高精度差分格式及湍流数值模拟(一)

合集下载

【国家自然科学基金】_高精度差分格式_基金支持热词逐年推荐_【万方软件创新助手】_20140730

【国家自然科学基金】_高精度差分格式_基金支持热词逐年推荐_【万方软件创新助手】_20140730
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
改进型boussinesq方程 扩散方程 序列二次规划方法 平滑 差分逼近程度 差分方法 对流扩散反应方程 对流占优 完全匹配层(pml) 多重网格方法 多自由度系统 四阶紧致差分格式 吸收边界 叶片热传导 可压缩流 变分原理 单调迭代 半显式 加权本质无振荡(weno) 传统差分 传播子技术 中短波 中心格式 三维对流扩散方程 weno格式 sh波场 kelvin-helmhohz不稳定性 fourier分析
有限体积方法 有理谱配点法 显格式 新型高分辨率格式 数学基本格式 数值摄动高精度重构 数值反演 摄动有限体积格式 摄动差分格式 插值 控制容积积分法 指数时程差分法 强对流占优问题 并行算法 导热方程 奇异摄动 奇异分析 多重网格方法 多分辨分析 复杂流场计算 地震波 土壤湿度 吸收边界条件 各向异性 变系数 准p波方程 农业 元体平衡法 代数多重网格方法 交错网格 二阶投影法 二维小波 不可压缩流 不可压navier-stokes方程组 三阶迎风格式 三维小波 三维双调和方程 一致稳定性 weno格式 vti介质 vrs volterra型积分微分方程 vof tvd格式 schr(o)dinger方程 rtk-gps richards方程 pml吸收边界条件 navier-stokes方程 mmb差分格式 gps dlr型k-ε 紊流模型 cdma

湍流数值模拟及其在工程热力学中的应用

湍流数值模拟及其在工程热力学中的应用

湍流数值模拟及其在工程热力学中的应用湍流是自然界和工程中广泛存在的一种流动状态,其具有不规则、不稳定、非线性等特点。

因此,湍流研究成为了流体力学中的一个重要分支。

湍流数值模拟(Large Eddy Simulation)是目前研究湍流问题的重要手段之一,广泛应用于工程热力学中。

湍流数值模拟技术的发展历程湍流数值模拟技术起源于20世纪50年代,当时主要应用于理论模拟。

20世纪80年代后,随着计算机技术的发展,数值模拟技术应用于实际工程中,并得到广泛应用。

近年来,由于计算机性能的不断提高和算法的不断改进,湍流数值模拟技术越来越成熟,其应用范围也更加广泛。

湍流数值模拟技术的基本原理湍流数值模拟技术的基本原理是将流场分为宏观湍流和微观湍流两部分,并通过不同方法对二者进行模拟。

具体而言,宏观湍流采用平均场方程进行模拟,微观湍流则通过小尺度涡结构之间的相互作用进行模拟。

在湍流数值模拟过程中,关键是要准确地描述湍流的能量转移和钝化机制,以便合理地模拟湍流特性。

目前,湍流数值模拟技术主要有两种方法:直接数值模拟和大涡模拟。

直接数值模拟(Direct Numerical Simulation,DNS)是最为精确的湍流数值模拟方法,它直接求解完整的Navier-Stokes方程,但计算量也是最大的。

而在工程应用中,一般采用次网格模型,采用模型对小尺度湍流进行近似处理,减少计算量。

其中,大涡模拟(Large Eddy Simulation,LES)是一种很有代表性的方法,它将外部湍流场分解为大尺度湍流和小尺度湍流两部分,对大尺度湍流进行直接数值模拟,对小尺度湍流采用模型进行处理。

湍流数值模拟在工程热力学中的应用湍流数值模拟技术在工程热力学中有着广泛的应用。

具体而言,湍流数值模拟可以用来模拟涡流管道的流动、火焰、燃烧室和喷气发动机等复杂流场问题。

下面,我们将从两个方面来介绍湍流数值模拟在工程热力学中的应用:(1)流体力学问题湍流数值模拟技术在流体力学问题中得到了广泛应用,例如现代汽车设计中对车身和车厢空气动力学的研究,对于气动设计、噪声控制和气密性等方面的分析有很大的帮助。

高精度差分格式及湍流数值模拟(三)

高精度差分格式及湍流数值模拟(三)

~m; (~10m)
最小尺度涡: 微米量级; 中小尺度涡: 0.1mm~ 1mm量级
直接数值模拟: 分辨出最小尺度涡; 网格量极为巨大: 计算量、存储量大
对高性能计算需求强烈
二、 高精度CFD软件 OpenCFD
OpenCFD: 作者开发的一套高精度、开放的CFD程序
1) OpenCFD-SC : 高精度差分 2) OpenCFD-EC: 有限体积 3) OpenCFD-Comb: 化学反应计算
computational region
200
z 300
outflow boundary
buffer region
400
500
示例2:有攻角小头钝锥边界层转捩的DNS
3) 计算结果验证
a.不同网格之间的比较 (网格收敛性) b. 不同扰动形式的结果比较 (模型正确性) d. 与Horvath静风洞实验比较 (与实验结果比较) c. 与 eN方法比较 (与理论结果比较) e. 与Stenson实验比较 (与实验结果比较)
面向工程计算开放的CFD代码(Open CFD code for Engineering Computing)
算法: 多块结构网格有限体积 + RANS 特点: 适用于复杂外形工程计算
差分-有限体积混合方法
3) 高精度化学反应模拟程序—— OpenCFD-Comb
面向化学反应的开放CFD程序: An OpenCFD code for Combustion
高精度差分格式及 湍流数值模拟 (三)
Part 3 可压缩湍流DNS
1. 背景 2. OpenCFD软件简介 3. 典型可压缩湍流的直接数值模拟示例 4. 湍流模型的评估及改进 5. 湍流燃烧的DNS 6. 小结

湍流的几种数值模拟方法

湍流的几种数值模拟方法

LES特点
抓大不放小 非常有利,有力的工具 是最近,可预见未来流体 力学研究和应用的热点 近来又出现了VLES, DES等在LES上发展而 来的工具
Will RANS survive LES? Hanjalic自问自答
会。Journal of Fluids Engineering -V127, 5, pp. 831-839 (Will RANS
Prandtl(1925)混合长度模型
也被称作零方程模型 还在被广泛应用 廉价,易收敛 基本在流场比较简单,或者对计算结果 精度要求不高或者流场形状比较复杂的 行业中,比如暖通空调,流体机械等。
Prandtl混合长度模型 缺点
最明显的缺点是:当速度梯度 为零的 时候, 消失, 这与事实不符
Launder and Li(1994), Craft and Launder (1995)
目前有很多学者在继续此方面的工作
Brian E. Launder
本科Imperial College, London 硕博 MIT 实验流体力学 1964-1976 Imperial College 讲师
涡流粘度
Eddy viscosity or turbulent viscosity
二维流场分子粘性力
为描述雷诺应力,Boussinesq 1887 定义了与之相对应的
RANS模型的核心在于给出 的数 学表达式,要求精度高,适用范围广
涡流粘度,
Prandtl 1925 Prandtl 1945 Bradshaw 1968 Kolmogorov, 1942 Hanjalic 1970 Rotta 1951 Chou 1945 Davidov 1961

高精度差分格式及其数值解的逼近程度分析

高精度差分格式及其数值解的逼近程度分析

三阶迎风偏斜差分
Fj
1 6
2u j1 3u j-6u j-1 u j-2
kr
1 6
cos2
4 cos
3, ki
1 6
sin
2
8sin
五阶迎风偏斜差分
Fj
1 60
3u j2
30u j1 20u j
60u j1 15u j2 2u j3
kr
1 cos3
30
6 cos2
11
二阶导数的紧致差分
• 传统型差分的截断误差项的再次离散 • 四阶紧致:
1 12
S
j 1
5 6
S
j
1 12
S j1
x2u
j
• 若边界点S0和SN已知,可用解三对角矩阵方程得
到所有网格点上的差分
12
二阶导数的紧致差分(cont.)
• 一般形式
l0
l
S jl
S jl 2
bl
l 0
u jl
2u j l2
27
耗散效应
u f
t x
m
2 m x 2 m 1
2m f x 2 m
m
2 m 1x 2 m
2m1 f x 2 m 1
x
~2
u x
x
a
2u x 2
耗散
色散
f cu,u uˆ(t) exp(ikx)
2m1 f
~2
m
2 m x 2 m 1
x 2 m 1 f
f cx
u
m
(四) 高精度差分格式及其 数值解的逼近程度分析
• 指大于二阶精度的格式 • 要求准确模拟小扰动量长时间、远距离传播的速度和幅值 • 用于计算噪声、DNS等 • 有传统高精度差分和紧致差分两种

大气湍流运动数值模拟仿真方法综述

大气湍流运动数值模拟仿真方法综述

大气湍流运动数值模拟仿真方法综述大气湍流是指大气中流体的无序运动,常常出现在多尺度、多层次的大气环流中。

了解和研究大气湍流运动具有重要的科学和应用价值,可以为天气预报、气候模拟以及空气污染等方面的研究提供有力支持。

数值模拟仿真成为研究大气湍流运动的重要手段之一,本文将对大气湍流运动数值模拟仿真方法进行综述。

一、拉格朗日方法:拉格朗日方法是一种经典的描述流体运动的方法,通过跟踪流体的质点运动来模拟流体的流动。

在大气湍流运动数值模拟中,拉格朗日方法常常用于描述物质的运动轨迹,例如云的形成和演变过程等。

拉格朗日方法的优点是能够准确地模拟微观尺度的湍流过程,但其计算量较大,难以用于大尺度的湍流模拟。

二、欧拉方法:欧拉方法是一种描述流体运动的方法,它通过对流体流动的宏观性质进行求解来模拟流体的流动。

在大气湍流运动数值模拟中,欧拉方法常常用于求解流体的运动方程,例如质量守恒方程、动量守恒方程和能量守恒方程等。

欧拉方法的优点是计算量相对较小,可以用于大尺度的湍流模拟,但其无法精确地模拟湍流的微观尺度特征。

三、雷诺平均方法(RANS):雷诺平均方法是一种常用的湍流模拟方法,其基本思想是将流场分解为平均分量和脉动分量,并通过对脉动分量进行平均,来模拟湍流过程。

在大气湍流运动数值模拟中,雷诺平均方法常常用于求解雷诺平均动量方程和湍流能量方程等,以模拟湍流的宏观尺度特征。

雷诺平均方法的优点是计算效率高,适用于中尺度和大尺度的湍流模拟,但其无法准确地模拟湍流的细节特征。

四、大涡模拟方法(LES):大涡模拟方法是一种适用于直接模拟湍流的方法,其基本思想是将湍流流场分解为大尺度涡旋和小尺度涡旋,并通过求解小尺度涡旋的方程来模拟湍流过程。

在大气湍流运动数值模拟中,大涡模拟方法常常用于模拟中尺度和小尺度的湍流,以获取湍流的细节特征。

大涡模拟方法的优点是能够较好地模拟湍流的细节特征,但其计算量较大,难以用于大尺度湍流的模拟。

五、直接数值模拟方法(DNS):直接数值模拟方法是一种用于准确模拟湍流的方法,其基本思想是通过求解流场的基本方程,直接模拟湍流中所有的尺度下的流动特征。

一种适用于复杂流动的高效高精度数值模拟方法[发明专利]

一种适用于复杂流动的高效高精度数值模拟方法[发明专利]

专利名称:一种适用于复杂流动的高效高精度数值模拟方法专利类型:发明专利
发明人:屈峰,周伯霄,孙迪,白俊强,王梓瑞
申请号:CN202010925232.3
申请日:20200906
公开号:CN112100835A
公开日:
20201218
专利内容由知识产权出版社提供
摘要:本发明提供一种适用于复杂流动的高精度数值模拟方法,通过采用二维空间模板插值的方式,完成高阶重构多项式的构造,解决了多维黎曼求解器中所需的重构变量无法由传统适用于结构化网格的高阶格式直接求解的弊端,提高波系结构的分辨率以及计算稳定CFL数;并优选通过采用间断探测技术,有效提高了程序的求解效率。

本发明能够在解的光滑区域保持一致的时空高阶精度,基本无震荡地完成对流场间断的捕捉并保证流场解的多维特性保持良好。

申请人:西北工业大学
地址:710072 陕西省西安市友谊西路127号
国籍:CN
代理机构:西北工业大学专利中心
代理人:陈星
更多信息请下载全文后查看。

湍流的数值模拟方法进展.

湍流的数值模拟方法进展.

《高等计算流体力学》课程作业湍流的数值模拟方法进展1概述自然环境和工程装置中的流动常常是湍流,模拟任何实际过程首先遇到的就是湍流问题,而湍流问题本身又是流体力学理论上的难题。

对于某些简单的均匀时均流场,如果湍流脉动是各向均匀及各向同性的,可以用经典的统计理论来分析,但实际上的湍流往往是不均匀的,给理论分析带来了极大困难。

湍流是空间上不规则和时间上无秩序的一种非线性的流体运动,表现出非常复杂的流动状态,主要表现在湍流流动的随机性、有旋性、统计性。

传统计算流体力学中描述湍流的基础是Navier-Stokes(N-S)方程,根据N-S方程中对湍流处理尺度的不同,湍流数值模拟方法主要分为:直接数值模拟(DNS)、雷诺平均方法(RANS)和大涡模拟(LES)。

直接数值模拟可以获得湍流场的精确信息,是研究湍流机理的有效手段,但现有的计算资源往往难以满足对高雷诺数流动模拟的需要,从而限制了它的应用范围。

雷诺平均方法可以计算高雷诺数的复杂流动,但给出的是平均运动结果,不能反映流场脉动的细节信息。

大涡模拟基于湍动能传输机制,直接计算大尺度涡的运动,小尺度涡运动对大尺度涡的影响则通过建立模型体现出来,既可以得到比雷诺平均方法更多的诸如大尺度涡结构和性质等的动态信息,又比直接数值模拟节省计算量,从而得到了越来越广泛的发展和应用。

2 雷诺平均方法(RANS)雷诺平均模拟(RANS)即应用湍流统计理论,将非定常的N - S方程对时间作平均,求解工程中需要的时均量。

利用湍流模式理论,对Reynolds应力做出各种假设,即假设各种经验的和半经验的本构关系,从而使湍流的平均Reynolds方程封闭。

2.1控制方程对非定常的N - S 方程作时间演算,并采用Boussinesp 假设,得到Reynolds 方程''21i j i i i j i j j j j ju u u u u p u f v t x x x x x ρ∂∂∂∂∂+=-+-∂∂∂∂∂∂ =0i i u x ∂∂ 式中,附加应力可记为''ij i j pu u τ=-,称为雷诺应力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
➢ 2003年以前, 多采用人工粘性(或滤波); 近期, 多采用WENO 格式 不足: 耗散较大, 计算量大
➢ 新方法: 迎风紧致格式;群速度控制格式; 加权群速度控制格式(WGVC-M); 优化的保单调格式OMP; 优化的MUSCL方法
二、 高精度、高分辨率差分格式
1. 格式的精度、 分辨率及优化 1) 差分格式精度: 截断误差的阶数
高精度差分格式及 湍流数值模拟
提纲
Part 1. 高精度差分格式 Part 2. 湍流模拟 Part 3. OpenCFD及可压缩湍流直接数值模拟
提纲
Part 1. 高精度差分格式 1. 前言 2. 高精度高分辨率差分格式 格式的精度、分辨率及优化 常用的高分辨率格式: 紧致格式、TVD/保单调格式; WENO格式 3. 群速度控制格式
4阶精度 3阶精度
显然: x 足够小的情况下, 格式1误差更小 x 并非足够小的情况下,格式2 有可能误差更小
Copyright by Li Xinliang
精度特性
分辨率特性
15
➢网格分辨率: 有效波数 x 本身不能描述网格分辨率
无量纲化: x 2 kx
有效波数
kx
u u
u sin kx
间断有限元法; 大规模代数方程组高效解法 ……
➢ 复杂外形、复杂网格处理方法
自适应网格; 直角网格,浸入边界法; 无网格法; 粒子算法;
Copyright by Li Xinliang
8
传统计算方法: 有限差分法, 有限体积法 , 有限元法, 谱方法(谱元法)等; 最近发展的方法: 基于粒子的算法(格子-Boltzmann, BGK),无网格
1
10个点
0.5
0
-0.5
-1
0
1
2
3x
4
5
6
1
20个点
0.5
0
-0.5
-1
● 航天领域,CFD发挥着实验无法取代的作用 实验难点:复现高空高速流动条件
波音777
Copyright by Li Xinliang
波音787
7
CFD 面临的挑战及主要任务:
➢复杂流动的数学模型
湍流的计算模型; 转捩的预测模型; 燃烧及化学反应模型; 噪声模型……
➢ 高精度高效算法
高精度激波捕捉法;
U F1 F2 0 t x y
坐标变换 计算空间
每一维独立处理 一维重构(一维Taylor展开)
例如:
f x
j
a1 f j2
a2
f j1
a3 f j
a4 f j1
f j ( f j+1 f j1) / 2x
5 阶迎风差分格式
f j (2 f j3 15 f j2 60 f j1 20 f j 30 f j1 3 f j2 ) / 60x
ln(x)
2) 差分格式的分辨率
精度: 充分小网格 情况下的误差特性 分辨率: 有限尺度网格 情况下的误差特性
x 0
例:
格式1 格式2
u x
j
a1u j3
a2u j2
.......10
5u x5
x4
u x
j
b1u j3
b2u j2
.......
0.1
4u x4
x3
误差
YF-23,风洞实验5,500小时,CFD计算15,000机时
YF17 Copyright by Li XYinliFan1g7
YF23
6
● 90年代, CFD 在飞机设计中发挥了主力作用 波音777, CFD占主角
● 2000 之后, CFD 取代了大部分风洞实验 波音787:全机风洞实验仅3次
优点: 易于推广到高阶格式 不足: 要求网格足够光滑, 不易处理复杂外形
有限体积: 离散积分方程 (多维离散)
U t
1
Ñ
F
nds
0
k
控制体边界上进行重构
u(x,
y)
u
x0
,
y0
(x
x0
)
x
+(
y
y0
)
y
u
1 2!
(x
x0
)
x
(
y
y0
)
y
2
u
...
•多维重构(多维Taylor展开), 推广到高阶精度复杂
对于复杂方程处理 多用于固体力学
困难

计算量大;
复杂外形的高精
捕捉激波(限制器)度计算
难度大
外形、边界条件简 简单外形的高精

度计算
精度不易提高
复杂外形的工程 计算
Copyright by Li Xinliang
9
➢ 差分法 vs 有限体积法
… j-2 j-1 j j+1 …
差分法: 离散微分方程(一维离散)
有限差分法 有限体积法 有限元法 间断有限元 法(DG) 谱方法 粒子类方法
优点 简单成熟,可构造高精度 格式 守恒性好,可处理复杂网 格 基于变分原理,守恒性好
精度高、守恒性好、易于 处理复杂网格
精度高
算法简单,可处理复杂外 形
缺点
适用范围
处理复杂网格不够 相对简单外形的
灵活
高精度计算
不易提高精度(二 复杂外形的工程 阶以上方法复杂) 计算
u x
j
1 2x
(u j2
4u j1
3u j )
7 6
3u x3
j
x2
O(x3)
截断误差
方法1: Taylor展开,计算截断误差项 (非线性格式推导困难)
方法2: 数值实验
ln err
给定一测试函数(可精确求导),计算 误差对网格尺度的依赖关系
n = 斜率
err Axn
ln err ln A nln x
一、 前言
• 计算流体力学: Computational Fluid Dynamics 简称CFD
计算流体力学是通过数值方法求解流体力学控 制方程,得到流场的离散的定量描述,并以此 预测流体运动规律的学科
CFD: 通过离散求解流动方程得到流动信息
Copyright by Li Xinliang
4
流体力 学问题
理论
优点:准确快捷 不足: 难以找到精确解
实验 优点: 直接、可靠、最终验证方式 不足: 周期长、费用高
计算
优点: 周期短、费用低 不足: 受模型及算法限制,需验证
计算流体力学(CFD): 在航空航天领域得到广泛应用 ● 1970 年代, 飞机设计主要依赖风洞实验
YF-17研制,风洞实验13,500小时 ● 1980年代,CFD逐渐发展, 部分取代实验
优点: 对网格光滑性要求不高,可处理复杂外形 不足: 推广到高阶精度难度大
0
1
xபைடு நூலகம் , y0
➢高精度差分法: 复杂流动的精细模拟 典型应用: 湍流精细模拟 (直接数值模拟、 大涡模拟)
湍射流的涡量分布:DNS
RANS
➢ 湍流精细模拟 与 高精度格式
➢ 激波给可压湍流DNS的数值方法带来巨大挑战 矛盾: 低耗散 vs. 抑制振荡(需要耗散)
相关文档
最新文档