一组基底 , 及任一向量 ,, , 则A ,B ,P 三点共线,当且仅当 1. ()() ()1122121,,1,=1,,+= A B P AP AB OP OA OB OA OP OA O OP OA O B B λλλλλλλλλλλλλ=?-=-?=-+-=+=u u u r u u u r u u u r u u u r u u u r u u u u u u r u u u r u u u r u u u r u u u r u u u r r 证明:如图 , 三点共线,当且仅当有唯一一个实数 , ,且使令则 1. ()()()()()() 1212112212=1,1;2+= OA OP OP OA OB OP OA OB OA AP AB OB OP OA OB λλλλλλλλλλλλλλ?-===-+?-=-?=+u u u r u u u r u u u r u u u r u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u u u u r r u ur 的系数之和等于1 即为向量,的变化而变化的定理特.如图, 且1征:向量, 的系数点P 的位置是随着令 , 当点P 在线段AB 内()() ()() ()() 12121212121,1,,=10,10,1=1,01,0=10,,0=0=110 =1=10 1. λλλλλλλλλλλλλλλλλλλλλλλλλ-∈=∈-∈-∞=∈+∞<-<<>∈+∞=∈-∞-===-===此时 此时,0,当点P 在线段AB 的延长线上时, ,点P 在线段AB 反向延长线上时, ,当点P 与点A , ,当点P 与点B 重合时, 时此时此时此时,, ,重合时, 111AP PB OP OA OB λλλλ ?==+++u u u r u u u r u u u r u u u r u u u r 推论:在OAB 中,P 为直线AB 上的一点,且则 O 1()

向量三点共线定理及其延伸应用汇总

向量三点共线定理及其扩展应用详解 一、平面向量中三点共线定理的扩展及其应用 一、问题的提出及证明. 1、向量三点共线定理:在平面中A 、B 、C 三点共线的充要条件是: .O A xOB yOC =+(O 为平面内任意一点),其中1x y +=. 那么1x y +<、1x y +>时分别有什么结证?并给予证明. 结论扩展如下:1、如果O 为平面内直线BC 外任意一点,则 当1x y +<时 A 与O 点在直线BC 同侧,1x y +>时, A 与O 点在直线BC 的异侧,证明如下: 设 O A xOB yOC =+ 且 A 与B 、C 不共线,延长OA 与直线BC 交于A 1点 设 1O A O A λ=(λ≠0、λ≠1)A 1与B 、C 共线 则 存在两个不全为零的实数m 、n 1 O A m O B n O C =+ 且1m n += 则 OA mOB nOC λ=+ m n OA OB OC λ λ ?=+ m x λ ∴= 、n y λ = 1 m n x y λ λ ++= = (1)1λ> 则 1x y +< 则 11 1 OA OA OA λ = < ∴A 与O 点在直线BC 的同侧(如图[1]) (2)0λ<,则1 01x y λ +=<<,此时OA 与1OA 反向 A 与O 在直线BC 的同侧(如图[2]) 图[2] B C A 1 O A O A 1 B C A 图[1]

(3)1o λ<<,则1x y +> 此时 111 OA OA OA λ => ∴ A 与O 在直线BC 的异侧(如图[3]) 图[3] 2、如图[4]过O 作直线平行AB , 延长BO 、AO 、将AB 的O 侧区 域划分为6个部分,并设OP xOA yOB =+, 则点P 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:0001x y x y ??<+??>??<+?? ????-<+

向量证三点共线 (1)

利用共线向量巧解三点共线 例题:如图,A,B,C是平面内三个点,P是平面内任意一 点,若点C在直线AB上,则存在实数λ,使得PC=λPA+ (1-λ)PB. 证法探究: 分析:初看欲证目标,始感实难下手。我们不妨从结论出发探寻线路,欲证PC=λPA+(1-λ)PB,只需证=λ+-λ?-=λ(-)? =λ?∥.这样证明思路有了。 证法:∵向量BC与向量BA共线,∴BC=λBA,即PC-PB=λ(PA -PB),PC=λPA+PB-λPB,∴PC=λPA+(1-λ)PB. 证毕,再思考一下实数λ的几何意义究竟如何。考察向量等式BC=λBA,结合图形,易知,当点C在线段AB上时,则BC 与BA同向,有0≤λ≤1;当点C在线段AB延长线上时,则BC 与BA反向,有λ<0;当点C在线段BA延长线上时,则BC与BA 同向,有λ>1. 此例题逆命题亦成立,即 已知A,B,C是平面内三个点,P是平面内任意一点,若存在实数λ,μ,有PC=λPA+μPB,且λ+μ=1,则A,B,C三点共线. 故此逆命题可作三点共线判定方法。

为方便起见,我们将两命题作为性质叙述如下: 性质1:已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,使得PC =λPA +(1-λ)PB . 或叙述为: 已知A ,B ,C 是平面内三个点, P 是平面内任意一点,若A ,B ,C 三点共线,则存在实数λ,μ,使得PC =λPA +μPB ,则有λ+μ=1. 性质2:已知A ,B ,C 是平面内三个点,P 是平面内任意一点,若存在实数λ,μ,有PC =λPA +μ PB ,且λ+μ=1,则A , B , C 三点共线. 三点共线性质在解题中的应用: 例1 如图,在ABC ?中,点O 是BC 的中点,过点O 的直线分别 交直线AB 、AC 于不同的两点M 、N ,若AB =AM m ,AC =AN n ,则n m +的值为 . 解析:连结AO ,因为点O 是BC 的中点,所以有AO =2121+=AN n AM m 2121+,又因为M 、O 、N 三点共线,所以12121=+n m ,故2=+n m . 点评:因为点O 是BC 的中点,所以λ=21=,由性质1,

(完整版)平面向量中“三点共线定理”妙用

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(, 的充要条件是:存在唯一的实数 ,使b a 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点 的O ,存在唯一的一对实数x,y 使得:OP xOA yOB u u u v u v u u u v 且1x y 。 特别地有:当点P 在线段AB 上时,0,0x y 当点P 在线段AB 之外时,0xy 笔者在经过多年高三复习教学中发现,运用平面向量中三点 共线定理与它的两个推广形式解决高考题,模拟题往往会使会问题的解决过程变得十分简单!本文将通过研究一些高考真题、模拟题和变式题去探究平面向量中三点共线定理与它的两个推广形式的妙用,供同行交流。 例1(06年江西高考题理科第7题)已知等差数列{a n }的前n 项和为S n ,若 1200OB a OA a OC u u u r u u u r u u u r ,且A 、B 、C 三点共线, (设直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S ,故选A 。 点评:本题把平面三点共线问题与等差数列求和问题巧妙地结合在一起,是一道经典的高考题。 例2 已知P 是ABC 的边BC 上的任一点,且满足R y x AC y AB x AP .,,则y x 4 1 的最小值是 解:Q 点P 落在ABC V 的边BC 上 B ,P,C 三点共线 AP xAB yAC u u u r u u u r u u u r Q 1x y 且x>0,y>0 14141444()1()()145y x y x x y x y x y x y x y x y   Q x>0,y>040,0y x x y 由基本不等式可知:4424y x y x x y x y ,取等号时

平面向量共线定理题型总结

平面向量中“三点共线定理”妙用 对平面内任意的两个向量b a b b a //),0(,≠的充要条件是:存在唯一的实数λ,使b a λ= 由该定理可以得到平面内三点共线定理: 三点共线定理:在平面中A 、B 、P 三点共线的充要条件是:对于该平面内任意一点的O ,存在唯一的一对实数x,y 使得:OP xOA yOB =+且1x y +=. 特别地有:当点P 在线段AB 上时,0,0x y >> 当点P 在线段AB 之外时,0xy < 例1已知等差数列{a n }的前n 项和为S n ,若1200OB a OA a OC =+,且A 、B 、C 三点共线,(设 直线不过点O ),则S 200=( ) A .100 B .101 C .200 D .201 解:由平面三点共线的向量式定理可知:a 1+a 200=1,∴1200200200() 1002 a a S += =,故选A. 例2 已知P 是ABC ?的边BC 上的任一点,且满足R y x AC y AB x AP ∈+=.,,则y x 4 1+的最小值是 解:点P 落在ABC 的边BC 上 ∴B ,P,C 三点共线 x>0,y>040,0y x x y ∴ >> 由基本不等式可知:4424y x y x x y x y +≥?=,取等号时4y x x y =224y x ∴=2y x ∴=±0,0x y >> 2y x ∴=1x y +=12 ,33 x y ∴==,符合 所以 y x 4 1+的最小值为9

例3如图,在△ABC中,1 3 AN NC =,点P是BC上的一点,若 2 11 AP mAB AC =+,则实数m的值为() A. 9 11 B. 5 11 C. 3 11 D. 2 11 解:,, B P N三点共线,又228 4 111111 AP mAB AC mAB AN mAB AN =+=+?=+ 8 1 11 m ∴+= 3 11 m ∴=,故选C 例4如图,在△ABC中,点O是BC的中点,过点O的直线分别交直线AB、AC于不同的两点M、N,若AB=m AM,AC=n AN,则m+n的值为. 解:因为O是BC的中点,故连接AO,如图4,由向量加法的平行四边形法则可知: 1 () 2 AO AB AC ∴=+m AB AM =,AC nAN =又,, M O N三点共线, ∴由平面内三点共线定理可得:1 22 m n +=2 m n ∴+= 例5 如图所示:点是△的重心,、分别是边、上的动点,且、、三点共线. 设,,证明:是定值; 证明:因为G是OAB的重心,211 ()() 323 OG OA OB OA OB ∴=?+=+ 又,, P G Q三点共线,111 33 x y ∴+= 11 3 x y ∴+= 11 x y ∴+为定值3 G OAB P Q OA OB P G Q OA x OP=OB y OQ= y x 1 1 +

向量法证明三点共线的又一方法及应用

向量法证明三点共线的又一方法及应用 蒋李萍 2011年10月24日 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =)得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+ ∴()OB OA μOC OA -=- ∴AB μAC = ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+,且1λμ+=.揭示了三点共线的又一个性质; 3. 特别地,12λμ== 时,1 ()2 OB OA OC =+,点B 为AC 的中点,揭示了OAC 中线OB 的一个向量公式,应用广泛. 应用举例: 例1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且1 3 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明BN λBM μBC =+,且1λμ+=. 证明:由已知BD BA BC =+,又点N 在BD 上,且1 3 BN BD = ,得 1111()3333BN BD BA BC BA BC ==+=+ 又点M 是AB 的中点, 1 2BM BA ∴=,即2BA BM = 21 33BN BM BC ∴=+ 而21133 += ∴M 、N 、C 三点共线. D A B C M N

(完整版)平面向量基本定理及经典例题

平面向量基本定理 一.教学目标: 了解平面向量基本定理,理解平面向量的坐标概念,会用坐标形式进行向量的加法、数乘的运算,掌握向量坐标形式的平行的条件; 教学重点: 用向量的坐标表示向量加法、减法、数乘运算和平行. 二.课前预习 1.已知=(x,2),=(1,x),若//,则x 的值为 ( ) A 、2 B 、 2- C 、 2± D 、 2 2.下列各组向量,共线的是 ( ) ()A (2,3),(4,6)a b =-=r r ()B (2,3),(3,2)a b ==r r ()C (1,2),(7,14)a b =-=r r () D (3,2),(6,4)a b =-=-r r 3.已知点)4,3(),1,3(),4,2(----C B A ,且?=?=2,3,则=____ 4.已知点(1,5)A -和向量a =(2,3),若AB =3a ,则点B 的坐标为 三.知识归纳 1. 平面向量基本定理:如果12,e e u r u u r 是同一平面内的两个___________向量,那么对于这一平面内的任意向量a r ,有且只有一对实数12,λλ,使1122a e e λλ=+r u r u u r 成立。其中12,e e u r u u r 叫做这一平面的一组____________,即对基底的要求是向量___________________; 2.坐标表示法:在直角坐标系内,分别取与x 轴,y 轴方向相同的两个单位向量i ?,j ? 作基底, 则对任一向量a ?,有且只有一对实数x ,y ,使j y i x a ???+=、就把_________叫做向量a ? 的坐标,记作____________。 3.向量的坐标计算:O (0,0)为坐标原点,点A 的坐标为(x ,y ),则向量的坐标为=___________,点1P 、2P 的坐标分别为(1x ,1y ),2P (2x ,2y ),则向量21P P 的坐标为 21P P =___________________,即平面内任一向量的坐标等于表示它的有向线段的____点坐标减去____点坐标. 4.线段中点坐标公式:A (1x ,1y ),B (2x ,2y )线段中点为M ,则有: OM =________________,M 点的坐标为_____________. 5.两个向量平行的充要条件是:向量形式:_____________)0(//?≠ρ ρρρb b a ; 坐标形式: _____________)0(//?≠ρ ρρρb b a .

平面向量三点共线性质定理的推论及空间推广

平面向量三点共线定理的推论及空间推广 南昌外国语学校 梁懿涛 邮编:330025 地址:江西省南昌市桃苑西路126号南昌外国语学校 电话: 电子信箱: 一.问题的来源 平面向量三点共线定理:对于共面向量,,OA OB OC u u u r u u u r u u u r ,OC xOA yOB =+u u u r u u u r u u u r ,则A 、B 、C 三点共线的充要条件是1x y +=. 二.问题的提出 问题1.在上述定理中,如果1x y +<、1x y +>时,分别有什么结论 问题2.x 、y 有什么特定的意义吗 问题3.上述问题可以推广到空间吗 三.问题的解决 推论1. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)点C 在直线AB 外侧(不含点O 一侧)的充要条件是1x y +>. (2)点C 在直线AB 内侧(含点O 一侧)的充要条件是1x y +<. 证明:(1)必要性:如图1-1,连OC 交AB 于点C ',则存在实数λ,使得(1)OC OC λλ'=>u u u r u u u u r ,(1)OC x OA y OB x y '''''=++=u u u u r u u u r u u u r ,OC x OA y OB λλ''∴=+u u u r u u u r u u u r ,,x x y y λλ''==, ()1x y x y λ''∴+=+>. 充分性:1x y +>Q ,∴存在1λ>,使得,x x y y λλ''==且1x y ''+=. ()OC x OA y OB OC λλ'''∴=+=u u u r u u u r u u u r u u u u r ,C 'Q 在直线AB 上,C ∴在直线AB 外侧. 同理可证(2). 进一步分析,得: 推论1'. 对于不共线向量,OA OB u u u r u u u r ,若OC xOA yOB =+u u u r u u u r u u u r ,则 (1)连接AB 得直线1l ,过点O 作平行于1l 的直线2l ,则1l 、2l 将平面OAB 分成三个区域,如图1-2点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:1x y +>;(Ⅱ)区:01x y <+<;(Ⅲ)区:0x y +<.特别地,当点C 落在1l 上时,1x y +=;当点C 落在2l 上时,0x y +=. (2)直线OA 、OB 将平面OAB 分成四个区域,如图1-3,则点C 落在各区域时,x 、y 满足的条件是: (Ⅰ)区:00x y >??>?;(Ⅱ)区:00x y ?;(Ⅲ)区:00x y ??>,则点C 在线段AB 上;当0,0x y ><,则点C 在线段BA 的延长线上;当0,0x y <>,则点C 在线段AB 的延长线 上. 证明:OC xOA yOB =+u u u r u u u r u u u r Q 且1x y +=,OC xOC yOC xOA yOB ∴=+=+u u u r u u u r u u u r u u u r u u u r ,xCA yBC =u u u r u u u r , ||||||||AC y BC x ∴=。当0,0x y >>时,CA u u u r 与BC uuu r 同向,如图2-1所示,则点C 在线段AB 上;当0,0x y ><时,CA u u u r 与BC uuu r 反向,且||||AC BC <,如图2-2所示,则点C 在线段BA 的延长线上;当0,0x y <>时,CA u u u r 与BC uuu r 反向,且||||AC BC >,如图2-3所示,则点C 在线段AB 的延长线上.

平面向量基本定理(教案)

《2.3.1 平面向量基本定理》教案 【教材】人教版数学必修4(A版)第105-106页【课时安排】1个课时 【教学对象】高一学生【授课教师】华南师范大学数学科学学院陈晓妹 【教材分析】 1.向量在数学中的地位 向量是近代数学中重要的概念,它不仅是沟通代数与几何的桥梁,还是解决许多实际问题的重要工具,因此具有很高的教育价值。 2.本节在教学中的地位 平面向量基本定理是向量进行坐标表示,并由此进一步将向量运算转化为坐标运算的重要基础;该“定理”以二维向量空间为依托,可以推广到n维向量空间,是今后引出空间向量用三维坐标表示的基础。因此本节知识在本章中起承上启下的作用。 3.本节在教学思维方面的培养价值 平面向量基本定理蕴含了转化的数学思想。它是用基本要素用基本要素(基底、元)表达事物(向量空间、具有某种性质的对象的集合),并把对事物的研究转化为对事物基本要素研究的典型范例,这是人们认识事物的一种重要方法。 【目标分析】 知识与技能 1.理解平面向量的基底的意义与作用,学会选择恰当的基底,将简单图形中的任一向量表 示为一组基底的线性组合; 2.了解平面向量的基本定理,初步利用定理解决问题(如相交线交成线段比的问题等)。过程与方法 1.通过平面向量基本定理,认识平面向量的“二维”性,并由此进一步体会“某一方向上 的向量的一维性”,培养“维数”的基本观念; 2.通过对平面向量基本定理的探究过程,让学生体会数学定理的产生、形成过程,体验定 理所蕴含的转化思想。 情感态度价值观 1.培养学生主动探求知识、合作交流的意识,感受数学思维的全过程; 2.与物理学科之间的渗透,改善数学学习信念,提高学生学习数学的兴趣。 【学情分析】 有利因素 1.学生在前面已经掌握了向量的基本概念和基本运算(特别是向量加法平行四边形法则和 向量共线的充要条件)都为学生学习本节内容提供了知识准备; 2.学生在物理学科的学习中已经清楚了力的合成和力的分解,同时作图习惯已经养成,这 为我们学习向量分解提供了认知准备。 不利因素 1.学生对向量加减法及数乘运算的意义与作用认识不够,可能增加向量用基底表示时的难 度;

向量法证明三点共线的又一方法及应用 -

向量法证明三点共线的又一方法及应用 平面向量既具有数量特征,又具有图形特征,学习向量的应用,可以启发同学们从新的视角去分析、解决问题,有益于培养创新能力. 下面就一道习题的应用探究为例进行说明. 原题 已知OB λOA μOC =+u u u r u u u r u u u r ,其中1λμ+=. 求证:A 、B 、C 三点共线 思路:通过向量共线(如AB k AC =u u u r u u u r )得三点共线. 证明:如图,由1λμ+=得1λμ=-,则 (1)OB λOA μOC μOA μOC =+=-+u u u r u u u r u u u r u u u r u u u r ∴()OB OA μOC OA -=-u u u r u u u r u u u r u u u r ∴AB μAC =u u u r u u u r ∴A 、B 、C 三点共线. 思考:1. 此题揭示了证明三点共线的又一向量方法,点O 具有灵活性; 2. 反之也成立(证明略):若A 、B 、C 三点共线,则存在唯一实数对λ、μ,满 足OB λOA μOC =+u u u r u u u r u u u r ,且1λμ+=.揭示了三点贡献的又一个性质; 3. 特别地,12λμ==时,1()2 OB OA OC =+u u u r u u u r u u u r ,点B 为AC u u u r 的中点,揭示了OAC V 中线OB 的一个向量公式,应用广泛. 应用举例 例 1 如图,平行四边形ABCD 中,点M 是AB 的中点,点N 在BD 上,且13 BN BD =. 利用向量法证明:M 、N 、C 三点共线. 思路分析:选择点B ,只须证明 BN λBM μBC =+u u u r u u u u r u u u r ,且1λμ+=. D A B C M N

平面向量补充讲义----三点共线定理(修改版)

平面向量补充讲义----三点共线定理 班级:__________姓名:___________ 三点共线定理:若平面内,向量12,OP OP 不共线,向量12OP OP OP λμ=+, 则12,,P P P 三点共线的等价条件是1λμ+=.(如图,共线时λ满足:221P P P P λ=) 说明1:若12,,P P P 三点共线,设221P P P P λ=,则11OP OP PP =+,则 例1.如图,在△ABC 中,13 AN NC =,点P 是BN 上的一点,若211 AP mAB AC =+,则实数m 的值为( ) A .911 B. 511 C. 311 D. 211 练习 例2.,点在边上,,设,则( ) 例3.如图,点是△的重心,、分别是边、上的动点, 且、、三点共线.设,,求: 的值 推论:如图,若平面内,向量12,OP OP 不共线,点P 为直线12P P 的 平行线上任意一点,且向量 12OP OP OP λμ=+,则λμ+为定值. (这条平行线称为等和线) 例4 .已知点G 为ABC ?重心,P 为GBC ?内动点(不包括边界),且AP AB AC λμ=+,则λμ+的取 值范围是__________________;2λμ+的取值范围是_______________________. OAB ?P AB 3AB AP =,OA a OB b ==OP =12.33A a b +21.33 B a b +. C 1233a b -. D 2133a b -G OAB P Q OA OB P G Q x =y =y x 11+2 12P 1

向量证明三线共点与三点共线问题

用向量证明三线共点与三点共线问题 山东 徐鹏 三线共点、三点共线是几何中经常遇到的问题,直接证明往往很困难,用向量法解决则简捷得多. 证明A 、B 、C 三点共线,只要证明AB 与AC 共线即可,即证明AC AB λ=.证明三线共点一般须证两线交点在第三条直线上. 例1. 证明:若向量OA 、OB 、OC 的终点A 、B 、C 共线,则存在实数λ、μ, 且1=+μλ,使得OB OA OC μλ+=;反之,也成立. 证明:如图1,若OA 、OB 、OC 的终点A 、B 、C 共线,则AB //BC ,故存在实数m,使得AB m BC =,又OB OC BC -=,OA OB AB -=,故)(OA OB m OB OC -=-, OB m OA m OC )1(++-=.令,1,m m +=-=μλ则存在,1,,=+μλμλ且使得 OB OA OC μλ+=. 若OB OA OC μλ+=,其中,1=+μλ则λμ-=1,OB OA OC )1(λλ-+=.从而有OC -OB =λ(OA -OB ),即BA BC λ=.又因为BA BC 和有公共点B,所以A 、B 、C 三点共线,即向量OA 、OB 、OC 的终点A 、B 、C 共线. 例2. 证明:三角形的三条中线交于一点. 证明:如图2,D 、E 、F 分别是ABC ?三边上的中 A O B C 图1

点. 设BE BG AD AG G BE AD b CB a CA μ===?==,,,.设.则 =-+-=++-=+-=+=)2 1( )2 1()()(b a a b CA BC a b BE a b BG AB AG μμμ b a )1(1(2 1μμ-+-),又b a b a CD AC AD AG λλλλλ2 1)2 1()(+-=+-=+== ?????? ? ==??????? -=-=-323 2121121μλμλμλ解得 所以 则b a b a a AD a AG CA CG 3131)21(323 2+ = + -+=+ =+= b a CF 2 121+ = ,所以CF CG 3 2=,所以G 在中线CF 上,所以三角形三条中线交于一点. A B C E D F 图2 G

《2.3平面向量基本定理及坐标表示(一)》

平面向量基本定理、平面向量的正交分解和坐标表示及运算 教学目的: (1)了解平面向量基本定理;理解平面向量的坐标的概念; (2)理解平面里的任何一个向量都可以用两个不共线的向量来表示,初步掌握应用向量解决实际问 题的重要思想方法; (3)能够在具体问题中适当地选取基底,使其他向量都能够用基底来表达. 教学重点:平面向量基本定理. 教学难点:平面向量基本定理的理解与应用. 向量的坐标表示的理解及运算的准确性. 教学过程: 一、 复习引入: 1.实数与向量的积:实数λ与向量a 的积是一个向量,记作:λa (1)|λa |=|λ||a |; (2)λ>0时λa 与a 方向相同;λ<0时λa 与a 方向相反;λ=0时λa =0 2.运算定律 结合律:λ(μa )=(λμ)a ;分配律:(λ+μ)a =λa +μa , λ(a +b )=λa +λb 3. 向量共线定理 向量b 与非零向量a 共线则:有且只有一个非零实数λ,使b =λa . 二、讲解新课: 1.思考:(1)给定平面内两个向量1e ,2e ,请你作出向量31e +22e ,1e -22e , (2)同一平面内的任一向量是否都可以用形如λ11e +λ22e 的向量表示? 平面向量基本定理:如果1e ,2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ11e +λ22e . 2.探究: (1) 我们把不共线向量e1、e2叫做表示这一平面内所有向量的一组基底; (2) 基底不惟一,关键是不共线; (3) 由定理可将任一向量a 在给出基底e1、e2的条件下进行分解; (4) 基底给定时,分解形式惟一. λ1,λ2是被a ,1e ,2e 唯一确定的数量 3.讲解范例:

必修四平面向量基本定理

平面向量基本定理 [学习目标] 1.理解平面向量基本定理的内容,了解向量一组基底的含义.2.在平面内,当一组基底选定后,会用这组基底来表示其他向量.3.会应用平面向量基本定理解决有关平面向量的综合问题. 知识点一 平面向量基本定理 (1)定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2. (2)基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 思考 如图所示,e 1,e 2是两个不共线的向量,试用e 1,e 2表示向量AB →,CD →,EF →,GH →,HG → , a . 答案 通过观察,可得: AB →=2e 1+3e 2,CD →=-e 1+4e 2,EF → =4e 1-4e 2, GH → =-2e 1+5e 2,HG → =2e 1-5e 2,a =-2e 1. 知识点二 两向量的夹角与垂直 (1)夹角:已知两个非零向量a 和b ,如图,作OA →=a ,OB → =b ,则∠AOB =θ (0°≤θ≤180°),叫做向量a 与b 的夹角. ①范围:向量a 与b 的夹角的范围是[0°,180°]. ②当θ=0°时,a 与b 同向. ③当θ=180°时,a 与b 反向. (2)垂直:如果a 与b 的夹角是90°,则称a 与b 垂直,记作a⊥b .

思考 在等边三角形ABC 中,试写出下面向量的夹角. ①AB →、AC →;②AB →、CA →;③BA →、CA →;④AB →、BA →. 答案 ①AB →与AC → 的夹角为60°; ②AB →与CA → 的夹角为120°; ③BA →与CA → 的夹角为60°; ④AB →与BA → 的夹角为180°. 题型一 对向量的基底认识 例1 如果e 1,e 2是平面α内两个不共线的向量,那么下列说法中不正确的是________. ①λe 1+μe 2(λ、μ∈R )可以表示平面α内的所有向量; ②对于平面α内任一向量a ,使a =λe 1+μe 2的实数对(λ,μ)有无穷多个; ③若向量λ1e 1+μ1e 2与λ2e 1+μ2e 2共线,则有且只有一个实数λ,使得λ1e 1+μ1e 2= λ(λ2e 1+μ2e 2); ④若存在实数λ,μ使得λe 1+μe 2=0,则λ=μ=0. 答案 ②③ 解析 由平面向量基本定理可知,①④是正确的. 对于②,由平面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量在此基底下的实数对是惟一的. 对于③,当两向量的系数均为零,即λ1=λ2=μ1=μ2=0时,这样的λ有无数个. 跟踪训练1 设e 1、e 2是不共线的两个向量,给出下列四组向量:①e 1与e 1+e 2;②e 1-2e 2与e 2-2e 1;③e 1-2e 2与4e 2-2e 1;④e 1+e 2与e 1-e 2.其中能作为平面内所有向量的一组基底的序号是______.(写出所有满足条件的序号)

(完整word版)高中数学例题:利用平面向量基本定理证明三点共线问题

高中数学例题:利用平面向量基本定理证明三点共线问题 例3.设OA u u u r 、OB uuu r 、OP uuu r 是三个有共同起点的不共线向量,求证: 它们的终点A 、B 、P 共线,当且仅当存在实数m 、n 使m+n=1且OP mOA nOB ==u u u r u u u r u u u r . 【思路点拨】本题包含两个问题:(1)A 、B 、P 共线?m+n=1,且OP mOA nOB ==u u u r u u u r u u u r 成立;(2)上述条件成立?A 、B 、P 三点共线. 【证明】(1)由三点共线?m 、n 满足的条件. 若A 、B 、P 三点共线,则AP u u u r 与AB u u u r 共线,由向量共线的条件知存 在实数λ使AP AB λ=u u u r u u u r ,即()OP OA OB OA λ-=-u u u r u u u r u u u r u u u r ,∴(1)OP OA OB λλ=-+u u u r u u u r u u u r . 令1m λ=-,n=λ,则OP mOA nOB =+u u u r u u u r u u u r 且m+n=1. (2)由m 、n 满足m+n=1?A 、B 、P 三点共线. 若OP mOA nOB =+u u u r u u u r u u u r 且m+n=1,则(1)OP mOA m OB =+-u u u r u u u r u u u r . 则()OP OB m OA OB -=-u u u r u u u r u u u r u u u r ,即BP mBA =u u u r u u u r . ∴BP u u u r 与BA u u u r 共线,∴A 、B 、P 三点共线. 由(1)(2)可知,原命题是成立的. 【总结升华】 本例题的结论在做选择题和填空题时,可作为定理使用,这也是证明三点共线的方法之一. 举一反三: 【变式1】设e 1,e 2是平面内的一组基底,如果124AB e e =-u u u r , 12BC e e =+u u u r ,1269CD e e =-u u u r ,求证:A ,C ,D 三点共线. 【解析】 因为1212121(4)()233AC AB BC e e e e e e CD =+=-++=-=u u u r u u u r u u u r u u u r ,所以AC u u u r 与CD uuu r 共线.

相关文档
最新文档